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Measurement in day-to-day 
activities

• What’s the temperature today?
• How much time did it take to travel?
• Was it a comfortable journey?
• Are you joking?
• How cold is it at Bangalore?
• How many participants in SoDA?
• Was the morning tea too sweet?
• How popular is soda amongst the students as 

compared to tea?
• Which is the best team in the world? 



  

Measurement

• Fundamental in any engineering discipline 
• Software Engineering is no exception

• If you can measure, you can predict
• If you can measure, you can control
• If you can measure, you can compare
• If you can measure, you can improve
• You can estimate, cost, plan, investigate, assess …
• And if you can measure, you can relax too!



  

Quality

• Is there a definition for quality?

• How do you spot it?

• How do you measure it?

• Quantification of Quality
– Quantification process is subjective

– Once quantified, the measure is objective



  

Some example uses of metrics

• Selecting Data structures and algorithms

• Choosing over alternative implementations

• Adjust/refactor designs based on coupling and cohesion

• Use defect rates for process improvement

• Use effort and productivity metrics to assess the use of a 
technology or tool

• For improving understandability, maintainability, testability of 
software



  

Some basics of measurement 
theory

• How do we understand a given quality (or attribute)?
• By comparing samples

– Example: height
• We say person A is taller than person B.
• Person C’s wife is not that much taller than him.

– We understand the taller than relation through comparison
– We do not use numbers

• Taller than  is an empirical relation for attribute height and not a 
numerical relation

• When there is difference of opinion, we take consensus
• Empirical relations on a set need not be binary

– is tall  
• We can map the empirical world to numerical world or formal 

relational world  measurement
• E.g. > relation on height in cms



  

Measurement: Quantifying Quality

• Are there any restrictions to be followed when 
this mapping is done?

• The mapping must be such that the numerical 
relation preserves and is preserved by the 
empirical relation

• i.e. as in 
– A is taller than B if and only if H(A) > H(B)
– A is tall if and only if H(A) > 70
– A is much taller than B if and only if H(A) > H(B)+15



  

Quantification

• Define following mappings from empirical to 
numerical world
– A is taller than B if and only if H(A) > H(B)
– A is tall if and only if H(A) > 70
– A is much taller than B if and only if H(A) > H(B)

+15
• Now given

• sticks A,B,C and
• H(A)=84   H(B)=72  H(C )=42

We can say
– A is taller than B  and H(A) > H(B)
And so on

• The interpretation

A       B      C

file:///padmaja-reports/padmaja-progress-seminar/measurement.eps


  

Relevant relational properties

• Reflexive: 
– aRa for all a’s in the 

set

• Irreflexive: 
– not aRa for all a’s

• Non-reflexive: 
– It is not reflexive

• Symmetric: 
– aRb  bRa for all 

a’s and b’s

• Asymmetric: 

– aRb  not bRa 

• Antisymmetric: 

– aRb and bRa  
a=b

• Transitive: 

– aRb and bRc  
aRc



  

Measurement scales

• Nominal
– Specs fault, design fault, coding fault

• Ordinal
– Trivial, simple, moderate, complex, incomprehensible

• Interval
– Temperature Celsius/Fahrenheit , relative time

• Ratio
– Length, weight, time intervals, temperature Kelvin

• Absolute
– counts



  

Nominal scale

• Empirical system consists of only different 
classes

• There is no ordering among the classes
– Numbering of classes is okay 

– but that is only to distinguish them and no notion of 
magnitude is associate

• i.e. classes are not ordered, and even if they are numbered 
from 1 to n, that is only for identification

• Civil engg students 001, cse students 002, Mech students 
003



  

Ordinal Scale

• Empirical system consists of classes 

• Classes are ordered with respect to the attribute
– Any mapping that preserves the ordering is 

acceptable

– The number represents ranking only 

– Hence no functions such as addition, subtraction

Good, very good, excellent, exceptional



  

Interval Scale

• It is more powerful than nominal or ordinal
• Captures the size of the intervals that separate 

classes
– Preserves orders as with ordinal
– Preserves differences but not ratios

• Addition, subtraction is accepted
• Multiplication and division are not

Temperature change: 20C to 21C at mumbai
 is same as 30C to 31C in chennai

But we cannt say it is 2/3rd as hot in mumbai as in chennai
We cannot say delhi is 50% hotter than mumbai



  

Ratio Scale

• Preserves ordering

• Preserves the size of intervals between entities
• And ratios between entities

• Has a 0 element representing lack of the 
attribute

• Measurement mapping starts at 0 and increases 
in equal units (intervals)

• All arithmetic can be performed
– Length of an object



  

Absolute scale

• Measurement is made by counting the 
number of elements in the set
– There is only one possible measurement 

mapping, i.e. the count

– All arithmetic is useful

• Number of project engineers



  

Measurement in software (Product)

• Measuring specification

– Internal attributes: size, reuse, modularity, 
redundancy, functionality, syntactic 
correctness

– External attributes: comprehensibility, 
maintainability



  

Measurement in software (Product)

• Measuring designs

– Internal attributes: size, reuse, modularity, 
coupling, cohesiveness, functionality

– External attributes: quality, complexity, 
maintainability



  

Measurement in software (Product)

• Measuring code

– Internal attributes: size, reuse, modularity, 
coupling, structured-ness

– External attributes: reliability, usability, 
maintainability



  

Measurement in software 
(Processes)

• Measuring process stages

– Time, efforts, number of changes made, 
number of faults

– Cost, stability, cost-effectiveness



  

Measurement in software 
(Resources)

• Measuring personnel, s/w, hardware, 
offices
– Size, price, temperature level, light in office, 

speed, memory size

– Productivity, experience, usability, utilization, 
availability



  

Measuring size - length

• LoC
– But explain how blank lines, comments, data 

declarations, lines containing more language statements 
are handled

• NCLoC
– Non commented lines (or ELoC-effective LoC)
– But for storage requirements this may be needed

• Or use LOC=NCLoc+CLOC (non-commented + 
commented lines of code measured separately)

• Ratio CLOC/LOC : density of comments



  

Measuring size - length

• ES: number of executable statements
• Separate statements on same line are still distinct

• Ignores comments, declarations, headings

• DSI: number of delivered source 
instructions

• Like ES, but includes data definitions, and 
headings



  

Measuring size - length

• Halstead’s ideas
• Given program P:

– u1 no of unique operators
– u2 no of unique operands
– n1 total occurrences of operators
– n2 total occurrences of operands

• n = Length of P = n1 + n2
• u = Vocabulary of P = u1 + u2
• v = Volume of P = n  * log2 u 

= number of mental comparisons needed to write a program of length n
• Potential volume v* = volume of minimum size implementation of P
• L = Program level of P = v*/v
• D= Difficulty level of P = i/L 



  

Weyuker’s axioms for software 
complexity measures

• P, Q, R  program bodies

• |P| complexity of P wrt 
some hypothetical 
measure

• |P| is non-negative

• For any P,Q
– |P|<=|P| or |Q|<=|P|

• Complexities can be compared and ordered



  

Weyuker’s axiom 1

• There exists p and q such that

– |P|  is not equal to |Q|

• Tries to stress that a measure in which all 
programs are equally complex is not really 
a measure



  

Weyuker’s axiom 2

• Let c be a nonnegative number

• There are only finitely many programs of 
complexity equal to c

• This says that measure is not sensitive 
enough if it divides all programs into just a 
few complexity classes



  

Weyuker’s axiom 3

• There are distinct programs P and Q such 
that |P| = |Q|

• i.e. the measure should not assign unique 
value to every program and thus should 
not be too fine level



  

Weyuker’s axiom 4

• There exist programs p and q such that

They are equivalent but  |P| not= |Q|

• i.e. even when 2 programs do the same 
thing, their implementation complexity 
vaies



  

Weyuker’s axiom 5

• For all Ps and Qs,
– |P| <= |P;Q|  and 
– |Q| <= |P;Q|

• Components of the program are no more 
complex than program itself



  

Weyuker’s axiom 6

• Whether or not the concatenation of a given program 
body with another should always affect the complexity 
of the resultant program in a uniform way?

• There exist p,q,r such that
– Complexity of p and q are same: |P|=|Q|
– Complexity of P;R not same as complexity of Q;R

• |P;R| not=|Q;R|

– Complexity of P;R not same as complexity of Q;R
• |R;P| not=|R;Q|

– i.e. R may not interact same with p and q



  

Weyuker’s axiom 7

• There are two program bodies P and Q 
such that
– Q is formed by permuting the order of 

statements of P and |P| not= |Q|

• Program complexity should be responsive 
to order of statements, and hence 
interaction among statements



  

Weyuker’s axiom 8

• If P is a renaming of Q then |P|=|Q|

• This is in terms of Psychological 
complexity (actually relabeling of 
variables)



  

Weyuker’s axiom 9

• There exist P, Q such that

– |P| + |Q|    <     |P;Q|

• Complexity of a program formed by 
concatenating 2 program bodies can be 
greater than sum of their individual 
complexities



  

Weyuker’s axioms have been 
criticized

• E.g. consider KNOT measure = total no of points 
at which control flow crosses

• It is 0 for all structured programs and it does 
measure unstructredness of programs

• But property 1 states that every program should 
not have the same value else it is not a metric



  

Some Criticism on Weyuker’s 
axioms

• Property 5 asserts that adding code cannot decrease 
complexity. 

• This reflects a view that program size is key factor in 
complexity

• And also that low comprehensibility is not a key factor
• It’s widely believed that we understand a program more 

easily as we see more of it
• Whereas, axiom 6 has to do with comprehensibility and 

little to do with size
• Thus they cannot be both satisfied by a single measure
• Zuse concluded 5 needs ratio scale, and 6 excludes it
• Useless metrics may be created satisfying all the 

properties



  

Object Oriented Metrics

• Why do we need them?

• In non-OO software complexity is in structure of 
code itself, larger portion of code is imperative

• In OO code, complexity lies in interaction 
between objects, a large portion of code is 
declarative, OO models real life objects: classes, 
objects, inheritance, encapsulation, message 
passing



  

CK Metric suit

• Chidamber and Kemerer’s suit for object 
oriented systems

– Weighed methods per class (WMC)
– Depth of inheritance tree (DIT)
– Number of children (NOC)
– Coupling between object classes (CBO)
– Response for a class (RFC)
– Lack of cohesion in methods (LCOM)



  

Weighted methods per class 
(WMC) metric

• Every class has methods M1…Mn defined in the 
class

• C1…Cn are complexities of methods

Then

WMC = sum of all Ci’s from C1 to Cn



  

Weighted methods per class 
(WMC) metric

• Method complexity is left undefined 

• Scale used for it must be at least interval scale 
so that summation is possible



  

Weighted methods per class 
(WMC) metric

• Viewpoints

• No. of methods and complexity of methods is 
a predictor for time and efforts for a class

• Larger the no of methods, greater the impact 
on subclasses

• Classes with large no. of methods will have 
less reuse and will be application specific



  

Depth of inheritance tree (DIT)

• It’s a metric for a class

• Maximum length from node to the root of the 
tree

• May be in presence of multiple inheritance

• Measures how many ancestor classes can 
potentially affect this class



  

Depth of inheritance tree (DIT)

• Viewpoints

• The deeper the class, greater the number 
of methods it will have, making it more 
complex

• Deeper tree indicates more design 
complexity as more classes and methods 
are involved



  

Number of Children (NOC)

• Number of immediate subclasses

• Measures how many subclasses will inherit the 
parent class

• Viewpoint
– Greater the no. of children, greater the reuse

– Greater the no. of children, greater the possibility of 
improper abstraction of the class: it could be a misuse 
of subclassing

– No. of children measure efforts needed on testing a 
class



  

Coupling between objects (CBO)

• Count of no. of other classes to which it is 
coupled

• Objects are coupled if one of them acts on the 
other

• Viewpoint
– Excessive coupling shows decline in modularity

– More independent a class is, easier it is to reuse

– Less coupling promotes modularity and encapsulation

– Indicates how complex the testing could be



  

Coupling between objects (CBO)

• Classes responsible for managing 
interfaces have a high CBO
– Classes that connect subsystems

• Usable by senior managers and project 
managers 
– to track integrity of a system 
– to check whether components are developing 

unnecessary interconnections



  

Response for  a class (RFC)

• RFC = |Response Set RS|

• RS is a set of methods that can potentially 
be executed in response to a message 
received by an object of that class



  

Response for  a class (RFC)

• Viewpoint

• Larger the number of methods invoked from a 
class, greater the complexity

• Worst case RS values will assist in testing 
estimation

• Large RFC needs greater understanding by the 
tester and in debugging



  

Lack of cohesion in methods 
(LCOM)

• Consider class C with methods M1..Mn
• Let Vi be set of instance variables used by 

method Mi
• There are such n sets Vi…Vn
• Let Pi’s be set of all tuples (Vi, Vj) such that the 

intersections of Vi and Vj are null
• Let Qi’s be set of all tuples (Vi, Vj) such that the 

intersections of Vi and Vj are non-null
• LCOM = IP|-|Q|    if    |P| > |Q|

– 0 otherwise



  

Lack of cohesion in methods 
(LCOM)

• The degree of similarity is between 2 methods is 
given by the interaction of Vi and Vj

• LCOM is count of no. of method pairs whose 
similarity measure is 0, minus the count of no of 
method pairs whose similarity measure is not 0.

• The larger the no of similar methods, more 
cohesive is the class

• If none of the methods use any instance 
variable, they will have no similarity and LCOM 
value will be 0.



  

Lack of cohesion in methods 
(LCOM)

• Viewpoint

• Cohesiveness of methods within a class is 
desirable. It promotes encapsulation

• Lack of cohesion implies classes need splitting 
or splitting into subclasses

• Design flaws may be detected

• Low cohesion increases complexity and errors 

• Can be used to identify classes that are trying to 
achieve many different objectives



  

Schroeder’s compilation of metrics

• Categories of metrics
– System size

• E.g. how many function calls and objects?

– Class or method size
• Small classes typically better than large ones 

– Coupling and inheritance
• Number of types of relations: interdependence

– Class of method internals
• How complex code of a class is



  

System Size

• Lines of code LOC

• Total function calls TFC

• Number of classes NOC

• Number of windows NOW
– (size of user interfaces on the system)



  

Class/Method Size

• LOC and function calls per class/method

• Number of methods per class

• Public method count per class

• Number of attributes per class

• Number of instance attributes per class



  

Coupling and Inheritance

• Class fan-in
– Number of classes that depend on a given 

class

• Class fan-out
– Number of classes on which a class depends

• Class inheritance level: no. of direct 
ancestors

• Number of children per class



  

Class and method internals

• No. of global/shared references per class
– Break encapsulation

• Use sparingly if unavoidable

• Method complexity
– No of different execution paths within a block 

of code (cyclomatic complexity)

• Number of public attributes per class

• Lack of cohesion among methods



  

Class and method internals

• Class specialization index
– Extent to which subclasses override (replace) the 

behavior of their ancestor classes
– More the specialization, abstraction may be said to be 

inappropriate
– Extending class behavior with new methods vs. heavy 

overriding

• Percent of commented methods
– Documentation

• Number of parameters per method
– Higher the number, complex the interface



  

MOOD Metrics

• Method hiding factor (MHF)

• Attribute hiding factor (AHF)

• Method inheritance factor (MIF)

• Polymorphism factor (PF)

• Coupling factor (CF)



  

Method hiding factor

• Invisibility of a method=percentage of total 
classes from which the method is not visible

• Numerator: sum of invisibilities of all methods in 
all classes

• Denominator: total number of methods defined 
in the system under consideration

• Very low: insufficient abstraction

• High value: little functionality



  

Attribute factor

• Numerator: sum of invisibilities of all 
attributes in all classes

• Invisibility: percentage of total classes from 
which attribute is not visible

• Denominator: total number of attributes 
defined in the system under consideration

• Very low: inefficient design
• Ideally all attributes are hidden



  

Polymorphism factor

• Actual number of possible different 
polymorphic situations

• Numerator: actual amount of 
polymorphism

• Denominator: maximum attainable 
polymorphism



  

Back to basic 2 issues

• Basic properties of measurement

• How to quantify quality
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