

Early Aspects in
Agent Oriented
Modeling
Rushikesh K Joshi
Dept. of CSE
IIT Bombay

Plan of the talk
 Introduction to ideas from aspect

orientation
 Applying aspect orientation at

requirements level
 Aspect oriented paradigms in agent

oriented methods

A Canvas of Programming
Abstractions

Abstractions + Related
Processes

Abstractions + Related
Processes + Properties

Is this space enough for
today’s computations?
 Maybe enough
 but …
 Do we have a clean organized view

of all aspects of your software that is
traceable from architecture to
implementations?

 Do you maximize reuse?
 Could you eliminate all redundancies!

The key: methods of
separation and
integration

Let’s Take a look at Some
Empirical Studies
 Code redundancies reported (an old

research)
 Application projects: 75%
 System programs: 50%
 Telecommunication projects: 70%

 Reengineering projects find
redundancies and eliminate them:
20-50%

 A latest study: 60% code in one Java
class library was found to be
redundant

How to eliminate the
redundancies?
 Just keep a copy of the redundant

code and simply use it as a black box
through conventional techniques?
 Not always possible!

 – Technology imposes limitations
 methods and models of structuring
 varying flexibility for reaching meta levels

 We can trace the problem to mixup of
 multiple concerns

Another perspective on non-
separated concerns
 Redundancy results when a concern

occurs in many entities, but each
manifests it independently

 A single bundle may also host
multiple concerns that are tangled
and not separated

 A concern may get scattered over
many entities

 Some examples follow

Concerns that tangle with other
concerns

 Functional code (business logic) and
properties about the code
 Assertions that capture contracts

(pre/post/invariants)
 Invariants across objects
 Creational control and object’s instance behavior

 Exception handling code and functional code
 Nonfunctional code and functional code

 Whenever function pop() is invoked, print the return
value to a file

 Log all calls to a specific object
 Log all calls to all objects
 Make a distributed object persistent

To tangle: To mix together or intertwine in a confused mass

Programming paradigms
influence the way we organize
software…

 The problem can be attacked at
programming level

 By evolving programming paradigms

Separation of concerns at
requirements level
 Separately express the requirements

concerns
 Can you change them

independently?
 Or does a change in one use case lead

to changes in many other use cases?
 Are requirements specs tangled?

 The question is not about correctness
and completeness

 It is about modularity in expression in
requirements capture

An Agent Oriented
Requirements Capture Model
(entities)

agent position role

ACTORS

goal softgoal

Desires/intentions
To be fulfilled

Not defined precisely

plan

Set of actions for satisfying goal(s)

resource

A resource in the system

An Agent Oriented
Requirements Capture Model
(relations)

goal dependency

goalgoal
+ +

contribution

goal

subgoal subgoal

Decomposition
(AND/OR)

agent pos. roleoccupies covers

dependent dependee

softgoal

Occupation
And coverage

An example entity model

student

btech

sf

 mtech

phd.

dd

4yrprog

ta

ra

postug

postpg

With appropriate
AND/OR constraints

occupies
occupies

occupies

covers

covers

covers

A goal analysis

goal-analysis.eps

Some Extensions for
Separation of Concerns
 Extended actors

 Before
 After

 Abstract actors
 Before
 After

 Similar extensions for goals
 Shared goals

limitation-specialization-actor.eps
staff.eps
limitation-ra.eps
actor-diagram.eps

Aspect Goals
 Goals may be decomposed further

into subgoals, and shared goals
 But it is not always possible to share

goals “as it is”.
 Certain refinements may be

necessary
 Aspect goals: an example

aspect-goal.eps

Meta goals
 Supporting meta goals (like around

advise, before advise and after
advise)
 Wrapper goals (performance criteria)
 pre goals (preconditions)
 Post goals (postconditions)

Goal Ordering
 Partial orders may be defined
 Does not indicate goal

decomposition but captures
workflows (activity dependencies in
UML)

 An example

ordering-partial.eps

Early Aspects: some
pointers

 Concerns
 Core Functionality
 Security
 Deadlines
 Persistence
 Mobility
 Replication

 Tangling within the specs

Aspect Oriented Programming
Constructs:

A Summary, More Examples and
Related Approaches

Join Points
 A point in a source program

 Method call
 Constructor call
 Variable read/write
 Exception handler
 Variable initializer
 Destructor

Point cuts
 A set of join points + optionally some of

the execution context values
 Call (void Point.setX(int))

 A call to a specific function

 Call (public * Figure.*(..))
 Calls to all public functions on Figure

 Pointcut move: call … || call …
 Any of the above calls

 !instanceof (X) && call …
 Call originates not from instance of X and to

specified method

Advices
 Advices executed at the code at joinpoints for

given pointcuts
 Before advice

 After reaching a join point, but before the computation
proceeds

 After advice
 After the computation at join point has completed

 Around advice
 Run first. Proceed() inside around advice makes the

computation proceed
 After returning
 After throwing

 Introductions: add new fields to classes, change
relationships

Some more examples
 Aspects in a distributed objects

domain
 Object’s functionality
 It’s location
 It’s itinerary
 Communication and synchronization
 Its persistence
 Its security

Aspect Orientation in
middleware

 Write objects in your application
first

 Add on services to the application
later
 Use AOP techniques (interceptor/static

transformation) techniques

Feature interaction
problem
 Effects of one aspect may interfere

with that of another

 Careful ordering of aspect
application is important

Product Line Approaches
High level transformation code

+

High level Base code

 Actual Variant

Base-Meta Separation
 Meta-object protocols

 Reflection

 Ideas are quite old
 Some of the recent technologies have

discovered them only now!

Filter Objects Approach
 Message based paradigm
 Based on interfaces and capture on

messages
 Dynamic and First class aspects
 Pluggability at runtime
 Weaving not possible
 Filter objects for

C++/Java/CORBA/COM, patterns,
configurations

Open Problems
 Static vs. Dynamic aspects

 Commercial Tools and Technologies are
picking up

 Early aspects and traceability into code
 Aspects in processes
 Large scale applications and actual

practice
 Impact on Systems design and software

Engineering lifecycle in general
 Impact on Modeling Languages

