
Practice of Programming
using Java

Lecture 2 & 3
June 16, 2006
6-8pm LT

About JAVA

� An Object Oriented Programming
Language

� An Interpreted Language
� Portable Programs
� Internet Enabled
� Provides a large number of Library

Packages for software Development

The Class Construct

� Put together data/implementation and
interface, and enforce encapsulation as per
user’s design

� A class provides the definition of an object
� Object’s state
� Object’s behavior in terms of public methods

� Many instances (objects) can be created from
a given class. All the instances behave as
specified by their class

Initialization and Destruction

� A class also defines a special initialization
method for its objects so that whenever
objects are created, they are initialized
automatically

� Destruction is automatic through garbage
collector. However:
� A class can defines a destroyer method which is

called when an object turns into garbage

Compiling and Executing JAVA programs

� Myclass.java contains a class called
Myclass.

� Compile this file to a Myclass.class file using
javac, a Java compiler that compiles Java
source code to intermediate Byte code.

� If Myclass supports a special method called
main, you can ‘execute’ Myclass.class with
Java interpreter.

An Example Java Class

class Pair { // this is a comment
private int x, y;
public Pair (int i, int j) { x=i; y=j;} // initialize
public void print () {

System.out.println (x+” “+y);
}

}

Use class Pair

class TestPair {
public static void main (String arguments[]) {
Pair p1 = new Pair (10,20);
p1.print ();

}
}

Javac Pair.java Produces Pair.class
Javac TestPair.java Produces TestPair.class
Java TestPair Executes main in TestPair.class

Hallo.java

Class Hallo {
public static void main (String args[]) {

System.out.println (“Hallo “ + args
[0]);
}

}
javac Hallo.java --> compiles to

Hallo.class

Constructor

� Constructors have input arguments but
no return types

class Stack {
int state[], max, top;
Stack (int m) { max = m;

top = 0; }
}
If you don’t specify one, the system constructs a default constructor.

Finalizer

� Is not a destructor as in C++
� Finalizer is called just before garbage

collector takes over the object
� Use for file close operations, resource

closing ensuring safe reclaiming of
resources

� protected void finalize () {
…… ; super.finalize; // a good practice
}

Primitive Types

� boolean true or false
� byte, short, int, long 8..64 bit integers
� float, double 32..64 bit real
� char 16 bit unicode

Arrays

� They are First Class Objects
� Example:

int [] state;
for (I=0; I< state.length; I++)

state [I] = 100 ;

Exercise: convert the above loop into an equivalent while loop

Relational Operators

� > < greater than?, less than?
� >= <= gteq? Leq?
� == equal?
� != not equal?
� instanceof Type comparision

Bitwise and Boolean Operators

� ~ Bitwise Complement
� & Bitwise AND
� ^ Bitwise EXOR
� | Bitwise OR
� && Boolean And
� || Boolean OR

Shift Operators

� << left
� x << y shift x left by y bits
� Fills 0s on right

� >> right
� x >> y shift x right by y bits
� Fills higest bit on left

� >>> 0 fill right shift
� X >>> y shifts x right by y bits
� Fills 0s on left

Other Operators

� ?:
� X ?: y : z returns y if x is true else returns z

� (type)
� (t) x casts x to type t
� Tx x
� y = (Ty) x

� Instanceof
� x instanceof y returns true if x is instance of

class y else it returns false

Arithmetic and Assignment Operators

� + - / * %
� =
� ++ --
� += -= *= /= %=

� operations + assignment

� &= ^= |= <<= >>= >>>=
� bitwise operations + assignment

Control Flow

� if (…) …… else ……. ;
� switch (….) { case … };
� while (…) ….;
� do …. while (…);
� for (… ; …; …;) ….. ;
� label : …

break label or continue label
� return (…) ; return ;

Parameter Passing

All parameters are Call By Value
� Primitive types

a parameter of primitive type is a copy
of its value

� Reference types
a parameter of this type is a copy of the
reference and not the object to which it
points

What are static members ?

They are ‘Per Class’ members, shared
by all objects of that class

� static data members (fields) : class
variables

� static methods (class methods) : can
access only class variables and static
methods

main is always specified as static: use main as a class
tester

Static initializers

� To initialize static fields such as arrays

� complex static initialization can be done
through this function

Static Initializers

class Student {
private static int n;

static {
n = 0;

}
public static int count() { return n;}

…
}

Standard JAVA Utility Classes

� These are many useful classes provided
by the java environment in java.util
package

� For example:
� BitSet: Is a collection of bits
� Vector: Is a dynamically sized array of

Objects
� Stack: LIFO vector

Class BitSet

� Represents a bit vector (of true/false bits) that
can grow dynamically

� An Example:

BitSet b = new BitSet(2); or
BitSet b2 = new BitSet();
b2.set(1); b.clear(0);

Some Methods on BitSet

void set (int p)
sets bit at position p to true

void clear (int p)
sets bit at position p to false

boolean get (int p)
returns bit a position p

void and (BitSet other)
Logical ANDs this bitset with other

Some Methods on BitSet

void or (BitSet other)
void xor (BitSet other)
int size ()

returns size of the bitset
boolean equals (Object other)

returns true if bits in other are same as
those in this

Class Vector

� Represents a resizable array of Object
References

� Arrays in JAVA are of fixed size whereas
vectors are resizable. But vectors can
hold Object references and not primitive
data types

� Use vectors when you do not know in
advance the size of your array

An Example

Vector v;
Student s;
v=new Vector();

for (i=0, I<n, I++) {
s=new Student (i);
v.addElement (s);

}

Some Methods on Vector
final synchronized void addElement (Object

element)
adds an element into the vector

final synchronized boolean
removeElement(Object element)

removes the element from the vector, if
the object is not found, value false is returned

final synchronized void insertElementAt (Object
element, int position)

inserts an element at given position,
elements after position are moved up

Some Methods on Vector

final synchronized void removeElementAt (int
position)

removes element at given position,
elements after the position are moved down

final synchronized void setElementAt (Object
element, int position)

sets element at given position
final synchronized void removeAllElements ()

clears all elements and makes the vector
empty

Some Methods on Vector

final int size ()
returns the size of the vector

final boolean isEmpty()
returns true if the vector is empty

Some Methods on Vector

final synchronized Object elementAt (int
position)

returns element at given position

final boolean contains (Object element)
indicates whether the element is contained in
this vector

final int indexOf (Object element)
returns the position of element,-1 if not found

Developing Class Stack

� methods push and pop for LIFO
operations

� method peek to obtain top element
without removing it from stack

� Example:
Stack s = new Stack();
s.push(anObj);
obj=s.pop();

A (UML like) view of the above class

Stack

an_array
top

push()
pop()

Stack()

Class name

implementation

interface

(private)

(public)

The Tower of Brahma (Also called
Tower of Hanoi)

Assignment problem

� Implement a stack class

� Use the above stack class to solve the
problem of tower of brahma

