
Message based Models and
Environments for Software
Evolution

Rushikesh K. Joshi
Department of Computer Science & Engineering
Indian Institute of Technology Bombay

rkj@cse.iitb.ac.in

Some recent paradigms for
(product) aspect capture

 Classes, objects, is-a relation, association
and part-whole relations, components,
component composition

 Concurrency: Threads and synchronizers

 Distribution: Interfaces loosely coupled
from implementation

 Interoperability: IDLs and tools

Concerns and their programming
expressions
 Can separate concerns be expressed separately and be

traceable eventually?

 If the answer is yes
 Independent development processes for the concerns
 Independent abstractions (representations)
 Proceed to integration mechanisms

 Limitations of popular OOP
 Many cross-cutting concerns posed problem

 Design reuse vs. implementation reuse
 Transparencies for system/context variabilities
 Generic concerns covering multiple abstractions

 Rise of new paradigms: AOP extensions
 Context relations, compositional filters, aspectJ

A Static (Popular) Solution

 Aspect specifications separate from base
specifications

 Aspects weaved with bases by a Weaver

 Static (compile time) weaving

 Weaved code looses aspects no
traceability of aspects into first class
runtime elements of the language

Limitations of aspects

 Implementation-centric approach

 Lacks Process

 Non-first class core – static approach

 Contracts may get violated

Some other static approaches

 Overloading, Template classes to more
powerful generic specification
languages
 Generic (e.g. XML based) specification

applied to base code which is
transformed

Some Dynamic Approaches

 Subclassing and Polymorphism

 Using Metalevel protocols: e.g.
Smalltalk’s metaclasses

 Reflection into PL implementations

Our approach: Capturing Dynamics
through Communications Abstractions
(First class filter objects)

 Honor encapsulation, target messaging

 Aspects are first class entities in base
language: objects with member functions
and local state

 Abstractions for Specification are same as
those of base language

 Weaving is replaced by pairing at runtime
 At object level

An Interaction

o1 o2

m

Entities(Objects/Components)
Message generation
Message flow
Message delivery
Methods
Response flow
Response delivery

Targeting messaging,
leaving objects as they are

o1 o2

m

Entities (Objects/Components)
Message generation
Message flow
Message delivery
Methods
Response flow
Response delivery

Separation of Message Processing from
Message Control

 Message Processing
 Determines response by the receiver

once the message is dispatched to the
receiver

 Implementation of the
component/object’s contract

 Message Control
 Activities on/over messages in transit

 i.e. during information flow

An Example Paradigm

Server.m Dispatch m ()

collaborator

pass

retur
n

bounce

downfilter

upfilter

Client

Filter Object

Server

From/To external
objects

Primitives:
Process
Forward
Replace
Force
Delay
Bounce

Class level specification

Class Dictionary {
…

}

Class Cache: filter Dictionary {

….
}

Instance level pairing (not
weaving)

plug and unplug

main () {
Dictionary *d=..;
Cache *c=..;

plug d c;
…
unplug d;

}

First class representation in an
OOPL

Class Dictionary {
public: Meaning SearchWord(Word);

}
class Cache : filter Dictionary {
upfilter:

Meaning SearchCache(Word) filters SearchWord;
downfilter:

Meaning ReplaceCacheEntry (Meaning) filters SearchWord;
public:

double hitRatio ();
private:

… implementation
}

Dynamic Grouping and
Layering

LB AL AP

Callers
Servers

Common
Server-side
cache

Orthogonal Collaborative Frameworks:
Crosscutting functionalities

Object1
Object3

Object2

Object4

Filter Object Network

Patterns at Messaging Layer
 Message replacement

 Receiver Replacement

 Routing, destination selection

 Repeater

 Message Content Replacement (value transformer)

 Decoration (logger)

 Message hold/delay and synchronize

Replacer
 A filter member function operates as a replacement function

to its corresponding server member function
FastServer | oldServer =
filter interface:

funcReplacer (in) upfilters oldServer :: func (in)
= [v <-- self.func (in); bounce (v);]

client fastServeroldServer

Router
 A filter member function operates as a router function

balancer | searchEngine =
filter interface:

searchRouter (item) upfilters SearchEngine ::search (item)
= [newDest <-- self.nextDest();
 v<--newDest.search(item); bounce (v);]

client filter dest newDest

Repeater
 A filter member function dispatches the filtered invocation to

multiple servers
enrollFilter | centralEnroller =
filter interface:

libEnroll (student) upfilters centralEnroller :: enroll (student)
= [if (student.dept == civil) civilLib-->enroll (student);
 if (student.status == minor)minorBody-->

enroll(student);
 pass;]

client repeater server1 server2server3

Approaches for Middleware

 Need-to-filter principle: A server is
declared as Filterable Server

interface Filterable {
attach (in Object filter)
detach ();

};
interface Server : Filterable {
service ();
}

 Filter Object aware Middleware (e.g.
MICO extensions)

Dynamic Functional Evolution
(functional cross-cut)

 A Readers and Writers Solution
 (Hansen 1978)

process resource
s: int
proc StartRead when s>0 : s++; end
proc EndRead if s >1: s--; end
proc StartWrite when s==1: s--; end
proc EndWrite if s==0: s++; end
s=1;

Evolution Requirement

 Solve the same problem with additional
constraint that further reader requests
should be delayed as long as there are
writers waiting or using the resource

The Approach

Old monitorOld reading and writing clients

Old monitor Old reading and writing clients

Injected Filter

Evolution using Filter Processes
process problemSolver: filter resource
www : int
upfilter:

SW_Ufilter filters StartWrite
SR_Ufilter filters StartRead

downfilter:

EW_Dfilter filters EndWrite
proc SW_Ufilter:www++; pass; end
proc EW_Dfilter:www---; end

proc SR_Ufilter: when www==0: pass; end

www=0;

State of the Art
1. Models for C++/COM components

3. TJF (Translator for Java Filters)

5. Middleware: MICO kernel extensions
Filter aware middleware

7. Implementations of Filter Objects in Distributed Systems
over AspectJ+RMI

9. Distributed Filter Processes (Unimplemented)

11. An interpreter of sigmaF calculus (an untyped abstract
language)

Ongoing projects in this area in
specific and evolution in general

 Semantics (Abadi/Cardelli style) and
implementations

 Applications, Notations, Methods and
Patterns

 Component Adapters
 Refactoring Techniques
 Support for Dynamic Evolution in

Environments, and methodologies

