Implementing Assertions
INn Distributed Object
Systems

Rushikesh K. Joshi*

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

*Currently visiting NUS

Assertions In Software
Systems

m A Boolean expression placed in a program
where Iits evaluation is always true

m Typically supported as text annotations or
embedded executables

m Focus is on what part rather than how part of
the system

m Detection, classification and Diagnosis of
errors

Applying Assertions: An
Example

Insert (value: T)

Before execution, assert:
Count < capacity

After execution, assert:
Count = old count+1
Count <= capacity
Values[old count]=value

Assertions In Practice

m Contract view

m Needs to be enforced by following it as a
contract

m A good design process

m Defensive programming view

m An assertion expresses programmer’s
Intentions

m Failure? — handle exception/abort
m A good debugging process

The contract view

m Example: Meyer’s design by contract
method

m EXpress contracts

m Assign the responsibilities
ad-hoc redundant checks are not
needed

m Produce contract documentation based on
assertions

The Defensive Programming
View

m Be on the defensive, check once more,
have many assertions

m Criticized for redundancies
m Practical

m Systems built on contracts also support
this view!

Assertion Systems

= Native
= Eiffel
= JAVA (Only recently)
m Extensions
m C extensions: APP
m JAVA extensions: JASS

m Intermediate: C predefined macro

The C Assert Macro

[The C Programming Language]
#include <assert.h>
;;c;id insert (int1) {
assert (count < CAPACITY);

by
main () {

... Insert (element); ...

Observations

m Switching off by defining macro NDEBUG ahead
of #include

m Program is (unfortunately) aborted if the
assertion expression returns false

m Assertions tightly integrated with functional code

Eiffel Assertion System
[Meyer]

m Preconditions
m TO be asserted before method execution
begins
m Postconditions
m To be asserted after method execution before
returning the result

m Class Invariants

m To be asserted
e after every object creation
e after every method execution
e |.e. In observable states only,
e not necessarily during method execution

Monitoring Assertions at
Runtime

= Compile time options
= No assertion checking

Preconditions only
Pre and post conditions

Pre,post conditions and invariants

m Exception handling mechanism
required

An Example: DBC in Eiffel

Insert (value: T) Is
require

count < capacity
do

-- Actual functional code

ensure
count = old count+1
count <= capacity
valuesfold count]=value

end

The contract

Party

Client

Supplier

obligations

benefits

call put only
on non-full
LIFO

get the LIFO
modified with
element on top

insert element
on top

no need to deal
with a case when
LIFO is full

Who checks?

m The parties are expected to abide by
the contract

m \Weak to strong preconditions
possible

m changes the emphasis of checking
them from supplier to client

Drawbacks of this approach

m DBC recommends a demanding
style

m Could cause breakage of encapsulation or

undesirable exposure of private data
e.g. exposure to variable count in above program

® Hence a uniform demanding approach is
not practical in our opinion

Where’s the problem

= No mechanism to separate concerns
m Of the assertion code
m functional code of the supplier

® Requirements?

m Assertions may need access to supplier’s data
m Client code needs to be freed from supplier’s concerns
m Suppliers want to be more demanding

JAVA Assertion System

[J2SE v1.4]

assert expression;

If evaluated to false: throws AssertionError
assert expl: exp2;

passes on value returned by exp2 to
constructor of AssertionError

Observations

m JAVA assertions disabled at runtime by default,
with compile time options they can be enabled at
various granularities

®m Improvement over C style assertions: Exceptions
over termination

m Assertions not a full DBC facility

m Tightly integrated with functional code

Extended Systems: APP

|[Rosenblum]

m As annotations
m /@ *@/

m Assertions declared with function interfaces
m Precondition:
e assume x > 10
m Postcondition: promise
e promise *X == in *y
m Return value constraint:
e return y where y >0;
m Assertions associated with single statements In
function bodies

m Intermediate constraint
e assert index <MAX

Inheritance needs to be
handled

m Contractor-subcontractor interaction

m A contract declared by the superclass
must be adhered to by the subclasses
(conceptual compatibility)

= What does it mean to preconditions and
postconditions?

Honest subcontractor view
[Meyer]

m May accept input rejected by the
contractor

m Precondition weakening

m May return a better result than
promised by the contractor

m Postcondition strengthening

An assertion model for
Inheritance: Eiffel

m Subclasses can refine the contract:

m require else pre-new
e pre-original or else pre-new

m ensure then post-new
e Post-original and then post-new

Extended Systems: JASS

[Univ. Oldenburg]

m Assertions as annotations

s lAATH L T

m Eiffel like extensions

m Require, ensure, (class) invariant, loop
Invariant, loop variant (decreasing and
positive)

m Expressions/function calls allowed

m But they must be side effect free

Summarily..

m There are many more variations of the
themes discussed

m Most commercial integrations are of two
Kinds

m Simple assertion statement
e Terminates/or throws exception

m Design by Contract — preconditions,
postconditions and invariants

e Throws exceptions

® Implementations in presence of
Inheritance: yet to stabilize

Our Approach

m Separate concerns of functional code from the
assertion system
m Transparent Pluggable Filter Objects

m Predefined control points
m Interception points

= Modularity to assertion code
m Filter objects are instances of classes

@ Runtime control
m Pluggable at runtime

Transparent Pluggable Filter

Objects
<>

bounce
upfilt
> Pass
server.m) = > @
| Feturn \ qyownfilter
client saerver

afilter

Interclass Relationship
Class Diagram

Ser
AClient "l Contractor

call ()

main ()

Constraints

precond() |
call()

postcond() | l
call()

Filter Relationship
Object Diagram

cl:AClient = serv.Contractor

cl:Constraints| | C2:Constrains

A Distributed System
Scenario:

il

@i i

Objects on a CORBA Bus

A Critical Resource
Component

Class CriticalResource {
public void exwrite() {
.. Functional code only ..

};
}

Assert mutually exclusive
access to CR

Introducing a Transparent
Filter Object

The Assert filter traps
calls to CR and
asserts mutually
exclusive access

No need to change
existing code.

Assert IS an
Independent
component

A Critical Resource Filter
Component

Class CRFilter : filter CriticalResource {
boolean up;
CRFilter () {up=true;}
upfilter: void assertCS() filters exwrite() {
If (up) FailAction();

¥

upfilter: void update () filters exwrite() {
up = false;

¥

Inject Code

m Code that creates and injects transparent
objects in an existing system

CRFilter crf = new CRFilter();
resourcel.plug(crf);

resourcel.unplug(crf);

Implementing Design by contract
through Assertion Objects

m Preconditions

m As upfilters

e On arguments
e On server state*

m Postconditions

m As downfilters
e On return result
e On server state*

m [nvariants

= On method boundaries
e On messages
e On server state* *access required

Collaboration, Sharing and
Runtime Reconfiguration

m Collaborating Assertions
m Since they are full-fledged
objects, collaboration is
possible C o
m Shared Assertions
m plugged to multiple servers -

® Runtime configuration
m Switch on and off (~o®

<
<

Co

Beyond Assertions—> State
Monitors

m Traditional assertion systems do not
recommend assertions which keep state,
INn certain cases, such usage iIs eliminated

m With separation of assertion code from
component’s functional code, cause for
Interference Is removed

m keep local state and act as state monitors

Handling Inheritance

Prel implements
post1 Ibase<—— Cl
/\
implements
Prel orelse Pre2 Ider - W C2
Postl andthen post2

Reusing Assertion Objects —
Feature Interaction Problem

C2 -
Prel orelse Pre2 Pre?2 Prel
Postl andthen post2 pOSt2 postl

Bounce if not prel

<
Bounce if not pr2?

Error if not postl

Error if not post2

Reusing Assertion Objects —
Solution

C2 «
Prel orelse Pre2 Prel Pre2
Postl andthen post2 postl post2

Prel or else pre2

Disable prel

>
Error if not postl _
Error if not post2

Publications related to this talk

m Design by contract for COM Components

- Sonal Bhagat, Rushikesh K.Joshi, behavioral contracts for COM
components, in proceedings of information system technology
and its applications (ISTA 2001), lecture notes in informatics
(LNI) - proceedings, volume P-2, ISBN 3-88579-331-8, pp. 45-
51, June 2001.

m Pluggable Filter Objects in Distributed Systems

- R.K. Joshi and Neeraj Agrawal, Aspect] based implementation of
dynamically pluggable filter objects in distributed environment,
proceedings of 2nd German workshop on AOSD, Feb 2002.

- G. Srirami Reddy, Rushikesh K. Joshi, Filter Objects for
Distributed Object Systems, Journal of Object Oriented
Programming, vl. 13, No. 9, January 2001, pages: 12-17.

- Pranav Nabar, Amit Padalkar, R.K. Joshi, Filter Object
Framework for MICO, communicated

m Design and Implementation of Pluggable Assertions
- Document in preparation.

References

m Tony Hoare, assertions: A personal perspective. Draft:
June 6, 2001.

m David Rosenblum: A practical approach to programming
with assertions, IEEE TSE, Jan. 1995.

m Bertrand Meyer, design by contract, in advances in object-

oriented software engineering, prentice hall int. (UK) Itd.,
1992.

Current Status

B CH+4 [speon

B JAVA (see review)

B MICO — user level uoor 2001

B A Mechanism for COM s 2001

m MICO — kernel level .

m Aspectd based implementation posozo

