
Practice of Programming
using Java

Lecture 4
June 20, 2006
6-8pm LT

A Problem Solving Architecture

� Problem Solver
� Data Structures
� Algorithms

� Main: glue between problem solver classes, input and output
� This makes your problem solver reusable
� If you implement everything in main, you won’t be able to

reuse the solution easily in other programs since main is not
an explicitly callable member function

Problem Solver
classes

Input Output

main()

How do you start?

� Write down the main() first
� Write code with which you will test your solvers
� Compile it and keep it ready
� This gives you an idea about the interface that your

solver should support
� Then implement your problem solver
� Keep your implementation compliable and

executable at all times.
� You are not faced with all the problems in one go
� The solution architecture will evolve incrementally

from externally available interfaces down to
detailed implementation structures.

Some Data Structures

� Stacks
� e.g. a stack of books on my table

� Lists
� e.g. a list of students in my class

� Trees
� e.g. a family tree

� Graphs
� e.g. cities in India connected by rail network

Some Algorithms

� Search
� e.g. search a word in a dictionary

� Sort
� e.g. rank the students in my class

� Traversal over Graphs
� e.g. find shortest path between two cities

The Stack (last in first out)

A
B
C
D
E

Operations
push () : pushes an element on

the top of stack
pop () : removes the element

at the top of stack
empty (): returns true if stack

empty else returns false
full (): returns true if stack is full

else returns false
(full is implemented on bounded
stacks)

initially stack is empty

top

Stack - Snapshots

A A
B

C
L

A
B
C
L
E

A
B
C
D
E

B
K

push (‘A’);
push (‘B’);
push (‘C’);

Empty Stack

Boundary Conditions

� Initialize the object with appropriate initial
values (e.g. what is the initial value of
the variable top?)

� Take care of boundary conditions when
operations are invoked

� e.g. when push is called : is stack full ?
� When pop is called : is stack empty ?
� Either throw exceptions or return error codes on unsuccessful operations

Checking for Matching Parenthesis in
expressions

{ [2*a - 2 (b+c)] * [sin (x+y)] }
{ [2*a - 2 (b+c) } * [sin (x+y)]]

The Solution?

Checking Matching Parenthesis in
expressions using parenthesis Stack

{ [2*a - 2 (b+c)] * [sin (x+y)] }
The Algorithm:
Stack is initially empty
Scan the expression string from left to right
If a left parenthesis is encountered: push it on the stack
If a right parenthesis is encountered, pop the top of stack

and check if the type of popped parenthesis is the same
as the type of scanned parenthesis

failure: upon mismatch

success: if whole string gets scanned without a mismatch

Evaluating postfix expressions using
Stack

� Infix expression
� operand Operator operand

� Postfix expression
� operand operand Operator

� Infix Postfix
� (x+y) x y +
� (x-y-z) x y - z -
� (x-y-z)/(u+v) x y - z - u v + /

The Queue: FIFO

Operations
insert () : insert an element at the rear end of the
queue
fetch (): remove the element at the front of the queue
empty () : determine whether the queue is empty
full (): determine whether the queue is full
initially queue is empty

…….

front rear

Implementing Queues
(The circular implementation)

front

rear

front (out)Rear (in)

0 1 2 3 4 5 6 7

Incrementing the indices:
Modulo Array size

Boundary Conditions
When is the queue empty?
When is it full?

Implementing Queues
(The linked implementation)

front

ABCDE

rear

Some Examples of Queues

� Process Queues in operating systems
� ready queues
� wait queues

� Printer Queues
� Mail queues for incoming and outgoing

messages

Arrays: Merge two sorted Arrays

1 4 4 20 25 28 50 100 120

5 7 7 23 30 35 40 45

1 4 4 5 7 7 20 23 25 28 30 35 40 45 50 100 120

Array A

Array B

Array C: the merged list in sorted order

Searching through arrays

� Find out the smallest index i such that A[i]==x
in an ordered list of elements

� When do you terminate your search, and what
index value do you return when the element is
not found?

Desired
location

10 23 50 183 187 250 284 299

0 1 2 3 4 5 6 7

Exercise 3: More Stack based
Exercises

1. Implement a solution to the matching
parenthesis problem using the stack
class that you have developed.

2. Implement a solution for postfix
expression evaluation

Implement at least one of the above

Exercise 4: Some Array based
Problems

1. Implement a circular queue using a
bounded array.

2. Implement a function that merges 2
sorted integer arrays

3. Implement binary search on a sorted
integer array

Implement all of them.

Exercise 5: More Recursive
solutions

� Implement function factorial to compute and
return the factorial of nonnegative number k
provided as its input argument.

� Implement a recursive function fibonacci that
computes and returns kth Fibonacci number
when a nonnegative value k is provided as its
input argument.

Implement at least one.
Also print the total no. of calls made to the

function.

