

An Introduction
to Object

Orientation
Rushikesh K Joshi

Indian Institute of Technology
Bombay

rkj@cse.iitb.ac.in
A talk given at Islampur

mailto:rkj@cse.iitb.ac.in

Abstractions in
Programming
 Control Abstractions

 Functions, function calls, recursion
 Assignment statement
 Sequential execution
 If then else, while, repeat, case, for statements
 Threads
 Coroutines
 Contiuations and mobility
 Rules and inference

 Control abstractions can control data flows

Abstractions in
Programming
 Data Abstractions

 symbols and lists
 Types: int, bool, char, float..
 Structures
 Unions, enumerated types
 Arrays, Vectors

 operations supported on data abstractions
are mostly general: read, write

Towards Richer
Abstractions
 The above control and data

abstraction are low level

 High level abstractions need to be
composites of these
 Besides function composition, structures:
 it makes sense to combine data and

control together to form an interesting
composite abstraction

Examples of Richer
Abstraction
 File at OS level

 Data: stream of bytes
 Operations supported: open, close, read, write, rewind, seek

 Process at OS level
 Data: control and data segments, page tables, open files, priority..
 Control: create, terminate, suspend, resume, trace

 Stack Data structure
 Data: elements arranged in the form of stack
 Control: create, delete, push, pop, top

 Table in a spreadsheet/GUI
 Data: rows, columns, content
 Operations (control): create, delete, add/del row/column, insert element

 Name server
 Data: name-location bindings arranged in a hierarchy
 Operations: add new binding, delete existing binding, create/delete

namespaces

Compare These with Some
Examples of Abstraction in Real life
 Fan

 Data: motor, capacitor ..
 Operations: switch on, off, set speed

 Tape
 Data: internal circuits, cassette holder
 Operations: switch on/of, open/close cassette holder,

play, rewind, forward, record, pause, continue
 It’s a composite object: player/recorder + cassette

holder

 Washing Machine, car, scooter, TV set, mixer…

They have something in common:
Towards Object Abstractions
 It is convenient to think of abstractions in

terms of the data that they possess along
with the operations which they allow on them
 Data: Internal
 Operations: Expose for External Use

 User only worries about how to use an
abstraction but now how it is implemented

 Such simplicity at high level is possible due to
 Thinking data and high level control together
 Separating data from exposable operations on them
 Hiding data from external environment

Two Basic Principles of Object
Orientation
 Abstraction

 Object abstraction: data + observable
behavior

 Encapsulation
 Only observable behavior is exposed, the

rest (mainly the data) is hidden from
external environment

Exercise
 Define following objects in terms of

their observable behavior
 Stack
 List
 Account
 Button
 Transaction
 Semaphore

Object Orientated
Programming Languages
 Provide a core abstraction for defining such

objects
 Class and instances: class based languages
 Only instances: prototyped based languages

 In addition to the core object abstraction,
the benefits of object orientations are
reaped through two additional principles of

 inheritance and
 polymorphism through inheritance

A Class and its
implementation
Class X {
 int x;
 public:

int add(int p);
 int subtract(int p);
 };
Int X:: add (int p) {x=x+p;};
Int X::subtract (int p) {x=x-p;};

Another Example

 class Complex {
 private:
 int i ; // real component
 int j ; // imaginary component
 public:
 Complex (int x, int y) { i=x; j=y; }
 void add (Complex a) ;
 void printState (void);
 };
 void Complex::add(Complex) { i += a.i ; j += a.j; }
 Void Complex :: printState (void) { cout << i << " + j" <<

j << "\n" ; }

Inheritance
 Mechanism for

 Pure Extension
 C1={f,g,h}
 C2=C1+{p,q}

 Specialization
 C1={f,g,h}
 C2=C1 with f’ to be treated as f, rest of o1 as it

is+{p,1}
 Polymorphism

 Use instances of C2 where instances of C1 are
required

An Example of Inheritance
Hierarchy

shape

Circle Rectangle Triangle

Exercise
 Implement classes shape, circle,

rectangle and triangle to support
following abilities for all shapes:
 Create, delete, move, clone

 What do you keep in the superclass?
 For use at it is
 For specialization and subsequent

polymorphism

An Application that uses this
hierarchy: A Graph Drawing
Editor

Benefits of inheritance
 Superclass Shape contains most

common properties
 It also contains abstract member

functions which are applicable to all
shapes

 Abstract member functions are
concretely defined in subclasses

 Application has a lot of code written in
terms of superclass shape

Using Polymorphism
 Mouselistner (event e, shape s) {
 if (e==drag)

 smoveTo (currentX, currentY);

}

The above code is applicable to all types of
shapes.

In absence of polymorphism, a switch
statement had to be used

Dynamic Binding of method
dispatches results in Polymorphism

 Mouselistner (event e, shape s) {
 if (e==drag)

 smoveTo (currentX, currentY);

}
The moveTo method bound at runtime
S is supertype (static type), but actual object’s

type (dynamic type) determines which
member function should be dispatched

Abstract Superclasses
 Meant for specialization only
 Not for instantiation directly
 Represent most common behavior for

all its subclasses
 E.g. class shape in above example

 All methods are unimplemented (pure
virtual in C++/Java)

Hooks, Template Methods and
Concrete Methods

Class X {
 public:

f()=0; //hook
 g() {…..; f(); ….;} // template method
 h () {....} .// concrete method
};
Frameworks/Design Patterns use these three

meta-patterns extensively

Terminologies
 Class
 Instance/Object
 Implementation
 Interface Information/Data hiding
 Encapsulation
 Inheritance
 Superclass/Base class
 Subclass/Derived Class

Contracts
 Between class and itself

 Can see all its data and member function

 Between class and its external
environment
 Environment sees only public member

functions/public data

 Between class and its subclasses
 Subclasses get to see protected members

Purity of Object Orientation
 C++

 Supports object oriented but does not enforcing
 Functions which are non-member functions are

acceptable
 Encapsulation can be broken

 Java
 Enforces classification

 Even main is a member function
 Eiffel

 Design on the basis of contracts
 Smalltalk

 Even control constructs are object oriented
 Classes are also instances

Tree Vs. Forest
 Most common superclass for all

objects in the language
 Class Object

 In smalltalk, Java

 Class hierarchies are not implicitly
linked
 As in C++

Template classes Vs. Using
class Object
 For writing generic code
 A generic code is applicable to

different types
 C++ Employees template classes
 Java relies on super-most generic Class

Object

Bytecodes for Portability of
Programs
 Intermediate language
 Bytecode interpreter is made available for a

specific OS
 Used in interpreter based OO languages such as

Smalltalk and Java

High Level
Code

Bytecode

Bytecode Interpreter

Operating System

compile

Core Language and
Libraries

 Core language contains set of keywords and
its control, data and object abstractions

 Some languages also supports abilities such
as treads and interprocess communication

 Most of the application development relies on
the library/package support that the language
development environments support
 Gui, database connectivity, distribution and

component orientation, strings, collections, patterns,
i/o etc.

Distributed Objects

Network

Interoperability

Network

C++
object

C++
object

Java
object

Fortran
Module

Common language bridge

Design Patterns
 Commonly occurring non-trivial designs
 Collection of classes connected in a specific

configuration
 Creational patterns

 Singleton, factory, prototype
 Structural patterns

 Proxy, adapter
 Behavioral patterns

 Strategy, visitor, observer, chain of responsibility

Object Oriented Analysis and
Design Methods
 How to capture requirements?

 Use cases
 How to identify objects?

 Coad and Yourdon method
 CRC of Kent beck

 How to represent designs?
 Static behaviors

 Class diagrams
 Dynamic behavior

 Interaction diagrams, state diagrams, activity diagrams,
collaboration diagrams

 Deployment/Packaging Behavior
 Package diagrams
 Deployment diagrams (machines and component allocations)

 Modeling Languages: e.g. UML

Some Recent Developments
 Software Architectures

 Architectural description languages
 Architecture to realization mappings
 Model Driven Architectures

 Component Technologies and Web
Services

 Aspect Orientation and Advanced
separation of concerns

