Message based Models and
Environments for Software

Evolution

Rushikesh K. Joshi
Department of Computer Science & Engineering
Indian Institute of Technology Bombay

rkj@cse.iitb.ac.in

Some recent paradigms for
(product) aspect capture

0 Classes, objects, is-a relation, association
and part-whole relations, components,
component composition

O Concurrency: Threads and synchronizers

O Distribution: Interfaces loosely coupled
from implementation

O Interoperability: IDLs and tools

Concerns and their programming
expressions

O

Can separate concerns be expressed separately and be
traceable eventually?

If the answer is yes—>

= |ndependent development processes for the concerns
= Independent abstractions (representations)

= Proceed to integration mechanisms

Limitations of popular OOP
= Many cross-cutting concerns posed problem
0 Design reuse vs. implementation reuse
0 Transparencies for system/context variabilities
0 Generic concerns covering multiple abstractions
= Rise of new paradigms: AOP extensions
0 Context relations, compositional filters, aspect]

A Static (Popular) Solution

0 Aspect specifications separate from base
specifications

O Aspects weaved with bases by a Weaver
O Static (compile time) weaving

0 Weaved code looses aspects = no
traceability of aspects into first class
runtime elements of the language

Limitations of aspects

O Implementation-centric approach
O Lacks Process
O Non-first class core - static approach

O Contracts may get violated

Some other static approaches

O Overloading, Template classes to more
powerful generic specification
languages
= Generic (e.g. XML based) specification

applied to base code which is
transformed

Some Dynamic Approaches

0O Subclassing and Polymorphism

O Using Metalevel protocols: e.q.
Smalltalk’s metaclasses

O Reflection into PL implementations

Our approach: Capturing Dynamics
through Communications Abstractions
(First class filter objects)

O Honor encapsulation, target messaging

0 Aspects are first class entities in base
language: objects with member functions
and local state

O Abstractions for Specification are same as
those of base language

O Weaving is replaced by pairing at runtime
= At object level

An Interaction

m

(e

Entities(Objects/Components)
Message generation

Message flow

Message delivery

Methods

Response flow

Response delivery

Targeting messaging,
leaving objects as they are

m

o

Entities (Objects/Components)
Message generation

Message flow

Message delivery

Methods

Response flow

Response delivery

Separation of Message Processing from
Message Control

O Message Processing

= Determines response by the receiver
once the message is dispatched to the
receiver

" Implementation of the
component/object’s contract

O Message Control

= Activities on/over messages in transit
0 j.e. during information flow

An Example Paradigm

Primitives:

Process From/To external
Forward objects

Replace ollaborator

Force

Delay

Bounce

bounce

downfilte

Client

Filter Object

Class level specification

Class Dictionary {

}

Class Cache: filter Dictionary {

Instance level pairing (not
weaving)

plug and unplug

main () {

Dictionary *d=..;

Cache *c=.,;
plug d c;

unplug d;
}

First class representation in an
OOPL

Class Dictionary {
public: Meaning SearchWord(Word);
}

class Cache : filter Dictionary {
upfilter:

Meaning SearchCache(Word) filters SearchWord;
downfilter:

Meaning ReplaceCacheEntry (Meaning) filters SearchWord;
public:

double hitRatio ();

private:
... implementation
}

Dynamic Grouping and

Layerin

9

Common
Server-side
cache

Q\@\
Q@}%
O &

O
O

—®

\@ Callers

AP

AL
o
7

NW

&S—O

Orthogonal Collaborative Frameworks:
Crosscutting functionalities

Filter Object Network
— Object? |
Object1 _ Dbjects
\
—Object4

Patterns at Messaging Layer

O

O

Message replacement

Receiver Replacement

Routing, destination selection

Repeater

Message Content Replacement (value transformer)
Decoration (logger)

Message hold/delay and synchronize

Replacer

O A filter member function operates as a replacement function
to its comresponding server member function

FastServer | oldServer =
filter interface:
funcReplacer (in) upfilters oldServer :: func (in)
= [v <-- self.func (in); bounce (v);]

I >

client fastServesldServer

<
<

Router

o A filter member function operates as a router function

balancer | searchEngine =
filter interface:
searchRouter (item) upfilters SearchEngine ::search (item)
= [newDest <-- self.nextDest();
v<--newDest.search(item); bounce (v);]

Y

Y

A

client filter dest newDest

Repeater

O A filter member function dispatches the filtered invocation to
multiple servers

enrollFilter | centralEnroller =
filter interface:

libEnroll (student) upfilters centralEnroller :: enroll (student)
= [if (student.dept == civil) civilLib-->enroll (student);
if (student.status == minor)minorBody-->

enroll(student);
pass;]

Y

Y

Y

<
«

L AITATAL]

client repeater serverl serverkervera3

Approaches for Middleware

O Need-to-filter principle: A server is
declared as Filterable Server

interface Filterable {
attach (in Object filter)
detach ();

}
interface Server : Filterable {
service ();

}
O Filter Object aware Middleware (e.q.
MICO extensions)

Dynamic Functional Evolution
(functional cross-cut)

0O A Readers and Writers Solution
= (Hansen 1978)

Process resource

S: Int

oroc StartRead
oroc EndRead
oroc StartWrite
oroc EndWrite
s=1;

when s>0 : s++; end
If s >1: s--; end
when s==1: s--; end
If s==0: s++; end

Evolution Requirement

O Solve the same problem with additional
constraint that further reader requests
should be delayed as long as there are
writers waiting or using the resource

The Approach

— old solution

Old monitoPld reading and writing clients

} evoived solution
~ 0Old monitor “—"0ld reading and writing clier

Injected Filter

Evolution using Filter Processes

process problemSolver: filter resource
www : int
upfilter:
SW_Ufilter filters StartWrite
SR_Ufilter filters StartRead
downfilter:
EW_Dfilter filters EndWrite
proc SW_Ufilter: www++; pass; end
proc EW_Dfilter:www---; end
proc SR _Ufilter: when www==0: pass; end
www=0;

State of the Art

=

Models for C++/COM components
3. TJF (Translator forJava Filters)

5. Middleware: MICO kernel extensions
Filter aware middleware

7. Implementations of Filter Objects in Distributed Systems
over Aspect/+RMI

9. Distributed Filter Processes (Unimplemented)

11. An interpreter of sigmaF calculus (an untyped abstract
language)

Ongoing projects in this area In
specific and evolution in general

O Semantics (Abadi/Cardelli style) and
Implementations

0O Applications, Notations, Methods and
Patterns

0O Component Adapters
Refactoring Techniques

O Support for Dynamic Evolution in
Environments, and methodologies

