Filter Object
Framework for

MICO

Rushikesh K Joshi
Department of Computer Science and Engineering

Indian Institute of Technology
Bombay, India



Filtered Delivery Model

= Separation ot message control from
Message Processing

= Filter Objects Model
= C++/JAVA/MICO user level
= Filterr Object Aware Environment

" Modularity and First class Filters
® Pynamic Pluggability



A Filtering Scenario

Client Filter
Object Object




Why Filter Objects as First
Class Objects?

= All' benetits of tull-fledged objects

4 Special abilities to filter method
Invocations

" Separation of Concerns
= Parallel Development
" Runtime capabilities

= Aspect Modeling / Way: off Composing
Aspects

® Towards Transparent Evolution



Previous work in Filter
Objects

Filters tor:
" C++
" Java Programming Language (T]F)

A Distributed Filter Object
Implementation on Aspect-]

User-level Filter Objects tor MICO

Related Work: Aspect Modeling,
Composition Filters, Context Relations,
CORBA Interceptors



Properties ol Eilters

Basic filtering actions: up/down filtering at
method level

Modularity: Filter specification &
implementation separate from the server’s

First-class-ness: Filter objects are first class,
full-fledged CORBA Objects

Transparency: w.r.t. both client and server
ends

Selective Filtering: enable/disable filter
member functions at runtime

Group Filtering: one-to-many
Dynamic binding: plug/unplug filter objects
Lavered Filtering: Multiple levels of filters



The Development Process:
Specifying Filter

» Build a Filter IDLObJ ects

= Manually
= By fidlgen utility

= Filter IDI. specification ..

= For every server method:
= At least one upfiler method

= At least one downfilter method if server method
returns a non-void value

= Arguments to an upfilter method are inout

= Names of Filter Methods can be different from
their corresponding server methods



A Pictorial View




The Development Process:
Implementing Filter

Objects

= Compile the Filter IDL
= using MICO IDL, compiler

= Run a filtergen utility

= Modifies inheritance tor the generated
Filter class

= Filter object inherits trom CORBA::Filter
instead of CORBA::Object

= CORBA::Filter is CORBA::Object

= Implement Filter Object as a CORBA
obiect




An Example Filter
Implementation

Dictionary.idl
Interface Dictionary.
Whpair lookup (in string word);

;

Cache Implementation

class DictionaryFilter impl : virtual public
DictionaryFilter skel

lookup_up(+..};
lookup down(){..};

5



The Development Process:
Working with
Catalysts

= Mapping Method Names

= map lilter IDIL implementations -
up/down filtering members for

corresponding server methods: mames
may be different)

= Through upfilter() and downtilter()
mapping methods in class CORBA::Filter

= [n absence of these mappings,
invocations are directly delivered

= Performed after creation of filter
Instances



A Pictorial View of a
Mapping




The Development Process:
Working with
Catalysts

= DPynamic enabling of filter methods

= Through enable() /disable () on class
CORBA::Filter

= Plug and Unplug

= Obtain a local ORB reference
= Through plug(), unplug() of CORBA::ORB class

* Server and filter references passed as
arguments

tiltercont utility provided to assist

AraFalyxecr AavralAarnrant




A Runtime View




Design Requirements

= Support all filter properties
" ransparency

= System evolution with ideally: NO
change in existing code

" Keeping overheads low
= Filter Objects as CORBA Objects

B Control over filter methods



Design Alternatives

= Design Considerations

= [Location of mappings between the
server and filter objects

= [Location of intercepting the call
" Design Choices
= Mappings as CORBA service
= Mappings in the micod
= Mappings managed at the server-side



Interfaces for Filter
developer

® Class CORBA: :0RB
" Two new methods

" Class CORBA: :Filter
= Superclass for all filter objects



CORBA::ORB class

= Plugg@ging Filter Objects onto Server
Objects

= Plug

" Unplugging Filter Objects

= unplug



CORBA::Filter Class

= Mapping methods

* upfiilter and downfilter

"= Fnabling methods
" enable and disable

" Setting “pass” and “boeunce” actions
" cetPass and setBounce



Managing server-> kBilter
Mappings on the Server-
side

= Class CORBA::Object
" superclass of every CORBA Object

" private plug and unplug INterfaces

" for adding and deleting server=>filter
mappings



Carrying Filter Requests

" [ntercepted invocations are routed to filter
objects

" T'wo specialist classes
" Class FilterRequest inherits StaticRequest

" Class FilterServe rReguest inherits
StaticServerReguest
= Method name translation: opname() is overriden
= Upward filtering: readargs() is overriden
= jterate through plugged up-filters
" agrs are changed to inout
® pass bounce status is checked
= Downward filtering: writeresults() is overrriden
= [terate through plugged down-filters
= Arg is changed to inout



Deactivation and

Reactivation
" Objects may shutdown and reactivate

= BOA’s save object() method is
modified

= Save filter framework related
information

® Upon reactivation, filter framework is
restored when a request is made



Assessment of the Filter
Object Framework

Enhancements to 3 classes in MICO static model and
addition of 7 classes
Advantages

= First class dynamically pluggable Filter Objects

= Separate Development of Filter Objects

"= [n most cases, NO change in existing code required for system
evolution

= All filter properties supported
= Multiple methods can filter single server method
= {tilities for working with catalysts

Limitations

= Only intercepts static invocations on servers tollowing the
shared activation policy through the BOA.

= Some mappings maintained at the server side
= Exceptions are not handled



Summary of

Enhancements
= Class ORB " Additional public
methods — plug and
= (Class Object unplug

= Maintains mappings

= Additional private
methods — plug and
unplug

= Modified methods
Oop_name, read args,
and write results as
virtual

= Class
StaticServerReguest



Summary of Additions

Class Filter
Class FilterRequest

Class
FilterServerReguest

Class BetaMessage

Basic Filter Interface

Specializes class
ServerRequest for
filtering at the client-
side

Specializes class
StaticServerRequest
at the server-side

Abstract class for
handling; special
messages



Summary of Additions

= Class
PlugUnplugMessage

= Class
EnableDisableMessage

= Class
UpDownEilterMessage

" Concrete

implementation of
plug and unplug beta
messages

Conecrete
implementation of
enable and disable
messages

Concrete
implementation of
upftilter and downfilter
beta messages



