
R.K.Joshi IIT Bombay 1

Evolution of Service Oriented Evolution of Service Oriented
ArchitecturesArchitectures

Rushikesh K. JoshiRushikesh K. Joshi

Department of Computer Science & Department of Computer Science &
EngineeringEngineering

Indian Institute of Technology BombayIndian Institute of Technology Bombay

Email: rkj@cse.iitb.ac.inEmail: rkj@cse.iitb.ac.in

R.K.Joshi IIT Bombay 2

The Plan
What changes have taken place in typical What changes have taken place in typical

application architectures?application architectures?

What is service orientation?What is service orientation?

Where did it originate?Where did it originate?

How did it evolve?How did it evolve?

How does it connect to web services?How does it connect to web services?

What new technologies are needed?What new technologies are needed?

R.K.Joshi IIT Bombay 3

Architecture of Your Data-
structures Assignment

• A single process
• One main
• Manipulate data structure
• Data is live till execution
• Next run is fresh execution

DS

M

P

R.K.Joshi IIT Bombay 4

A Database Assignment

• Create Tables
• Manipulate them
• Use a query language
• Data is live across queries

D

Q

P

R.K.Joshi IIT Bombay 5

Processes + Data
+Interfaces

• Three tired application
– GUI
– Business Logic
– Database

UI

BL

DB

A Single user application based on persistence

R.K.Joshi IIT Bombay 6

Processes + Data
+Interfaces +
Concurrency

• A GUI
• Tasks: Concurrent Activities
• Shared Database
• Concurrency Control

UI

T1

DB

A More complex Single user application using persistence

T2 T.. Tn

R.K.Joshi IIT Bombay 7

Processes + Data
+Interfaces + Parallelism 

Concurrency
• A GUI
• Tasks: Concurrent and parallel

Activities
• Shared Database
• Distribution of control
• Concurrency Control
• Inter-task communication

UI

T1

DB

A More complex Single user parallel application using persistence

T2 T.. Tn

R.K.Joshi IIT Bombay 8

Add more user roles
• Views
• Viewers are located at different

places UI

T1

DB

T2 T.. Tn

U.. Um

R.K.Joshi IIT Bombay 9

Add more data sites
• Views
• Viewers are located at different

places
• Data is distributed
• Tasks are parallel

UI

T1

D1

T2 T.. Tn

U.. Um

D.. Dp

R.K.Joshi IIT Bombay 10

Add control replication
• Views
• Viewers are located at different

places
• Data is distributed
• Tasks are parallel

– Possible Control replication

UI

T11

D1

T12 T.. Tno

U.. Um

D.. Dp

R.K.Joshi IIT Bombay 11

Add data replication
• Views
• Viewers are located at different places
• Data is distributed

– And replicated
• Multiple copy consistency

• Tasks are parallel
– Control replication

UI

T11

D1

T12 T.. Tno

U.. Um

D.. Dp

R.K.Joshi IIT Bombay 12

Links may fail !

• Alternate routes?

UI

T11

D1

T12 T.. Tno

U.. Um

D.. Dp

R.K.Joshi IIT Bombay 13

Tasks may fail !

• Failure Semantics

• Recovery possible?

UI

T11

D1

T12 T.. Tno

U.. Um

D.. Dp

R.K.Joshi IIT Bombay 14

Users are scattered over the
internet

UI

T11

D1

T12 T.. Tno

U..

Um

D.. Dp

UI

UI

UI

R.K.Joshi IIT Bombay 15

Some users are local

UI

T11

D1

T12 T.. Tno

U..

Um

D.. Dp

UI

UI

UI

UI UI

UI UI

R.K.Joshi IIT Bombay 16

You need security policies

UI

T11

D1

T12 T.. Tno

U..

Um

D.. Dp

UI

UI

UI

UI UI

UI UI

R.K.Joshi IIT Bombay 17

All sites have all the layers
and they collaborate

UI

UI

UI

D

D

D

BL

BL

BL

UI

UI
UI

network

R.K.Joshi IIT Bombay 18

Types of Applications
• Compute centric, parallel
• Data centric, huge data
• Computations and data centric
• Long vs. short transactions
• Distributed and Networked
• High volume, large users
• Event driven
• Peer-to-peer, client-server, service oriented
• Multi-concern

R.K.Joshi IIT Bombay 19

Service orientation

What is a service?

Service provider
and the service user

Service contracts

R.K.Joshi IIT Bombay 20

Origins of service
orientation

• Functions and procedures
• Input parameters --> output results
• What is important is an interaction

between the client and the server
• Call to the service

R.K.Joshi IIT Bombay 21

How do you express a
service?

• Syntactic Contracts
• Behavioral Contracts

– Functional behavior
– Non-functional behavior

R.K.Joshi IIT Bombay 22

From local call to
Remote Procedure Call

• The procedure may be located out
of the calling process

• Procedure may also be located at a
remote machine

R.K.Joshi IIT Bombay 23

RPC (early 80s)

• A very primitive service paradigm
in multiprogramming systems
– e.g. unix servers
– Rup
– Rusers
– Fingerd

Machines
and processes

R.K.Joshi IIT Bombay 24

Issues considered in
RPC

• How do you describe RPC?
• What's the process of

development?
• How do you find, bind and use?
• What are the non-functional

semantics such as fault tolerance
semantics?

R.K.Joshi IIT Bombay 25

Technologies for RPC

• Description: e.g. XDR format
• Marshalling and De-marshalling
• Specification Language
• Stub generator
• Portmapper (directory service)

R.K.Joshi IIT Bombay 26

DLL Technologies

• Dynamically linked libraries
• A function or procedure may be

loaded and dynamically linked
• Available on the same machine

R.K.Joshi IIT Bombay 27

Remote Method
Invocations on Objects

• The Proxy Pattern

proxy

interface

real

R.K.Joshi IIT Bombay 28

Technologies for RMI

• Object specification
• Server development, Proxy

generation
• Object discovery
• Object binding and use

Object Middleware Architectures

R.K.Joshi IIT Bombay 29

Middleware Technologies
for Interoperable Networked

Services

• Typical of Applications in Lan
• Hide and Provide Principle

R.K.Joshi IIT Bombay 30

A View of CORBA-based
Middleware

Distributed Objects

Middleware

Distributed Objects

S
Y
S
T
E
M
S

(os/
n/w)

R.K.Joshi IIT Bombay 31

Concerns addressed by
Middleware

• Connectivity and Communication
• Interoperability
• Repositories
• Activation
• Services
• Service Descriptions and discovery

Mechanisms
• Development Process and Tools
• Standardization

R.K.Joshi IIT Bombay 32

Model Driven Approach

Model first

Then generate Implementation

Existence of Middleware does not
make an exception to this.

R.K.Joshi IIT Bombay 33

Interfaces

Interface I {
typeR func f (type1, type2 ..)

 …
}

Interface description languages: vendor
specific

R.K.Joshi IIT Bombay 34

Implementation in an
object paradigm

Skeleton-Implementation inherits I {
 …

}
Actual-Implementation inherits Skeleton-

Implementation {
….implement here…
}

R.K.Joshi IIT Bombay 35

Register your
implementation

Create an instance and register

- obj = new Actual

- register it with a registry

- start accepting requests

R.K.Joshi IIT Bombay 36

Alternative Registration
Mechanism

Do not Create instance directly

Register only the implementation

The middleware will create an instance
when needed

R.K.Joshi IIT Bombay 37

Find, Bind and Invoke
• Find your component
• Create a placeholder for it
• Invoke as if it is a local component

Proxy Design Pattern

R.K.Joshi IIT Bombay 38

Dynamic Invocation
• Unlike procedure/function calls in

your day to day programming

• Make a request as a message and
send it to remote component

R.K.Joshi IIT Bombay 39

One way calls and
callbacks

• One way calls do not block the
caller

• Callbacks from server needs that
the caller supports an exportable
interface send send

callback

R.K.Joshi IIT Bombay 40

Multiple interfaces
sharing an

implementation
• Different users may use different

interfaces
• Roles can be associated with

interfaces
• Single implementation realizes all
• Interface navigability

R.K.Joshi IIT Bombay 41

Generic Services
• Type independent services
• Based on object orientation

(polymorphism)
• E.g. Naming: nameobject

mappings
• E.g. events: publisher-subscriber

– Events of any kind

R.K.Joshi IIT Bombay 42

Component Reuse: e.g.
Containment in

COM/DCOM

Interface A

Interface
IUnknown

X

Y

IUnknown

container

contained

R.K.Joshi IIT Bombay 43

Component Reuse:
Aggregation in

COM/DCOM

A

IUnknown

 X

 Y

IUnknow
n

CNewStude
nt

CStuden
t

R.K.Joshi IIT Bombay 44

Creation through
Factory Objects

• First find and bind to factory
• Factory creates objects
• DLL based factories

Client COM Library DLL
factory
instance

compone
nt
instance

CoGetClassObj
ect

DllGetClassObject
create

return factory
instancereturn factory

instance

use
component

create
return
component
instance

CreateInstance

R.K.Joshi IIT Bombay 45

Creation through
Factory Objects

• First find and bind to factory
• Factory creates objects
• DLL based factories

Client COM Library DLL
factory
instance

compone
nt
instance

CoGetClassObj
ect

DllGetClassObject
create

return factory
instancereturn factory

instance

use
component

create
return
component
instance

CreateInstance

R.K.Joshi IIT Bombay 46

Web Services

• A service is available through http-
based protocols.

• You have to cross the firewalls
• A different set of technologies, but the

issues are the same
• You need to rework out all the issues of

communication, typing, discovery,
descriptions, security

R.K.Joshi IIT Bombay 47

Example Web Service
Standards and Technologies

• WSDL – web service description
language

• SOAP – Simple object access
protocol for exchanging xml based
messages

• UDDI – universal description
discovery and integration

•

R.K.Joshi IIT Bombay 48

Some examples of
service orientation

• Telephonic services
• Web Services
• Services for mobile devices
• Peer to peer applications
• Aggregates and Compositions

R.K.Joshi IIT Bombay 49

Web Server: A case study
(program developed by 2

students)

HTTP Requests

Handover
to applications

process some
requests e.g. home pages

R.K.Joshi IIT Bombay 50

First, a Simple Socket Server
An example code

• simple_server_main.cpp

simple_server_main.cpp

R.K.Joshi IIT Bombay 51

A simple webserver code
how does it look like?

web server listens on port xxxx

client->webserver->local
 server i.e. http/perl/java..

R.K.Joshi IIT Bombay 52

Implementation

• instances of local server as threads
• Another web server thread listens

to incoming requests
• request type determined and the

request dispatched
• communication between main

thread and local threads through
pipes, one per local thread

•

R.K.Joshi IIT Bombay 53

CLASS: CWebServer
CWebServer()

Input: int port, int p_http, int p_java, int p_plÂ

creates an instance of CWebServer. (this is the constructor)

Service_function()

Input: CWebServer * _webserver Output: nothing

The main service loop which infinitely listens to the port for incoming requests and
then classifies them and dispatches them to the appropriate LocalServer thread.

GetRequestType()

Input: std::string line Output: int request_type

Classifies the incoming request as one of the following
 HTTP_REQ, JAVA_REQ, PL_REQ, BAD_REQ which then helps the service loop to
decide which thread to send the request to.

R.K.Joshi IIT Bombay 54

CLASS : LocalServer

this is an abstract class which only provides the interface to the CWEbServer object to call this is an abstract class which only provides the interface to the CWEbServer object to call
the functions on the appropriate LocalServer objectsthe functions on the appropriate LocalServer objects

CreateInstance()CreateInstance()

Input : int pipe_dInput : int pipe_d

Output : static LocalServer * Â Output : static LocalServer * Â

 This is the function which emulates the SINGLETON pattern to ensure that only one This is the function which emulates the SINGLETON pattern to ensure that only one
instance of each of the LocalServers is created.instance of each of the LocalServers is created.

HandleRequest()HandleRequest()

Input : int sock, string & strFirstLineÂ Input : int sock, string & strFirstLineÂ

 This function is supported by all the LocalServer objects. This is the function called by the This function is supported by all the LocalServer objects. This is the function called by the
CwebServer object to dispatch the request. Basically this reads the header and then CwebServer object to dispatch the request. Basically this reads the header and then

determines the actions to be taken and then returns the file back to client.determines the actions to be taken and then returns the file back to client.

R.K.Joshi IIT Bombay 55

CLASS : CHTTP

CLASS: CHTTPÂ CLASS: CHTTPÂ

CHTTPCHTTP

Input:int pipe_dÂ Input:int pipe_dÂ

Description: This is the constructor which creates a pipe for this object which Description: This is the constructor which creates a pipe for this object which
communicates with the main service loop which diverts the appropriate incoming request communicates with the main service loop which diverts the appropriate incoming request

to this object.to this object.

GetHtml ()GetHtml ()

Input : http_request * rÂ Input : http_request * rÂ

Description : This function searches for the requested file and then sends it to client with Description : This function searches for the requested file and then sends it to client with
the help of LoadFile function. the help of LoadFile function.

LoadFile ()LoadFile ()

Input : string & strFilePath, string & strFileContentsÂ Input : string & strFilePath, string & strFileContentsÂ

Description: This function when called by the GetHtml, gets the contents of the requestd Description: This function when called by the GetHtml, gets the contents of the requestd
file and then sends it to the client (bypassing the CwebServer object). file and then sends it to the client (bypassing the CwebServer object).

R.K.Joshi IIT Bombay 56

CLASS : CPerl

CPerlCPerl

Input:int pipe_dÂ Input:int pipe_dÂ

Description: This is the constructor which creates a pipe for this object which Description: This is the constructor which creates a pipe for this object which
communicates with the main service loop which diverts the appropriate incoming request communicates with the main service loop which diverts the appropriate incoming request

to this object.to this object.

GetPerl ()GetPerl ()

Input : perl_request * rÂ Input : perl_request * rÂ

Description : This function searches for the requested file and then sends it to client with Description : This function searches for the requested file and then sends it to client with
the help of LoadFile function. the help of LoadFile function.

LoadFile ()LoadFile ()

Input : string & strFilePath, string & strFileContentsÂ Â Input : string & strFilePath, string & strFileContentsÂ Â

Â Description: This function when called by the GetPerl, gets the contents of the requestd Â Description: This function when called by the GetPerl, gets the contents of the requestd
file and then sends it to the client (bypassing the CwebServer object). file and then sends it to the client (bypassing the CwebServer object).

Â Â

R.K.Joshi IIT Bombay 57

CLASS : CJava

CJavaCJava

Input:int pipe_dÂ Input:int pipe_dÂ

Description: This is the constructor which creates a pipe for this object which Description: This is the constructor which creates a pipe for this object which
communicates with the main service loop which diverts the appropriate incoming request communicates with the main service loop which diverts the appropriate incoming request

to this object.to this object.

GetJava()GetJava()

Input : java_request * rÂ Input : java_request * rÂ

Description : This function searches for the requested file and then sends it to client with Description : This function searches for the requested file and then sends it to client with
the help of LoadFile function. the help of LoadFile function.

LoadFile ()LoadFile ()

Input : string & strFilePath, string & strFileContentsÂ Input : string & strFilePath, string & strFileContentsÂ

Description: This function when called by the GetJava, gets the contents of the requestd Description: This function when called by the GetJava, gets the contents of the requestd
file and then sends it to the client (bypassing the CwebServer object). file and then sends it to the client (bypassing the CwebServer object).

R.K.Joshi IIT Bombay 58

Natural Extensions
How are logins and permissions and communication How are logins and permissions and communication

security to be handled?security to be handled?

How should requests be logged?How should requests be logged?

What support is assumed from the browser at client What support is assumed from the browser at client
end?end?

What support is available for application architectures?What support is available for application architectures?

Grids at the backend?Grids at the backend?

How are services themselves described?How are services themselves described?

What formats are used to exchange data, requests, What formats are used to exchange data, requests,
results?results?

More meaningful or semantically rich applications More meaningful or semantically rich applications
designed as servicesdesigned as services

R.K.Joshi IIT Bombay 59

Once again, what's a
service?

Agreed protocol between client and a serverAgreed protocol between client and a server

Web services are provided on the webWeb services are provided on the web

Servers may use sophisticated available Servers may use sophisticated available
technologies, middleware, parallelism, shared technologies, middleware, parallelism, shared

spaces, shared resourcesspaces, shared resources

At client side, some support is provided by At client side, some support is provided by
the browser, but stand-alone applications can the browser, but stand-alone applications can

also existalso exist

R.K.Joshi IIT Bombay 60

So Explore and Enjoy your
workshop!

