Early Aspects in
Agent Oriented
Modeling

Rushikesh K Joshi
Dept. of CSE
IT Bombay

—!
Plan of the talk

O Introduction to ideas from aspect
orientation

O Applying aspect orientation at
requirements level

O Aspect oriented paradigms in agent
oriented methods

A Canvas of Programming
Abstractions

eventsS types Dstructures

variables functions - exceptions

Structures t
classes objects connectors
continuations

COMpONENIs
PIOCESSES - ckages

threads agents |
synchronizers ’ ambients g

RESEI‘&CEIOHS ! H ! E H

Processes

wypes WMW
variable A— functions - exceptions
et onectors

classes objects

DRI contmuations
oot P et hucesses

threads agents _ SoTVICES
synchronizers ambients g

Abstractions + Related
PrOCeSSGS + Ff'::f\\" o \

#NM Dsructur‘s@ ~
VaTla "95 SI"UC 0115 exceptions
class ObjectS .’QIIS@HSMM :

C0 AR k
PROCESSES ok rickges

threads Riives es
synchromzers&* dl 1emsw

—!
Is this space enough for

today’s computations?

0 Maybe enough
but ...

0 Do we have a clean organized view
of all aspects of your software that is
traceable from architecture to
implementations?

0 Do you maximize reuse?
Could you eliminate all redundancies!

The key: methods of
separation and
integration

Let’s Take a look at Some
Empirical Studies

O Code redundancies reported (an old
research)

Application projects: 75%
System programs: 50%
Telecommunication projects: 70%

0 Reengineering projects find
redundancies and eliminate them:
20-50%

O A latest study: 60% code in one Java

~lace lihraryr vavmne FAaiirnAd A hoa

How to eliminate the
redundancies?

O Just keep a copy of the redundant
code and simply use it as a blac
through conventional te

Not always possible!

— Technology imposes limita
methods and models of structurin
varying flexibility for reaching meta\levels

We can trace the problem to mi@ of
multiple concerns

—!
Another perspective on non-

separated concerns

0 Redundancy results when a concern
occurs in many entities, but each
manifests it independently

O A single bundle may also host
multiple concerns that are tangled
and not separated

O A concern may get scattered over

many entities
O Some examples follow

—!

Concerns that tangle with other
concerns

To tangle: To mix together or intertwine in a confused mass

Functional code (business logic) and
properties about the code

O Assertions that capture contracts
(pre/post/invariants)

O Invariants across objects
O Creational control and object’s instance behavior

Exception handling code and functional code

Nonfunctional code and functional code

0 Whenever function pop() is invoked, print the return
value to a file

0O Log all calls to a specific object
O Log all calls to all objects
0 Make a distributed object persistent

P - 1=

influence the way we organize
software...

0O The problem can be attacked at
programming level

By evolving programming paradigms

—!

Separation of concerns at
requirements level

O Separately express the requirements
concerns

O Can you change them
independently?
Or does a change in one use case lead
to changes in many other use cases?
O Are requirements specs tangled?

The question is not about correctness
and completeness

It is about modularity in expression in
requirements capture

Requirements Capture Model
(entities)

® 0 e.-

agent position role

Desires/intentions Not defined precisely
To be fulfilled

resource
plan
A resource in the system

Set of actions for satisfying goal(s)

Al

Requirements Capture Model
(relations)

dependent dependee

+

dependency

Contribution

Decomposition

< (AND/OR)
subgoal
N
. / @ Occupation
pCcupiles covers < And coverage

§ e
L]
i ye

An example entity model

With appropriate
AND/OR constraints

A goal analysis

goal-analysis.eps

—__ PP B PBL
Some Extensions for

Separation of Concerns

O Extended actors

® Before
B After

O Abstract actors

B Before
" After

O Similar extensions for goals
O Shared goals

limitation-specialization-actor.eps
staff.eps
limitation-ra.eps
actor-diagram.eps

—!
Aspect Goals

O Goals may be decomposed further
into subgoals, and shared goals

O But it is not always possible to share
goals “as it is”.

O Certain refinements may be
necessary

O Aspect goals: an example

aspect-goal.eps

—!
Meta goals

O Supporting meta goals (like around
advise, before advise and after
advise)

Wrapper goals (performance criteria)
pre goals (preconditions)
Post goals (postconditions)

S
Goal Ordering

O Partial orders may be defined

O Does not indicate goal
decomposition but captures
workflows (activity dependencies in
UML)

O An example

ordering-partial.eps

ATy ASPeCTo S0 y ASPECLS: some

pointers

= Concerns
O Core Functionality
Security
Deadlines
Persistence
Mobility
O Replication
" Tangling within the specs

O O 0O O

Aspect Oriented Programming
Constructs:

A Summary, More Examples and
Related Approaches

Join Points

O A point in a source program
= Method call

Constructor call

Variable read/write

Exception handler

Variable initializer

Destructor

—!

Point cuts

O A set of join points + optionally some of
the execution context values

Call (void Point.setX(int))

O A call to a specific function
Call (public * Figure.*(..))
0O Calls to all public functions on Figure

Pointcut move: call ... || call ...
O Any of the above calls

linstanceof (X) && call ...

0O Call originates not from instance of X and to
specified method

—!

Advices

O Advices executed at the code at joinpoints for
given pointcuts

Before advice

0 After reaching a join point, but before the computation
proceeds

After advice
0 After the computation at join point has completed

Around advice

O Run first. Proceed() inside around advice makes the
computation proceed

After returning
After throwing

O Introductions: add new fields to classes, change
relationships

Some more examples

O Aspects in a distributed objects
domain

" Object’s functionality

It’s location

It’s itinerary

Communication and synchronization
Its persistence

Its security

—!
Aspect Orientation in

middleware

O Write objects in your application
first

0O Add on services to the application
later

Use AOP techniques (interceptor/static
transtormation) techniques

! ea Eure 11 Eerac ElOIl

problem

O Effects of one aspect may interfere
with that of another

O Careful ordering of aspect
application is important

Product Line Approaches

High level transformation code
+

High level Base code

- Actual Variant

Base-Meta Separation

0 Meta-object protocols

O Reflection

= Ideas are quite old

" Some of the recent technologies have
discovered them only now!

—!
Filter Objects Approach

O
O

O O 0O O

Message based paradigm

Based on interfaces and capture on
messages

Dynamic and First class aspects
Pluggability at runtime
Weaving not possible

Filter objects for
C++/Java/CORBA/COM, patterns,
configurations

—!

Open Problems

O Static vs. Dynamic aspects

Commercial Tools and Technologies are
picking up

0O Early aspects and traceability into code
0O Aspects In processes

O Large scale applications and actual
practice

O Impact on Systems design and software
Engineering lifecycle in general

O Impact on Modeling Languages

