Constructing Object oriented programs
Which Design is Better?
A Talk in CSE Seminar Series of 2007-2008
March 12, 2008, 2-3 pm

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Outline

0 Object Oriented Designs

9 Design Before Implementation?
e A Methodology Problem

@ Actual Results on a Local Software

e Further Design Improvements and Tool Support

Object Oriented Designs

Outline

0 Object Oriented Designs

Object Oriented Designs

Object Oriented Designs

Decomposition of the abstraction space
- Classes and Objects

Weave them through various relationships

The Goal?

— Core Functionality and
— Design Goodness Criteria

Object Oriented Designs

The Development Paradigm

Design, Implementation

Model Driven Design and Extreme Programming

Design Before Implementation?

Outline

e Design Before Implementation?

Design Before Implementation?

Design Alternatives

A designer may create many alternatives

What kinds of flaws may exist in designs?

let’s look at some examples..

Design Before Implementation?

A Dynamic Functionality Enhancement Problem

encryptor--=
dem arshall er--=

Design Before Implementation?

Design Feature-1

Enhancers (Decorators) Enhance the Core Functionality

The core functionality is not removed

Design Before Implementation?

Design Feature-2

Dynamic Pluggability — One should be able to attach and
detach decorators dynamically

Design Before Implementation?

Design Feature-3

Caller code independent of the difference that is being made to
the quality of service

The calling application sees the same interface for decorator
and end-server

Design Before Implementation?

Design Feature-4

No. of decorators: 0..n

Proposal 1

Design Before Implementation?

client ——— -

Server

decl

dec2

Design Before Implementation?

Pros and Cons

@ Okay for delegation based inheritance model
(with a minor modification)

@ Does not work with class-based inheritance

@ Chaining of independent decorators at object level not
achieved

@ Decorators are bulky, redundancy- multiple copy problem

Design Before Implementation?

Proposal 2

client — - Server

Abstract
dec

&

decl

I 3

dec2

Design Before Implementation?

Pros and Cons

@ Chaining at object level
@ interface compatibility
@ Chaining does not scale up (cannot add more decorators)

@ Decorators are bulky, redundancy- multiple copy problem

Design Before Implementation?

Proposal 3
Server
dec
. 7 .
client decl dec2

Design Before Implementation?

Pros and Cons

@ Confusion between caller and callee abstractions

@ Member function invocations that go in project the
interface, and not the invocations that come out

Design Before Implementation?

Proposal 4

Senver

dec

\J

client

decl dec2

Design Before Implementation?

Pros and Cons

@ Generality among decorators captured
@ Only one decorator at a time
@ Server part of decorator

Design Before Implementation?

Proposal 5

Senver

dec

\J

client

dechull decl dec2

Design Before Implementation?

Pros and Cons

@ Generality among decorators captured
@ Only one decorator at a time
@ Server part of decorator

@ Default Null Decorator— Is it necessary?

Design Before Implementation?

Proposal 6

client " decl

dec2 <> Server

Design Before Implementation?

Pros and Cons

@ Server disconnected from decorator, caller:
@ A Relation from server to decorator and not vice versa
@ Dec1 part of Dec2

Proposal

7

Design Before Implementation?

client

I—— dec

decl

Server

dec2

Design Before Implementation?

Pros and Cons

@ Comes close- decorators, servers are independent
@ Only one decorator at a time, no chaining
@ Commonality between decorators and server not captured

Design Before Implementation?

Proposal 8

client

dec

decl

dec2

Server

Design Before Implementation?

Pros and Cons

@ Recursive Chaining due recursion at generic level

@ server is aware of decoration- Is outgoing chaining from
the server needed?

Design Before Implementation?

Proposal 9

: — Abstract
client
senver

JaY

dec Server

Design Before Implementation?

Pros and Cons

@ Decorators are chained

@ Only one decorator type benefits from the chaining
@ Server has no outgoing links

@ But decorators cannot connect to server

Design Before Implementation?

Proposal 10

client —

Abstract
server

A

senver il —

decl

dec2

Design Before Implementation?

Pros and Cons

@ Commonality captured beautifully

@ Chaining is static (type specific) since it's class-class
chaining

Design Before Implementation?

Proposal 11

L
b
-
o
=

cliert

Design Before Implementation?

Pros and Cons

@ Commonality among decorators captured
@ Decorators are not servers themselves

@ The designer explicitly captured 3 possibilities-
1-s,2-1-5,3-2-1-s
@ Too many links, static chaining

Proposal 12

Design Before Implementation?

client

abstract
dec

i

senver

dec

Design Before Implementation?

Pros and Cons

@ Decorators chained
@ Only one type of chained decorator
@ Commonality between decorators and server not captured

Proposal 13

client

Design Before Implementation?

senver

Abstract
dec

(-

- dec

decl

dec2

Design Before Implementation?

Pros and Cons

@ Top level decorator knows of the rest
@ Front decorator is also server, the rest are not

@ Rest of the decorators cannot be used independently, two
interfaces

Design Before Implementation?

Proposal 14

client

senfer

dec

Design Before Implementation?

Pros and Cons

@ Decorators chained

@ Every decorator is also a server
@ Only one type of decorator benefits from chaining

@ Cannot add subclasses- with chaining between instances
of existing classes and the newly added subclass, the
design will get messed up

Design Before Implementation?

Proposal 15

client I—— dec - server

decl decz

Design Before Implementation?

Pros and Cons

@ Decorators chained generically
@ Decorators cannot reach the server

@ Commonality between decorators and the server not
captured

Design Before Implementation?

Proposal 16

client

dec

senver

decl

decz

Design Before Implementation?

Pros and Cons

@ Looks more like an object model than class model

@ Front decorator knows of the rest of the decorators and the
server

@ Cannot add a new decorator without modifying the existing
front class’s state and code

Design Before Implementation?

Proposal 17

client — sener

decl dec2

Design Before Implementation?

Pros and Cons

@ Recursive chaining captured through upward
links+inheritance

@ All decorators are servers

@ Genericity in chaining not captured

Design Before Implementation?

Proposal 18

abstract
server

r Y

A

client -
—
senver [decl

dec2

Design Before Implementation?

Pros and Cons

@ Quite close!
@ Decorators chained at generic level

@ The fact that each decorator may have at most one
downlink is not captured generically

Design Before Implementation?

Proposal 19

abstract
serser

Y

cliert

SErY =r

Design Before Implementation?

Pros and Cons

@ Decorators chained at generic level

@ The fact that each decorator may have at most one
downlink is captured generically through an intermediate
abstraction

Design Before Implementation?

Structural Properties of the Last Solution

@ Server instance is the end object in a chain
@ Decorators and Servers share the same abstraction

@ New decorator benefits from chaining captured at a
generic level

@ Decorator chaining configuration is not statically committed

Design Before Implementation?

Front Deletion: still a problem

@ Client needs to be contacted for deleting or replacing the
front decorator

@ Having a default front is an overhead when decorators are
not used

@ To solve this problem:
What’s needed is location transparency

A Methodology Problem

Outline

e A Methodology Problem

A Methodology Problem

Summary

Design before Implementation requires a careful analysis of the
design, if the design should sail straight into implementation

@ Capture the properties that are desirable
@ Do not capture the properties that are undesirable

An extreme approach creates more problems as the system
evolves..
especially when refactorings are not applied continuously!

Actual Results on a Local Software

Outline

@ Actual Results on a Local Software

Actual Results on a Local Software

Impact of Design Improvement

class name NOM LOC NOM | LOC
before | before | after after
UpApplicant 50 1776 | 50+11 | 1118

ConnectDatabase 10 265 10 220
MtechApplicationInit 33 565 33+3 450

MtechApplication 8 339 8 300
MtechMailer 3 60 3 60
StatusMailer 1 35 1 35

ValidationChoice 7 131 7+4 114

ImpData 0 35 0 35
Constants 0 6 0 6
Total 0 6 0 6

Significant improvement in LOC mainly by method extraction
and no major design changes were applied

Further Design Improvements and Tool Support

Outline

e Further Design Improvements and Tool Support

Further Design Improvements and Tool Support

Measuring Designs and Code for Cohesion and
Coupling

@ Cohesion and Coupling

@ Apply Structural Metrics to detect problem areas

@ There are Many Metrics and they need structural
information
—- An intermediate representation for OO programs—
metric friendly

@ Metrics are mainly class-based- they donot pinpoint

problem methods
— Microscopic Metrics

Fur Design Improvements and Tool Support

A Compact Model for Measuring Designs and Code

1
[appication}stes |

tattribute
Class
Variable +parent | nane om]lass
*| interface v
name type
tvpe modifier
+method
*
" Method
Attribute Param +intMethAccess
+paran e e
2N~ name
value | V| woditiert |,
+local | | ~+inheri tediethicces
0 size = 4extAttribAccess
+intAttribAccess switch *exthethAccesd]
0 I —
+inheri tedattribAccess decision ¥
——<{ return

Entity Reference

+owner
External [+

L

Further Design Improvements and Tool Support

Limitations of Object orientation

@ Advanced Separation of Concerns (beyond what can be
expressed in OOP)

@ Code is redundant, but cannot be modularized

@ Capture such code through aspects and weave them with
bases

@ Need to Measure the goodness of Aspectized Code —>
Metrics for AOP

	Object Oriented Designs
	Design Before Implementation?
	A Methodology Problem
	Actual Results on a Local Software
	Further Design Improvements and Tool Support

