
Some Patterns and 
Processes for 
Refactoring
Rushikesh K Joshi & Students 
Department of Computer Science and 
Engineering
IIT Bombay



 IIT Bombay

Refactoring for Design 
Improvement
 Our focus has been on design 

improvement
 As opposed to reengineering for 

functional improvement

 Masters/PhD work in following 3 
dimensions:
 Improving object oriented designs
 Aspectization of object orientation
 Objectification of procedural code



 IIT Bombay

Bird’s Eyeview

Procedural
design

Raw Object oriented
design

Improved Object Orientation

Aspectized Object Orientation



 IIT Bombay

Procedural  Object Orientation
 Subject Dimensions

 Control abstractions:
 Procedures
 Pure functions

 Data Abstractions
 Primitive types 
 Simple structures
 Complex Structures

 Placements/scoping of values and accessibility
 Global Vs. local
 Constants, variables

 Interactions between data and control abstractions
 Parameter passing 
 Global accesses
 Static values across function invocations
 Read/Write accesses



 IIT Bombay

Global Value based Object 
Identification techniques

Look for connected components
Each component forms a class

Some Problems: 
1. common method such as initializer of globals turns 
the graph into one big class
2. Global constants may produce noisy collection 

Functions -- access -- 
global values



 IIT Bombay

Type Based Identification
Functions --- arg --- types

Connected components are classes

Problems: 
1.Primitive types are common to many methods – results in noisy classification
2. No distinction between access modes is made



 IIT Bombay

LCOM based repartitioning on 
classes [MTech thesis of Ashish Vanarase 2005] 

ADO based identification ADT based identification

Set of Classes

Class partitioning based on LCOM



 IIT Bombay

Constructor Identification 
Technique[in Nishit Desai’s M.Tech thesis, 2006]

m

T1
T2

Read in

Return out

T3
Read in



 IIT Bombay

Open Problems
 Heuristics/metrics for LCOM-based 

partitioning
 Inheritance Structuring
 Part-Whole Analysis



 IIT Bombay

Project Ox
 Linux kernel 2.6.14 as Testbed
 Experiments on IPC

 Msg.c
 Sem.c
 Shm.c

 A bootable version of kernel in which 
msg.c is objectified



 IIT Bombay

Objects  Better Objects
 Subject Dimensions:

 Classes 
 Member functions
 Attributes 

 Member Functions
 parameter types
 Local attributes
 Local accesses
 External accesses

 Dynamics
 Switch statements 
 Decision boxes



 IIT Bombay

Metric Based Refactoring 
Techniques[Padmaja, research topic]

 Object Oriented Metrics
 Mostly at class level i.e. per class 

 Refactoring patterns often need attribute 
level or method level analysis

 Distinction between Macroscopic and 
Microscopic Metrics 

 Need for new metrics from refactoring 
point of view

 Data model for Structural Representation 
 From the point of view of microscopic and 

macroscopic metrics



 IIT Bombay

Experiments: Spellchecker and ASC 
academic system code

 Spellchecker Application code refactored 
with the help of newly defined metrics 
[Padmaja 2006]
 Coupling between object reduced 
 LOC remained same,

 An online system in the institute (3200 
LOC) [Naval’s MTech thesis 2005]
 Redundant code was a major problem 
 Manual analysis was done for applying 

fowler’s patterns
 About 36% code was removed



 IIT Bombay

Current Projects
 MJ

 A tool for computing Metrics for Java 
Applications

 Structural Representation Model 
(SRM)
 Data Model (XML based)
 language independent 
 Java to SRM tool
 Metric suites on SRM



 IIT Bombay

Good Objects  Aspects
 Before method call 
 After method calls
 parameters passed down the chain
 Exceptions
 contract enforcements
 default implementations of 

interfaces
 Features/Concerns



 IIT Bombay

Good Objects  Aspects
 Post Aspect Refactoring

 Move field to aspect
 Move method to aspect
 Split constructor etc.

 ASC Application: Code further reduced by 
3% (aspect code adds up)

 JSh (90+ classes) 
 Analysis for 15 classes: exception handling 

classes, default implementations: about 24 
aspects, from original class method count 
came down from 81 to 19– but LOC was just 
about the same! (1139-1134)



 IIT Bombay

Pointers for New Work..
 Manual analysis of code, writing 

habits of programmers
 Aspectization patterns
 Aspect Mining techniques
 Possible use of aspects in forward 

engineering


