
Practice of Programming
using Java

Lecture 1
June 15, 2006
6-8pm LT

Objectives

� Improve/Learn Programming
� Basics of programming
� Organizing and using data structures and

control structures

� Introduce Object Oriented Programming
� Learn Java as a programming language
� Introduction to good programming

practices

Schedule

� Saturdays: 2 to 5 pm
� Tuesdays: 6 to 8 pm
� Thursdays: 6 to 8 pm
� Fridays: 6 to 8 pm
� Last lecture: July 5th.
� Exam: July 9th 9 to 12 AM
� Any changes will be emailed to you.
� See course webpage:

http://www.cse.iitb.ac.in/~rkj/summercourse
� TAs will be available as per allocation.

Note your TAs

� raghuvar@cse mostly in H6/276 or OSL

� aniketd@cse H6/12 but mostly in
OSL(maths1)

� padmaja@cse mostly in CH Kresit
� dhananjays@cse mostly in H13 B/222 or OSL

� chawley@iitb H5/113, but mostly in met
3rd floor (302 Met) polymer lab

� saurabhg@ee H4/106 mostly in GG bldg,
5th floor- design lab

� manishg@cse H12/C508. but mostly in
OSL(maths1)

� Use email to contact them, and use 7730 or email to contact me.
� Assignment submissions will be through the website.
� The course schedule is fast paced. Regular practice and

programming will be required to get the best (grade:-) out of the
course.

Today’s Topics: Basic Ideas

� Program
� Data
� Control
� Interfaces
� Objects
� Classes

A Program

� Pickup 100 Rs.
� Go to market
� Select a vegetable vendor

� Choose a vegetable, assess its quality, ask
for its price, if satisfied select a quantity and
buy it.

� Repeat till you are satisfied/have money
� Repeat the above with another vendor to

complete your vegetable collection.

A Program

� Control Logic
� Data

At runtime:
� Initialization
� Dynamic changes to data as per the

control logic
� Termination condition

A quick look at some Control
Abstractions (we shall visit this again)

� Basic Control Abstractions
� Functions, function calls, recursion
� Assignment statement
� Sequential execution
� If then else, case statements
� While, repeat, case and for statements
� Threads

� Control abstractions cover data flows
and value changes � i.e. dynamics

A quick look at some Data
Abstractions (we shall visit them again)

� Data Abstractions
� symbols and lists
� Types: int, bool, char, float..
� Structures
� Unions, enumerated types
� Arrays, Vectors

� Data abstractions are entity abstractions
� operations supported on data abstractions are

mostly general: read, write

20

10

7

25

21 26

Richer Abstractions

� The above control and data abstraction are
low level abstraction as compared to…

� High level abstractions need to be composites
of these
� Besides function composition, structures:
� it makes sense to combine data and control

together to form an interesting composite
abstraction called object

Object Abstraction

20

10

7

25

21 26

Add new
Element

Remove an
Element

Examples of Richer Abstractions
used inside your PC.

� File at OS level
� Data: stream of bytes
� Operations supported: open, close, read, write,

rewind, seek
� Process at OS level

� Data/internal objects: control and data segments,
page tables, open files, priority..

� Control: create, terminate, suspend, resume, trace
� Stack Data structure

� Data: elements arranged in the form of stack
� Control: create, delete, push, pop, top

More Examples of Richer
Abstractions which you may have used directly or indirectly

� Table in a spreadsheet/GUI
� Data: rows, columns, content
� Operations (control): create, delete, add/del

row/column, insert element
� Name server

� Data: name-location bindings arranged in a
hierarchy

� Operations: add new binding, delete
existing binding, create/delete namespaces

Compare These with Some
Examples of Abstraction in Real life

� Fan
� Data/internal objects: motor, capacitor ..
� Operations: switch on, off, set speed

� Tape
� Data/internal objects: internal circuits, cassette

holder
� Operations: switch on/of, open/close cassette

holder, play, rewind, forward, record, pause,
continue

� It’s a composite object: player/recorder + cassette
holder

They have something in common:
� Explaining Object Abstractions

� It is convenient to think of abstractions in
terms of the data that they possess along with
the operations which they allow on them
� Data: Internal data elements, internal objects
� Operations: Expose for External Use

� User only worries about how to use an
abstraction but now how it is implemented

The important steps in formulating
object abstractions

� Thinking data and high level control on the
data as one unit of abstraction

� Separating internal data from exposable
operations on them (i.e. separation of
Interfaces from Implementation)

� Hiding data from external environment
(through Encapsulation)

Interfaces and Implementation

� Interactions with an object from an
external entity happens through the
object’s interface (s). An interface is a
collection of object’s controls.

� Implementation is responsible to provide
the required behavior

� An implementation can be changed so
long as it sticks to what is promised as
part of interface

Two Basic Principles of Object
Orientation

� Abstraction
� Hiding complexities of lower layer
� We discussed about data and control abstractions
� Object abstraction: data + observable behavior

together as a unit

� Encapsulation
� Only the observable behavior is exposed, the rest

(data and internal objects) is hidden from external
environment

Exercise Session 1

� Define one of the following objects in
terms of their observable behavior as
Java interfaces.

� Stack of books
� List of items
� Push button
(expected code size: at most half a page)

Exercise Session 2

� Figure out the object abstractions of the below
objects. Express their interfaces and internal
components in Java.

� Washing Machine
� Bike
� MP3 CD Player
� Phone unit on your desk

(at least one example per student. Pick from above
list, or pick some other real life object abstraction.).

(expected code size: 1 page)

A Class and its instance

� Class
� Defines the structure

� Data
� Behavioral abstraction

� Instance
� The actual object that is to be used
� Has values which get updated
� You can invoke member functions on it
� Many instances of same class can be created

Exercise Session 3

� Write class specifications for one of the below
objects, implement the class fully and test it
through a main() function.

� Tossable Coin
� Achieve the randomness

� Coffee Vending Machine
� Implement a few rules

Alternatively, you can implement any other interesting
(but simple) object if you wish to.

(expected code size: 1 page)

