

Early Aspects in
Agent Oriented
Modeling
Rushikesh K Joshi
Dept. of CSE
IIT Bombay

Plan of the talk
 Introduction to ideas from aspect

orientation
 Applying aspect orientation at

requirements level
 Aspect oriented paradigms in agent

oriented methods

A Canvas of Programming
Abstractions

Abstractions + Related
Processes

Abstractions + Related
Processes + Properties

Is this space enough for
today’s computations?
 Maybe enough
 but …
 Do we have a clean organized view

of all aspects of your software that is
traceable from architecture to
implementations?

 Do you maximize reuse?
 Could you eliminate all redundancies!

The key: methods of
separation and
integration

Let’s Take a look at Some
Empirical Studies
 Code redundancies reported (an old

research)
 Application projects: 75%
 System programs: 50%
 Telecommunication projects: 70%

 Reengineering projects find
redundancies and eliminate them:
20-50%

 A latest study: 60% code in one Java
class library was found to be
redundant

How to eliminate the
redundancies?
 Just keep a copy of the redundant

code and simply use it as a black box
through conventional techniques?
 Not always possible!

 – Technology imposes limitations
 methods and models of structuring
 varying flexibility for reaching meta levels

 We can trace the problem to mixup of
 multiple concerns

Another perspective on non-
separated concerns
 Redundancy results when a concern

occurs in many entities, but each
manifests it independently

 A single bundle may also host
multiple concerns that are tangled
and not separated

 A concern may get scattered over
many entities

 Some examples follow

Concerns that tangle with other
concerns

 Functional code (business logic) and
properties about the code
 Assertions that capture contracts

(pre/post/invariants)
 Invariants across objects
 Creational control and object’s instance behavior

 Exception handling code and functional code
 Nonfunctional code and functional code

 Whenever function pop() is invoked, print the return
value to a file

 Log all calls to a specific object
 Log all calls to all objects
 Make a distributed object persistent

To tangle: To mix together or intertwine in a confused mass

Programming paradigms
influence the way we organize
software…

 The problem can be attacked at
programming level

 By evolving programming paradigms

Separation of concerns at
requirements level
 Separately express the requirements

concerns
 Can you change them

independently?
 Or does a change in one use case lead

to changes in many other use cases?
 Are requirements specs tangled?

 The question is not about correctness
and completeness

 It is about modularity in expression in
requirements capture

An Agent Oriented
Requirements Capture Model
(entities)

agent position role

ACTORS

goal softgoal

Desires/intentions
To be fulfilled

Not defined precisely

plan

Set of actions for satisfying goal(s)

resource

A resource in the system

An Agent Oriented
Requirements Capture Model
(relations)

goal dependency

goalgoal
+ +

contribution

goal

subgoal subgoal

Decomposition
(AND/OR)

agent pos. roleoccupies covers

dependent dependee

softgoal

Occupation
And coverage

An example entity model

student

btech

sf

 mtech

phd.

dd

4yrprog

ta

ra

postug

postpg

With appropriate
AND/OR constraints

occupies
occupies

occupies

covers

covers

covers

A goal analysis

goal-analysis.eps

Some Extensions for
Separation of Concerns
 Extended actors

 Before
 After

 Abstract actors
 Before
 After

 Similar extensions for goals
 Shared goals

limitation-specialization-actor.eps
staff.eps
limitation-ra.eps
actor-diagram.eps

Aspect Goals
 Goals may be decomposed further

into subgoals, and shared goals
 But it is not always possible to share

goals “as it is”.
 Certain refinements may be

necessary
 Aspect goals: an example

aspect-goal.eps

Meta goals
 Supporting meta goals (like around

advise, before advise and after
advise)
 Wrapper goals (performance criteria)
 pre goals (preconditions)
 Post goals (postconditions)

Goal Ordering
 Partial orders may be defined
 Does not indicate goal

decomposition but captures
workflows (activity dependencies in
UML)

 An example

ordering-partial.eps

Early Aspects: some
pointers

 Concerns
 Core Functionality
 Security
 Deadlines
 Persistence
 Mobility
 Replication

 Tangling within the specs

Aspect Oriented Programming
Constructs:

A Summary, More Examples and
Related Approaches

Join Points
 A point in a source program

 Method call
 Constructor call
 Variable read/write
 Exception handler
 Variable initializer
 Destructor

Point cuts
 A set of join points + optionally some of

the execution context values
 Call (void Point.setX(int))

 A call to a specific function

 Call (public * Figure.*(..))
 Calls to all public functions on Figure

 Pointcut move: call … || call …
 Any of the above calls

 !instanceof (X) && call …
 Call originates not from instance of X and to

specified method

Advices
 Advices executed at the code at joinpoints for

given pointcuts
 Before advice

 After reaching a join point, but before the computation
proceeds

 After advice
 After the computation at join point has completed

 Around advice
 Run first. Proceed() inside around advice makes the

computation proceed
 After returning
 After throwing

 Introductions: add new fields to classes, change
relationships

Some more examples
 Aspects in a distributed objects

domain
 Object’s functionality
 It’s location
 It’s itinerary
 Communication and synchronization
 Its persistence
 Its security

Aspect Orientation in
middleware

 Write objects in your application
first

 Add on services to the application
later
 Use AOP techniques (interceptor/static

transformation) techniques

Feature interaction
problem
 Effects of one aspect may interfere

with that of another

 Careful ordering of aspect
application is important

Product Line Approaches
High level transformation code

+

High level Base code

 Actual Variant

Base-Meta Separation
 Meta-object protocols

 Reflection

 Ideas are quite old
 Some of the recent technologies have

discovered them only now!

Filter Objects Approach
 Message based paradigm
 Based on interfaces and capture on

messages
 Dynamic and First class aspects
 Pluggability at runtime
 Weaving not possible
 Filter objects for

C++/Java/CORBA/COM, patterns,
configurations

Open Problems
 Static vs. Dynamic aspects

 Commercial Tools and Technologies are
picking up

 Early aspects and traceability into code
 Aspects in processes
 Large scale applications and actual

practice
 Impact on Systems design and software

Engineering lifecycle in general
 Impact on Modeling Languages

