
Implementing Assertions
in Distributed Object
Systems

Rushikesh K. Joshi*
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

*Currently visiting NUS

Assertions in Software
Systems
n A Boolean expression placed in a program

where its evaluation is always true

n Typically supported as text annotations or
embedded executables

n Focus is on what part rather than how part of
the system

n Detection, classification and Diagnosis of
errors

Insert (value: T)

Before execution, assert:
Count < capacity

…….Code for insert ……

After execution, assert:
Count = old count+1
Count <= capacity
Values[old count]=value

Applying Assertions: An
Example

Assertions in Practice
n Contract view

n Needs to be enforced by following it as a
contract

n A good design process

n Defensive programming view
n An assertion expresses programmer’s

intentions
n Failure? – handle exception/abort
n A good debugging process

The contract view

n Example: Meyer’s design by contract
method

n Express contracts
n Assign the responsibilities

ad-hoc redundant checks are not
needed

n Produce contract documentation based on
assertions

The Defensive Programming
View
n Be on the defensive, check once more,

have many assertions

n Criticized for redundancies

n Practical

n Systems built on contracts also support
this view!

Assertion Systems

n Native
n Eiffel
n JAVA (Only recently)

n Extensions
n C extensions: APP
n JAVA extensions: JASS

n Intermediate: C predefined macro

The C Assert Macro
[The C Programming Language]

#include <assert.h>
….
void insert (int i) {

assert (count < CAPACITY);
…..

}
main () {

… insert (element); …
}

Observations
n Switching off by defining macro NDEBUG ahead

of #include

n Program is (unfortunately) aborted if the
assertion expression returns false

n Assertions tightly integrated with functional code

Eiffel Assertion System
[Meyer]

n Preconditions
n To be asserted before method execution

begins
n Postconditions

n To be asserted after method execution before
returning the result

n Class Invariants
n To be asserted

• after every object creation
• after every method execution
• i.e. in observable states only,
• not necessarily during method execution

Monitoring Assertions at
Runtime

n Compile time options
n No assertion checking
n Preconditions only
n Pre and post conditions
n Pre,post conditions and invariants

n Exception handling mechanism
required

An Example: DBC in Eiffel
insert (value: T) is
require

count < capacity

do
-- Actual functional code

ensure
count = old count+1
count <= capacity
values[old count]=value

end

The contract

Party obligations benefits

Client call put only get the LIFO
on non-full modified with
LIFO element on top

Supplier insert element no need to deal
on top with a case when

LIFO is full

Who checks?

n The parties are expected to abide by
the contract

n Weak to strong preconditions
possible
n changes the emphasis of checking

them from supplier to client

Drawbacks of this approach
n DBC recommends a demanding

style

n Could cause breakage of encapsulation or
undesirable exposure of private data

e.g. exposure to variable count in above program

n Hence a uniform demanding approach is
not practical in our opinion

Where’s the problem
n No mechanism to separate concerns

n of the assertion code
n functional code of the supplier

n Requirements?

n Assertions may need access to supplier’s data
n Client code needs to be freed from supplier’s concerns
n Suppliers want to be more demanding

JAVA Assertion System
[J2SE v1.4]

assert expression;

If evaluated to false: throws AssertionError

assert exp1: exp2;

passes on value returned by exp2 to
constructor of AssertionError

Observations
n JAVA assertions disabled at runtime by default,

with compile time options they can be enabled at
various granularities

n Improvement over C style assertions: Exceptions
over termination

n Assertions not a full DBC facility

n Tightly integrated with functional code

Extended Systems: APP
[Rosenblum]

n As annotations
n /*@ ….. *@/

n Assertions declared with function interfaces
n Precondition:

• assume x > 10
n Postcondition: promise

• promise *x == in *y
n Return value constraint:

• return y where y >0;

n Assertions associated with single statements in
function bodies
n Intermediate constraint

• assert index <MAX

Inheritance needs to be
handled
n Contractor-subcontractor interaction

n A contract declared by the superclass
must be adhered to by the subclasses
(conceptual compatibility)

n What does it mean to preconditions and
postconditions?

Honest subcontractor view
[Meyer]

n May accept input rejected by the
contractor
n Precondition weakening

n May return a better result than
promised by the contractor
n Postcondition strengthening

An assertion model for
inheritance: Eiffel

n Subclasses can refine the contract:

n require else pre-new
• pre-original or else pre-new

n ensure then post-new
• Post-original and then post-new

Extended Systems: JASS
[Univ. Oldenburg]

n Assertions as annotations
n /** ….. **/

n Eiffel like extensions
n Require, ensure, (class) invariant, loop

invariant, loop variant (decreasing and
positive)

n Expressions/function calls allowed
n But they must be side effect free

Summarily..
n There are many more variations of the

themes discussed
n Most commercial integrations are of two

kinds
n Simple assertion statement

• Terminates/or throws exception
n Design by Contract – preconditions,

postconditions and invariants
• Throws exceptions

n Implementations in presence of
Inheritance: yet to stabilize

Our Approach
n Separate concerns of functional code from the

assertion system
n Transparent Pluggable Filter Objects

n Predefined control points
n Interception points

n Modularity to assertion code
n Filter objects are instances of classes

n Runtime control
n Pluggable at runtime

Transparent Pluggable Filter
Objects

server.m m ()

another

pass

return

bounce

downfilter

upfilter

client

afilter

server

Interclass Relationship
Class Diagram

AClient

Constraints

Contractor

main ()

ser

call ()

precond() |
call()

postcond() |
call()

Filter Relationship
Object Diagram

cl:AClient

C2:Constrains

serv:Contractor
ser

c1:Constraints

A Distributed System
Scenario:

Objects on a CORBA Bus

A Critical Resource
Component

Class CriticalResource {
public void exwrite() {

.. Functional code only ..
};
…

}

Assert mutually exclusive
access to CR

P3

CR

P2
P1

Mutex

Introducing a Transparent
Filter Object
The Assert filter traps

calls to CR and
asserts mutually
exclusive access P3

CR

P2
P1

Mutex

Assert
No need to change

existing code.
Assert is an

independent
component

A Critical Resource Filter
Component
Class CRFilter : filter CriticalResource {

boolean up;
CRFilter () {up=true;}
upfilter: void assertCS() filters exwrite() {

if (!up) FailAction();
}
upfilter: void update () filters exwrite() {

up = false;
}

…
}

Inject Code
n Code that creates and injects transparent

objects in an existing system

….
CRFilter crf = new CRFilter();
resource1.plug(crf);
….
resource1.unplug(crf);

Implementing Design by contract
through Assertion Objects

n Preconditions
n As upfilters

• On arguments
• On server state*

n Postconditions
n As downfilters

• On return result
• On server state*

n Invariants
n On method boundaries

• On messages
• On server state* *access required

Collaboration, Sharing and
Runtime Reconfiguration
n Collaborating Assertions

n Since they are full-fledged
objects, collaboration is
possible

n Shared Assertions
n plugged to multiple servers

n Runtime configuration
n Switch on and off

Beyond Assertionsà State
Monitors

n Traditional assertion systems do not
recommend assertions which keep state,
in certain cases, such usage is eliminated

n With separation of assertion code from
component’s functional code, cause for
interference is removed

n keep local state and act as state monitors

Handling Inheritance

Pre1
post1

Pre1 orelse Pre2
Post1 andthen post2

Ider C2
implements

implements

Ibase C1

Reusing Assertion Objects –
Feature Interaction Problem

Pre1
post1

Pre1 orelse Pre2
Post1 andthen post2

C2

Pre2
post2

Bounce if not pre1

Bounce if not pr2?

Error if not post1

Error if not post2

Reusing Assertion Objects –
Solution

Pre1
post1

Pre1 orelse Pre2
Post1 andthen post2

C2

Pre2
post2

Disable pre1

Pre1 or else pre2

Error if not post1
Error if not post2

Publications related to this talk

n Design by contract for COM Components
• Sonal Bhagat, Rushikesh K.Joshi, behavioral contracts for COM

components, in proceedings of information system technology
and its applications (ISTA 2001), lecture notes in informatics
(LNI) - proceedings, volume P-2, ISBN 3-88579-331-8, pp. 45-
51, June 2001.

n Pluggable Filter Objects in Distributed Systems
• R.K. Joshi and Neeraj Agrawal, AspectJ based implementation of

dynamically pluggable filter objects in distributed environment,
proceedings of 2nd German workshop on AOSD, Feb 2002.

• G. Srirami Reddy, Rushikesh K. Joshi, Filter Objects for
Distributed Object Systems, Journal of Object Oriented
Programming, vl. 13, No. 9, January 2001, pages: 12-17.

• Pranav Nabar, Amit Padalkar, R.K. Joshi, Filter Object
Framework for MICO, communicated

n Design and Implementation of Pluggable Assertions
• Document in preparation.

References
n Tony Hoare, assertions: A personal perspective. Draft:

June 6, 2001.
n David Rosenblum: A practical approach to programming

with assertions, IEEE TSE, Jan. 1995.
n Bertrand Meyer, design by contract, in advances in object-

oriented software engineering, prentice hall int. (UK) ltd.,
1992.

Current Status

n C++ [SPE 97]

n JAVA [SPE review]

n MICO – user level [JOOP 2001]

n A Mechanism for COM [ISTA 2001]

n MICO – kernel level [new]

n AspectJ based implementation [AOSD2002]

