

Measuring Object Oriented Design:
Quantification of Qualities
Issues and Approaches

Rushikesh K Joshi

Department of Computer Science and
Engineering
IIT Bombay

Adapted from my Tutorial at SoDA Workshop, Jan 23, 2004, at Taj Westend, Bangalore

Measurement in day-to-day
activities

• What’s the temperature today?
• How much time did it take to travel?
• Was it a comfortable journey?
• Are you joking?
• How cold is it at Bangalore?
• How many participants in SoDA?
• Was the morning tea too sweet?
• How popular is soda amongst the students as

compared to tea?
• Which is the best team in the world?

Measurement

• Fundamental in any engineering discipline
• Software Engineering is no exception

• If you can measure, you can predict
• If you can measure, you can control
• If you can measure, you can compare
• If you can measure, you can improve
• You can estimate, cost, plan, investigate, assess …
• And if you can measure, you can relax too!

Quality

• Is there a definition for quality?

• How do you spot it?

• How do you measure it?

• Quantification of Quality
– Quantification process is subjective

– Once quantified, the measure is objective

Some example uses of metrics

• Selecting Data structures and algorithms

• Choosing over alternative implementations

• Adjust/refactor designs based on coupling and cohesion

• Use defect rates for process improvement

• Use effort and productivity metrics to assess the use of a
technology or tool

• For improving understandability, maintainability, testability of
software

Some basics of measurement
theory

• How do we understand a given quality (or attribute)?
• By comparing samples

– Example: height
• We say person A is taller than person B.
• Person C’s wife is not that much taller than him.

– We understand the taller than relation through comparison
– We do not use numbers

• Taller than is an empirical relation for attribute height and not a
numerical relation

• When there is difference of opinion, we take consensus
• Empirical relations on a set need not be binary

– is tall
• We can map the empirical world to numerical world or formal

relational world  measurement
• E.g. > relation on height in cms

Measurement: Quantifying Quality

• Are there any restrictions to be followed when
this mapping is done?

• The mapping must be such that the numerical
relation preserves and is preserved by the
empirical relation

• i.e. as in
– A is taller than B if and only if H(A) > H(B)
– A is tall if and only if H(A) > 70
– A is much taller than B if and only if H(A) > H(B)+15

Quantification

• Define following mappings from empirical to
numerical world
– A is taller than B if and only if H(A) > H(B)
– A is tall if and only if H(A) > 70
– A is much taller than B if and only if H(A) > H(B)

+15
• Now given

• sticks A,B,C and
• H(A)=84 H(B)=72 H(C)=42

We can say
– A is taller than B and H(A) > H(B)
And so on

• The interpretation

A B C

file:///padmaja-reports/padmaja-progress-seminar/measurement.eps

Relevant relational properties

• Reflexive:
– aRa for all a’s in the

set

• Irreflexive:
– not aRa for all a’s

• Non-reflexive:
– It is not reflexive

• Symmetric:
– aRb  bRa for all

a’s and b’s

• Asymmetric:

– aRb  not bRa

• Antisymmetric:

– aRb and bRa 
a=b

• Transitive:

– aRb and bRc 
aRc

Measurement scales

• Nominal
– Specs fault, design fault, coding fault

• Ordinal
– Trivial, simple, moderate, complex, incomprehensible

• Interval
– Temperature Celsius/Fahrenheit , relative time

• Ratio
– Length, weight, time intervals, temperature Kelvin

• Absolute
– counts

Nominal scale

• Empirical system consists of only different
classes

• There is no ordering among the classes
– Numbering of classes is okay

– but that is only to distinguish them and no notion of
magnitude is associate

• i.e. classes are not ordered, and even if they are numbered
from 1 to n, that is only for identification

• Civil engg students 001, cse students 002, Mech students
003

Ordinal Scale

• Empirical system consists of classes

• Classes are ordered with respect to the attribute
– Any mapping that preserves the ordering is

acceptable

– The number represents ranking only

– Hence no functions such as addition, subtraction

Good, very good, excellent, exceptional

Interval Scale

• It is more powerful than nominal or ordinal
• Captures the size of the intervals that separate

classes
– Preserves orders as with ordinal
– Preserves differences but not ratios

• Addition, subtraction is accepted
• Multiplication and division are not

Temperature change: 20C to 21C at mumbai
 is same as 30C to 31C in chennai

But we cannt say it is 2/3rd as hot in mumbai as in chennai
We cannot say delhi is 50% hotter than mumbai

Ratio Scale

• Preserves ordering

• Preserves the size of intervals between entities
• And ratios between entities

• Has a 0 element representing lack of the
attribute

• Measurement mapping starts at 0 and increases
in equal units (intervals)

• All arithmetic can be performed
– Length of an object

Absolute scale

• Measurement is made by counting the
number of elements in the set
– There is only one possible measurement

mapping, i.e. the count

– All arithmetic is useful

• Number of project engineers

Measurement in software (Product)

• Measuring specification

– Internal attributes: size, reuse, modularity,
redundancy, functionality, syntactic
correctness

– External attributes: comprehensibility,
maintainability

Measurement in software (Product)

• Measuring designs

– Internal attributes: size, reuse, modularity,
coupling, cohesiveness, functionality

– External attributes: quality, complexity,
maintainability

Measurement in software (Product)

• Measuring code

– Internal attributes: size, reuse, modularity,
coupling, structured-ness

– External attributes: reliability, usability,
maintainability

Measurement in software
(Processes)

• Measuring process stages

– Time, efforts, number of changes made,
number of faults

– Cost, stability, cost-effectiveness

Measurement in software
(Resources)

• Measuring personnel, s/w, hardware,
offices
– Size, price, temperature level, light in office,

speed, memory size

– Productivity, experience, usability, utilization,
availability

Measuring size - length

• LoC
– But explain how blank lines, comments, data

declarations, lines containing more language statements
are handled

• NCLoC
– Non commented lines (or ELoC-effective LoC)
– But for storage requirements this may be needed

• Or use LOC=NCLoc+CLOC (non-commented +
commented lines of code measured separately)

• Ratio CLOC/LOC : density of comments

Measuring size - length

• ES: number of executable statements
• Separate statements on same line are still distinct

• Ignores comments, declarations, headings

• DSI: number of delivered source
instructions

• Like ES, but includes data definitions, and
headings

Measuring size - length

• Halstead’s ideas
• Given program P:

– u1 no of unique operators
– u2 no of unique operands
– n1 total occurrences of operators
– n2 total occurrences of operands

• n = Length of P = n1 + n2
• u = Vocabulary of P = u1 + u2
• v = Volume of P = n * log2 u

= number of mental comparisons needed to write a program of length n
• Potential volume v* = volume of minimum size implementation of P
• L = Program level of P = v*/v
• D= Difficulty level of P = i/L

Weyuker’s axioms for software
complexity measures

• P, Q, R program bodies

• |P| complexity of P wrt
some hypothetical
measure

• |P| is non-negative

• For any P,Q
– |P|<=|P| or |Q|<=|P|

• Complexities can be compared and ordered

Weyuker’s axiom 1

• There exists p and q such that

– |P| is not equal to |Q|

• Tries to stress that a measure in which all
programs are equally complex is not really
a measure

Weyuker’s axiom 2

• Let c be a nonnegative number

• There are only finitely many programs of
complexity equal to c

• This says that measure is not sensitive
enough if it divides all programs into just a
few complexity classes

Weyuker’s axiom 3

• There are distinct programs P and Q such
that |P| = |Q|

• i.e. the measure should not assign unique
value to every program and thus should
not be too fine level

Weyuker’s axiom 4

• There exist programs p and q such that

They are equivalent but |P| not= |Q|

• i.e. even when 2 programs do the same
thing, their implementation complexity
vaies

Weyuker’s axiom 5

• For all Ps and Qs,
– |P| <= |P;Q| and
– |Q| <= |P;Q|

• Components of the program are no more
complex than program itself

Weyuker’s axiom 6

• Whether or not the concatenation of a given program
body with another should always affect the complexity
of the resultant program in a uniform way?

• There exist p,q,r such that
– Complexity of p and q are same: |P|=|Q|
– Complexity of P;R not same as complexity of Q;R

• |P;R| not=|Q;R|

– Complexity of P;R not same as complexity of Q;R
• |R;P| not=|R;Q|

– i.e. R may not interact same with p and q

Weyuker’s axiom 7

• There are two program bodies P and Q
such that
– Q is formed by permuting the order of

statements of P and |P| not= |Q|

• Program complexity should be responsive
to order of statements, and hence
interaction among statements

Weyuker’s axiom 8

• If P is a renaming of Q then |P|=|Q|

• This is in terms of Psychological
complexity (actually relabeling of
variables)

Weyuker’s axiom 9

• There exist P, Q such that

– |P| + |Q| < |P;Q|

• Complexity of a program formed by
concatenating 2 program bodies can be
greater than sum of their individual
complexities

Weyuker’s axioms have been
criticized

• E.g. consider KNOT measure = total no of points
at which control flow crosses

• It is 0 for all structured programs and it does
measure unstructredness of programs

• But property 1 states that every program should
not have the same value else it is not a metric

Some Criticism on Weyuker’s
axioms

• Property 5 asserts that adding code cannot decrease
complexity.

• This reflects a view that program size is key factor in
complexity

• And also that low comprehensibility is not a key factor
• It’s widely believed that we understand a program more

easily as we see more of it
• Whereas, axiom 6 has to do with comprehensibility and

little to do with size
• Thus they cannot be both satisfied by a single measure
• Zuse concluded 5 needs ratio scale, and 6 excludes it
• Useless metrics may be created satisfying all the

properties

Object Oriented Metrics

• Why do we need them?

• In non-OO software complexity is in structure of
code itself, larger portion of code is imperative

• In OO code, complexity lies in interaction
between objects, a large portion of code is
declarative, OO models real life objects: classes,
objects, inheritance, encapsulation, message
passing

CK Metric suit

• Chidamber and Kemerer’s suit for object
oriented systems

– Weighed methods per class (WMC)
– Depth of inheritance tree (DIT)
– Number of children (NOC)
– Coupling between object classes (CBO)
– Response for a class (RFC)
– Lack of cohesion in methods (LCOM)

Weighted methods per class
(WMC) metric

• Every class has methods M1…Mn defined in the
class

• C1…Cn are complexities of methods

Then

WMC = sum of all Ci’s from C1 to Cn

Weighted methods per class
(WMC) metric

• Method complexity is left undefined

• Scale used for it must be at least interval scale
so that summation is possible

Weighted methods per class
(WMC) metric

• Viewpoints

• No. of methods and complexity of methods is
a predictor for time and efforts for a class

• Larger the no of methods, greater the impact
on subclasses

• Classes with large no. of methods will have
less reuse and will be application specific

Depth of inheritance tree (DIT)

• It’s a metric for a class

• Maximum length from node to the root of the
tree

• May be in presence of multiple inheritance

• Measures how many ancestor classes can
potentially affect this class

Depth of inheritance tree (DIT)

• Viewpoints

• The deeper the class, greater the number
of methods it will have, making it more
complex

• Deeper tree indicates more design
complexity as more classes and methods
are involved

Number of Children (NOC)

• Number of immediate subclasses

• Measures how many subclasses will inherit the
parent class

• Viewpoint
– Greater the no. of children, greater the reuse

– Greater the no. of children, greater the possibility of
improper abstraction of the class: it could be a misuse
of subclassing

– No. of children measure efforts needed on testing a
class

Coupling between objects (CBO)

• Count of no. of other classes to which it is
coupled

• Objects are coupled if one of them acts on the
other

• Viewpoint
– Excessive coupling shows decline in modularity

– More independent a class is, easier it is to reuse

– Less coupling promotes modularity and encapsulation

– Indicates how complex the testing could be

Coupling between objects (CBO)

• Classes responsible for managing
interfaces have a high CBO
– Classes that connect subsystems

• Usable by senior managers and project
managers
– to track integrity of a system
– to check whether components are developing

unnecessary interconnections

Response for a class (RFC)

• RFC = |Response Set RS|

• RS is a set of methods that can potentially
be executed in response to a message
received by an object of that class

Response for a class (RFC)

• Viewpoint

• Larger the number of methods invoked from a
class, greater the complexity

• Worst case RS values will assist in testing
estimation

• Large RFC needs greater understanding by the
tester and in debugging

Lack of cohesion in methods
(LCOM)

• Consider class C with methods M1..Mn
• Let Vi be set of instance variables used by

method Mi
• There are such n sets Vi…Vn
• Let Pi’s be set of all tuples (Vi, Vj) such that the

intersections of Vi and Vj are null
• Let Qi’s be set of all tuples (Vi, Vj) such that the

intersections of Vi and Vj are non-null
• LCOM = IP|-|Q| if |P| > |Q|

– 0 otherwise

Lack of cohesion in methods
(LCOM)

• The degree of similarity is between 2 methods is
given by the interaction of Vi and Vj

• LCOM is count of no. of method pairs whose
similarity measure is 0, minus the count of no of
method pairs whose similarity measure is not 0.

• The larger the no of similar methods, more
cohesive is the class

• If none of the methods use any instance
variable, they will have no similarity and LCOM
value will be 0.

Lack of cohesion in methods
(LCOM)

• Viewpoint

• Cohesiveness of methods within a class is
desirable. It promotes encapsulation

• Lack of cohesion implies classes need splitting
or splitting into subclasses

• Design flaws may be detected

• Low cohesion increases complexity and errors

• Can be used to identify classes that are trying to
achieve many different objectives

Schroeder’s compilation of metrics

• Categories of metrics
– System size

• E.g. how many function calls and objects?

– Class or method size
• Small classes typically better than large ones

– Coupling and inheritance
• Number of types of relations: interdependence

– Class of method internals
• How complex code of a class is

System Size

• Lines of code LOC

• Total function calls TFC

• Number of classes NOC

• Number of windows NOW
– (size of user interfaces on the system)

Class/Method Size

• LOC and function calls per class/method

• Number of methods per class

• Public method count per class

• Number of attributes per class

• Number of instance attributes per class

Coupling and Inheritance

• Class fan-in
– Number of classes that depend on a given

class

• Class fan-out
– Number of classes on which a class depends

• Class inheritance level: no. of direct
ancestors

• Number of children per class

Class and method internals

• No. of global/shared references per class
– Break encapsulation

• Use sparingly if unavoidable

• Method complexity
– No of different execution paths within a block

of code (cyclomatic complexity)

• Number of public attributes per class

• Lack of cohesion among methods

Class and method internals

• Class specialization index
– Extent to which subclasses override (replace) the

behavior of their ancestor classes
– More the specialization, abstraction may be said to be

inappropriate
– Extending class behavior with new methods vs. heavy

overriding

• Percent of commented methods
– Documentation

• Number of parameters per method
– Higher the number, complex the interface

MOOD Metrics

• Method hiding factor (MHF)

• Attribute hiding factor (AHF)

• Method inheritance factor (MIF)

• Polymorphism factor (PF)

• Coupling factor (CF)

Method hiding factor

• Invisibility of a method=percentage of total
classes from which the method is not visible

• Numerator: sum of invisibilities of all methods in
all classes

• Denominator: total number of methods defined
in the system under consideration

• Very low: insufficient abstraction

• High value: little functionality

Attribute factor

• Numerator: sum of invisibilities of all
attributes in all classes

• Invisibility: percentage of total classes from
which attribute is not visible

• Denominator: total number of attributes
defined in the system under consideration

• Very low: inefficient design
• Ideally all attributes are hidden

Polymorphism factor

• Actual number of possible different
polymorphic situations

• Numerator: actual amount of
polymorphism

• Denominator: maximum attainable
polymorphism

Back to basic 2 issues

• Basic properties of measurement

• How to quantify quality

Reading References

• Properties:
– E. J. Weyuker, “Evaluating Software Complexity Measures,” IEEE

Transactions on Software Engineering, Vol. 14, No. 9, 1988, pp. 1357-1365.

• CK:
– S.R. Chidamber ; C.F. Kemerer, A metrics suite for object oriented design,

IEEE Transactions on Software Engineering (Volume: 20 , Issue: 6 , Jun
1994)

• MOOD:
– Abreu, Melo; Evaluating the Impact of Object-Oriented Design on Software

Quality, Proceedings of the 3rd International Software Metrics Symposium,
1996

• Shroeder's Compilation:
– Mark Schroeder, A Practical Guide to Object-Oriented Metrics, IEEE IT Pro,

Nov/Dec 1999

	Measuring Object Oriented Design Rushikesh K Joshi Department of Computer Science and Engineering IIT Bombay Tutorial at SoDA Workshop Jan 23, 2004 at Taj Westend, Bangalore
	Measurement in day-to-day activities
	Measurement
	Quality
	Some example uses of metrics
	Some basics of measurement theory
	Measurement: Quantifying Quality
	Quantification
	Different relational properties
	Measurement scales
	Nominal scale
	Ordinal Scale
	Interval Scale
	Ratio Scale
	Absolute scale
	Measurement in software (Product)
	Slide 17
	Slide 18
	Measurement in software (Processes)
	Measurement in software (Resources)
	Measuring size - length
	Slide 22
	Slide 23
	Weyuker’s axioms for software complexity measures
	Weyuker’s axiom 1
	Weyuker’s axiom 2
	Weyuker’s axiom 3
	Weyuker’s axiom 4
	Weyuker’s axiom 5
	Weyuker’s axiom 6
	Weyuker’s axiom 7
	Weyuker’s axiom 8
	Weyuker’s axiom 9
	Weyuker’s axioms have been criticized
	Some Criticism on Weyuker’s axioms
	Object Oriented Metrics
	CK Metric suit
	Weighted methods per class (WMC) metric
	Slide 39
	Slide 40
	Depth of inheritance tree (DIT)
	Slide 42
	Number of Children (NOC)
	Coupling between objects (CBO)
	Slide 45
	Response for a class (RFC)
	Slide 47
	Lack of cohesion in methods (LCOM)
	Slide 49
	Slide 50
	Schroeder’s compilation of metrics
	System Size
	Class/Method Size
	Coupling and Inheritance
	Class and method internals
	Slide 56
	MOOD Metrics
	Method hiding factor
	Attribute factor
	Polymorphism factor
	Back to basic 2 issues
	Slide 62

