
  

OOP & OOPLs

Rushikesh K Joshi
IIT Bombay



  

OOP in a nutshell

 The Object Abstraction
 Interfaces and Implementation
 Encapsulation and Visibility Control
 Inheritance and Polymorphism
 Generalization and Specialization
 Dynamic Binding



  

Where do OOPLs Differ?

 Objects & Classes
 Encapsulation
 Inheritance Models
 Firstclass features
 Purity of object orientations
 Typing issues
 Exception handling Mechanism
 Parameter passing .....



  

Where do OOPLs Differ?

 Threading
 Portability
 Packaging
 System Interface
 Trees vs forest



  

Classes & Objects

 Are there classes?

 Are classes objects?

 Do classes have classes?

 Nesting of classes?



  

Classes of Classes?

 Are there classes of classes?

 If not, how does the language handle the 
missing features?



  

Encapsulation

 Level of encapsulation

 Visibility model and control

 Can encapsulation be broken? 



  

Inheritance Models

 Single Vs. Multiple

 Shared Vs. Repeated

 Dynamic binding or not?



  

First class features

 What all can be created, passed as input 
parameter and returned?



  

Purity of Object Orientation

 Functions vs. member functions
 Types
 Main
 Breakage of encapsulation
 Control constructs
 Exception handling 
 System Interface ...



  

Typing Issues

 primitive vs. object types
 subtyping rules for member functions
 narrowing and widening
 Object type
 variables are typed or not: static vs 

dynamic typing
 Type safety



  

Exception handling

 Built in?
 Must or optional?
 Object oriented?



  

Parameter passing

 by reference, by value?
 keyword parameters?
 accessor specifiers ..



  

Threading

 built in?
 Models of threading?



  

Portability &Networkability

 Byte codes and interpretation
 Standardization
 Networkability
 Security



  

Packaging

 Packaging features?

 Files?



  

Trees vs. forest

 class Object?



  

Other features

 basic types
 libraries
 development environmen
 contracts and assertions
 reflection
 genericity ..


