
Measuring Object Oriented
Design

Rushikesh K Joshi

Department of Computer Science and
Engineering
IIT Bombay

Tutorial at SoDA Workshop
Jan 23, 2004

at Taj Westend, Bangalore

Measurement in day-to-day
activities

• What’s the temperature today?
• How much time did it take to travel?
• Was it a comfortable journey?
• Are you joking?
• How cold is it at Bangalore?
• How many participants in SoDA?
• Was the morning tea too sweet?
• How popular is soda amongst the students as

compared to tea?
• Which is the best team in the world?

Measurement

• Fundamental in any engineering discipline
• Software Engineering is no exception

• If you can measure, you can predict
• If you can measure, you can control
• If you can measure, you can compare
• If you can measure, you can improve
• You can estimate, cost, plan, investigate, assess …
• And if you can measure, you can relax too!

Quality

• Is there a definition for quality?

• How do you spot it?

• How do you measure it?

• Quantification of Quality
– Quantification process is subjective
– Once quantified, the measure is objective

Some example uses of metrics

• Selecting Data structures and algorithms

• Choosing over alternative implementations

• Adjust/refactor designs based on coupling and cohesion

• Use defect rates for process improvement

• Use effort and productivity metrics to assess the use of a
technology or tool

• For improving understandability, maintainability,
testability of software

Some basics of measurement
theory

• How do we understand a given quality (or attribute)?
• By comparing samples

– Example: height
• We say person A is taller than person B.
• Person C’s wife is not that much taller than him.

– We understand the taller than relation through comparison
– We do not use numbers

• Taller than is an empirical relation for attribute height and not a
numerical relation

• When there is difference of opinion, we take consensus
• Empirical relations on a set need not be binary

– is tall
• We can map the empirical world to numerical world or formal

relational world � measurement
• E.g. > relation on height in cms

Measurement: Quantifying Quality

• Are there any restrictions to be followed when
this mapping is done?

• The mapping must be such that the numerical
relation preserves and is preserved by the
empirical relation

• i.e. as in
– A is taller than B if and only if H(A) > H(B)
– A is tall if and only if H(A) > 70
– A is much taller than B if and only if H(A) > H(B)+15

Quantification
• Define following mappings from empirical to

numerical world
– A is taller than B if and only if H(A) > H(B)
– A is tall if and only if H(A) > 70
– A is much taller than B if and only if H(A) >

H(B)+15
• Now given

• sticks A,B,C and
• H(A)=84 H(B)=72 H(C)=42

We can say
– A is taller than B and H(A) > H(B)
And so on

• The interpretation

A B C

Different relational properties

• Reflexive: aRa for all a’s in the set
• Irreflexive: not aRa for all a’s
• Non-reflexive: It is not reflexive
• Symmetric: aRb � bRa for all a’s and b’s
• Asymmetric: aRb � not bRa
• Antisymmetric: aRb and bRa � a=b
• Transitive: aRb and bRc � aRc

Measurement scales

• Nominal
– Specs fault, design fault, coding fault

• Ordinal
– Trivial, simple, moderate, complex, incomprehensible

• Interval
– Temperature Celsius/Fahrenheit , relative time

• Ratio
– Length, weight, time intervals, temperature Kelvin

• Absolute
– counts

Nominal scale

• Empirical system consists of only different
classes

• There is no ordering among the classes
– Numbering of classes is okay
– but that is only to distinguish them and no notion of

magnitude is associate

• i.e. classes are not ordered, and even if they are numbered
from 1 to n, that is only for identification

• Civil engg students 001, cse students 002, Mech students
003

Ordinal Scale

• Empirical system consists of classes
• Classes are ordered with respect to the attribute

– Any mapping that preserves the ordering is
acceptable

– The number represents ranking only
– Hence no functions such as addition, subtraction

Good, very good, excellent, exceptional

Interval Scale

• It is more powerful than nominal or ordinal
• Captures the size of the intervals that separate

classes
– Preserves orders as with ordinal
– Preserves differences but not ratios

• Addition, subtraction is accepted
• Multiplication and division is not

Temperature change: 20C to 21C at mumbai
is same as 30C to 31C in chennai

But we cannt say it is 2/3rd as hot in mumbai as in chennai
We cannot say delhi is 50% hotter than mumbai

Ratio Scale

• Preserves ordering
• Preserves the size of intervals between entities
• And ratios between entities
• Has a 0 element representing lack of the

attribute
• Measurement mapping starts at 0 and increases

in equal units (intervals)
• All arithmetic can be performed

– Length of an object

Absolute scale

• Measurement is made by counting the
number of elements in the set
– There is only one possible measurement

mapping, i.e. the count

– All arithmetic is useful

• Number of project engineers

Measurement in software (Product)

• Measuring specification

– Internal attributes: size, reuse, modularity,
redundancy, functionality, syntactic
correctness

– External attributes: comprehensibility,
maintainability

Measurement in software (Product)

• Measuring designs

– Internal attributes: size, reuse, modularity,
coupling, cohesiveness, functionality

– External attributes: quality, complexity,
maintainability

Measurement in software (Product)

• Measuring code

– Internal attributes: size, reuse, modularity,
coupling, structured-ness

– External attributes: reliability, usability,
maintainability

Measurement in software
(Processes)

• Measuring process stages

– Time, efforts, number of changes made,
number of faults

– Cost, stability, cost-effectiveness

Measurement in software
(Resources)

• Measuring personnel, s/w, hardware,
offices
– Size, price, temperature level, light in office,

speed, memory size

– Productivity, experience, usability, utilization,
availability

Measuring size - length

• LoC
– But explain how blank lines, comments, data

declarations, lines containing more language
statements are handled

• NCLoC
– Non commented lines (or ELoC-effective LoC)
– But for storage requirements this may be needed

• Or use LOC=NCLoc+CLOC (non-commented +
commented lines of code measured separately)

• Ratio CLOC/LOC : density of comments

Measuring size - length

• ES: number of executable statements
• Separate statements on same line are still distinct
• Ignores comments, declarations, headings

• DSI: number of delivered source
instructions

• Like ES, but includes data definitions, and
headings

Measuring size - length
• Halstead’s ideas
• Given program P:

– u1 no of unique operators
– u2 no of unique operands
– n1 total occurrences of operators
– n2 total occurrences of operands

• n = Length of P = n1 + n2
• u = Vocabulary of P = u1 + u2
• v = Volume of P = n * log2 u

= number of mental comparisons needed to write a program of length n
• Potential volume v* = volume of minimum size implementation of P
• L = Program level of P = v*/v
• D= Difficulty level of P = i/L

Weyuker’s axioms for software
complexity measures

• P, Q, R program bodies

• |P| complexity of P wrt
some hypothetical
measure

• |P| is non-negative
• For any P,Q

– |P|<=|P| or |Q|<=|P|

• Complexities can be compared and ordered

Weyuker’s axiom 1

• There exists p and q such that

– |P| is not equal to |P|

• Tries to stress that a measure in which all
programs are equally complex is not really
a measure

Weyuker’s axiom 2

• Let c be a nonnegative number

• There are only finitely many programs of
complexity equal to c

• This says that measure is not sensitive
enough if it divides all programs into just a
few complexity classes

Weyuker’s axiom 3

• There are distinct programs P and Q such
that |P| = |Q|

• i.e. the measure should not assign unique
value to every program and thus should
not be too fine level

Weyuker’s axiom 4

• There exist programs p and q such that
They are equivalent but |P| not= |Q|

• i.e. even when 2 programs do the same
thing, their implementation complexity
vaies

Weyuker’s axiom 5

• For all Ps and Qs,
– |P| <= |P;Q| and
– |Q| not= |P;Q|

• Components of the program are no more
complex than program itself

Weyuker’s axiom 6

• Whether or not the concatenation of a given
program body with another should always affect
the complexity of the resultant program in a
uniform way?

• There exist p,q,r such that
– Complexity of p and q are same: |P|=|Q|
– Complexity of P;R not same as complexity of Q;R

• |P;R| not=|Q;R|
– i.e. R may not interact same with p and q

Weyuker’s axiom 7

• There are two program bodies P and Q
such that
– Q is formed by permuting the order of

statements of P and |P| not= |Q|

• Program complexity should be responsive
to order of statements, and hence
interaction among statements

Weyuker’s axiom 8

• If P is a renaming of Q then |P|=|Q|

• This is in terms of Psychological
complexity (actually relabeling of
variables)

Weyuker’s axiom 9

• There exist P, Q such that

– |P| + |Q| < |P;Q|

• Complexity of a program formed by
concatenating 2 program bodies can be
greater than sum of their individual
complexities

Weyuker’s axioms have been
criticized

• E.g. consider KNOT measure = total no of points
at which control flow crosses

• It is 0 for all structured programs and it does
measure unstructredness of programs

• But property 1 states that every program should
not have the same value else it is not a metric

Some Criticism on Weyuker’s
axioms

• Property 5 asserts that adding code cannot decrease
complexity.

• This reflects a view that program size is key factor in
complexity

• And also that low comprehensibility is not a key factor
• It’s widely believed that we understand a program more

easily as we see more of it
• Whereas, axiom 6 has to do with comprehensibility and

little to do with size
• Thus they cannot be both satisfied by a single measure
• Zuse concluded 5 needs ratio scale, and 6 excludes it
• Useless metrics may be created satisfying all the

properties

Object Oriented Metrics

• Why do we need them?

• In non-OO software complexity is in structure of
code itself, larger portion of code is imperative

• In OO code, complexity lies in interaction
between objects, a large portion of code is
declarative, OO models real life objects: classes,
objects, inheritance, encapsulation, message
passing

CK Metric suit

• Chidamber and Kemerer’s suit for object
oriented systems

– Weighed methods per class (WMC)
– Depth of inheritance tree (DIT)
– Number of children (NOC)
– Coupling between object classes (CBO)
– Response for a class (RFC)
– Lack of cohesion in methods (LCOM)

Weighted methods per class
(WMC) metric

• Every class has methods M1…Mn defined in the
class

• C1…Cn are complexities of methods

Then

WMC = sum of all Ci’s from C1 to Cn

Weighted methods per class
(WMC) metric

• Method complexity is left undefined

• Scale used for it must be at least interval scale
so that summation is possible

Weighted methods per class
(WMC) metric

• Viewpoints

• No. of methods and complexity of methods
is a predictor for time and efforts for a
class

• Larger the no of methods, greater the
impact on subclasses

• Classes with large no. of methods will
have less reuse and will be application
specific

Depth of inheritance tree (DIT)

• It’s a metric for a class

• Maximum length from node to the root of the
tree

• May be in presence of multiple inheritance

• Measures how many ancestor classes can
potentially affect this class

Depth of inheritance tree (DIT)

• Viewpoints

• The deeper the class, greater the number
of methods it will have, making it more
complex

• Deeper tree indicates more design
complexity as more classes and methods
are involved

Number of Children (NOC)

• Number of immediate subclasses
• Measures how many subclasses will inherit the

parent class
• Viewpoint

– Greater the no. of children, greater the reuse
– Greater the no. of children, greater the possibility of

improper abstraction of the class: it could be a misuse
of subclassing

– No. of children measure efforts needed on testing a
class

Coupling between objects (CBO)

• Count of no. of other classes to which it is
coupled

• Objects are coupled if one of them acts on the
other

• Viewpoint
– Excessive coupling shows decline in modularity
– More independent a class is, easier it is to reuse
– Less coupling promotes modularity and encapsulation
– Indicates how complex the testing could be

Coupling between objects (CBO)

• Classes responsible for managing
interfaces have a high CBO
– Classes that connect subsystems

• Usable by senior managers and project
managers
– to track integrity of a system
– to check whether components are developing

unnecessary interconnections

Response for a class (RFC)

• RFC = |Response Set RS|

• RS is a set of methods that can potentially
be executed in response to a message
received by an object of that class

Response for a class (RFC)

• Viewpoint

• Larger the number of methods invoked from a
class, greater the complexity

• Worst case RS values will assist in testing
estimation

• Large RFC needs greater understanding by the
tester and in debugging

Lack of cohesion in methods
(LCOM)

• Consider class C with methods M1..Mn
• Let Vi be set of instance variables used by

method Mi
• There are such n sets Vi…Vn
• Let Pi’s be set of all tuples (Vi, Vj) such that the

intersections of Vi and Vj are null
• Let Qi’s be set of all tuples (Vi, Vj) such that the

intersections of Vi and Vj are non-null
• LCOM = IP|-|Q| if |P| > |Q|

– 0 otherwise

Lack of cohesion in methods
(LCOM)

• The degree of similarity is between 2 methods is
given by the interaction of Vi and Vj

• LCOM is count of no. of method pairs whose
similarity measure is 0, minus the count of no of
method pairs whose similarity measure is not 0.

• The larger the no of similar methods, more
cohesive is the class

• If none of the methods use any instance
variable, they will have no similarity and LCOM
value will be 0.

Lack of cohesion in methods
(LCOM)

• Viewpoint
• Cohesiveness of methods within a class is

desirable. It promotes encapsulation
• Lack of cohesion implies classes need splitting

or splitting into subclasses
• Design flaws may be detected
• Low cohesion increases complexity and errors
• Can be used to identify classes that are trying to

achieve many different objectives

Schroeder’s compilation of metrics

• Categories of metrics
– System size

• E.g. how many function calls and objects?

– Class or method size
• Small classes typically better than large ones

– Coupling and inheritance
• Number of types of relations: interdependence

– Class of method internals
• How complex code of a class is

System Size

• Lines of code LOC
• Total function calls TFC
• Number of classes NOC
• Number of windows NOW

– (size of user interfaces on the system)

Class/Method Size

• LOC and function calls per class/method
• Number of methods per class
• Public method count per class
• Number of attributes per class
• Number of instance attributes per class

Coupling and Inheritance

• Class fan-in
– Number of classes that depend on a given

class

• Class fan-out
– Number of classes on which a class depends

• Class inheritance level: no. of direct
ancestors

• Number of children per class

Class and method internals

• No. of global/shared references per class
– Break encapsulation

• Use sparingly if unavoidable

• Method complexity
– No of different execution paths within a block

of code (cyclomatic complexity)

• Number of public attributes per class
• Lack of cohesion among methods

Class and method internals

• Class specialization index
– Extent to which subclasses override (replace) the

behavior of their ancestor classes
– More the specialization, abstraction may be said to be

inappropriate
– Extending class behavior with new methods vs. heavy

overriding
• Percent of commented methods

– Documentation
• Number of parameters per method

– Higher the number, complex the interface

MOOD Metrics

• Method hiding factor (MHF)
• Attribute hiding factor (AHF)
• Method inheritance factor (MIF)
• Polymorphism factor (PF)
• Coupling factor (CF)

Method hiding factor

• Invisibility of a method=percentage of total
classes from which the method is not visible

• Numerator: sum of invisibilities of all methods in
all classes

• Denominator: total number of methods defined
in the system under consideration

• Very low: insufficient abstraction
• High value: little functionality

Attribute factor

• Numerator: sum of invisibilities of all
attributes in all classes

• Invisibility: percentage of total classes
from which attribute is not visible

• Denominator: total number of attributes
defined in the system under consideration

• Very low: inefficient design
• Ideally all attributes are hidden

Polymorphism factor

• Actual number of possible different
polymorphic situations

• Numerator: actual amount of
polymorphism

• Denominator: maximum attainable
polymorphism

Back to basic 2 issues

• Basic properties of measurement

• How to quantify quality

