

An Introduction
to Object

Orientation
Rushikesh K Joshi

Indian Institute of Technology
Bombay

rkj@cse.iitb.ac.in
A talk given at Islampur

mailto:rkj@cse.iitb.ac.in

Abstractions in
Programming
 Control Abstractions

 Functions, function calls, recursion
 Assignment statement
 Sequential execution
 If then else, while, repeat, case, for statements
 Threads
 Coroutines
 Contiuations and mobility
 Rules and inference

 Control abstractions can control data flows

Abstractions in
Programming
 Data Abstractions

 symbols and lists
 Types: int, bool, char, float..
 Structures
 Unions, enumerated types
 Arrays, Vectors

 operations supported on data abstractions
are mostly general: read, write

Towards Richer
Abstractions
 The above control and data

abstraction are low level

 High level abstractions need to be
composites of these
 Besides function composition, structures:
 it makes sense to combine data and

control together to form an interesting
composite abstraction

Examples of Richer
Abstraction
 File at OS level

 Data: stream of bytes
 Operations supported: open, close, read, write, rewind, seek

 Process at OS level
 Data: control and data segments, page tables, open files, priority..
 Control: create, terminate, suspend, resume, trace

 Stack Data structure
 Data: elements arranged in the form of stack
 Control: create, delete, push, pop, top

 Table in a spreadsheet/GUI
 Data: rows, columns, content
 Operations (control): create, delete, add/del row/column, insert element

 Name server
 Data: name-location bindings arranged in a hierarchy
 Operations: add new binding, delete existing binding, create/delete

namespaces

Compare These with Some
Examples of Abstraction in Real life
 Fan

 Data: motor, capacitor ..
 Operations: switch on, off, set speed

 Tape
 Data: internal circuits, cassette holder
 Operations: switch on/of, open/close cassette holder,

play, rewind, forward, record, pause, continue
 It’s a composite object: player/recorder + cassette

holder

 Washing Machine, car, scooter, TV set, mixer…

They have something in common:
Towards Object Abstractions
 It is convenient to think of abstractions in

terms of the data that they possess along
with the operations which they allow on them
 Data: Internal
 Operations: Expose for External Use

 User only worries about how to use an
abstraction but now how it is implemented

 Such simplicity at high level is possible due to
 Thinking data and high level control together
 Separating data from exposable operations on them
 Hiding data from external environment

Two Basic Principles of Object
Orientation
 Abstraction

 Object abstraction: data + observable
behavior

 Encapsulation
 Only observable behavior is exposed, the

rest (mainly the data) is hidden from
external environment

Exercise
 Define following objects in terms of

their observable behavior
 Stack
 List
 Account
 Button
 Transaction
 Semaphore

Object Orientated
Programming Languages
 Provide a core abstraction for defining such

objects
 Class and instances: class based languages
 Only instances: prototyped based languages

 In addition to the core object abstraction,
the benefits of object orientations are
reaped through two additional principles of

 inheritance and
 polymorphism through inheritance

A Class and its
implementation
Class X {
 int x;
 public:

int add(int p);
 int subtract(int p);
 };
Int X:: add (int p) {x=x+p;};
Int X::subtract (int p) {x=x-p;};

Another Example

 class Complex {
 private:
 int i ; // real component
 int j ; // imaginary component
 public:
 Complex (int x, int y) { i=x; j=y; }
 void add (Complex a) ;
 void printState (void);
 };
 void Complex::add(Complex) { i += a.i ; j += a.j; }
 Void Complex :: printState (void) { cout << i << " + j" <<

j << "\n" ; }

Inheritance
 Mechanism for

 Pure Extension
 C1={f,g,h}
 C2=C1+{p,q}

 Specialization
 C1={f,g,h}
 C2=C1 with f’ to be treated as f, rest of o1 as it

is+{p,1}
 Polymorphism

 Use instances of C2 where instances of C1 are
required

An Example of Inheritance
Hierarchy

shape

Circle Rectangle Triangle

Exercise
 Implement classes shape, circle,

rectangle and triangle to support
following abilities for all shapes:
 Create, delete, move, clone

 What do you keep in the superclass?
 For use at it is
 For specialization and subsequent

polymorphism

An Application that uses this
hierarchy: A Graph Drawing
Editor

Benefits of inheritance
 Superclass Shape contains most

common properties
 It also contains abstract member

functions which are applicable to all
shapes

 Abstract member functions are
concretely defined in subclasses

 Application has a lot of code written in
terms of superclass shape

Using Polymorphism
 Mouselistner (event e, shape s) {
 if (e==drag)

 smoveTo (currentX, currentY);

}

The above code is applicable to all types of
shapes.

In absence of polymorphism, a switch
statement had to be used

Dynamic Binding of method
dispatches results in Polymorphism

 Mouselistner (event e, shape s) {
 if (e==drag)

 smoveTo (currentX, currentY);

}
The moveTo method bound at runtime
S is supertype (static type), but actual object’s

type (dynamic type) determines which
member function should be dispatched

Abstract Superclasses
 Meant for specialization only
 Not for instantiation directly
 Represent most common behavior for

all its subclasses
 E.g. class shape in above example

 All methods are unimplemented (pure
virtual in C++/Java)

Hooks, Template Methods and
Concrete Methods

Class X {
 public:

f()=0; //hook
 g() {…..; f(); ….;} // template method
 h () {....} .// concrete method
};
Frameworks/Design Patterns use these three

meta-patterns extensively

Terminologies
 Class
 Instance/Object
 Implementation
 Interface Information/Data hiding
 Encapsulation
 Inheritance
 Superclass/Base class
 Subclass/Derived Class

Contracts
 Between class and itself

 Can see all its data and member function

 Between class and its external
environment
 Environment sees only public member

functions/public data

 Between class and its subclasses
 Subclasses get to see protected members

Purity of Object Orientation
 C++

 Supports object oriented but does not enforcing
 Functions which are non-member functions are

acceptable
 Encapsulation can be broken

 Java
 Enforces classification

 Even main is a member function
 Eiffel

 Design on the basis of contracts
 Smalltalk

 Even control constructs are object oriented
 Classes are also instances

Tree Vs. Forest
 Most common superclass for all

objects in the language
 Class Object

 In smalltalk, Java

 Class hierarchies are not implicitly
linked
 As in C++

Template classes Vs. Using
class Object
 For writing generic code
 A generic code is applicable to

different types
 C++ Employees template classes
 Java relies on super-most generic Class

Object

Bytecodes for Portability of
Programs
 Intermediate language
 Bytecode interpreter is made available for a

specific OS
 Used in interpreter based OO languages such as

Smalltalk and Java

High Level
Code

Bytecode

Bytecode Interpreter

Operating System

compile

Core Language and
Libraries

 Core language contains set of keywords and
its control, data and object abstractions

 Some languages also supports abilities such
as treads and interprocess communication

 Most of the application development relies on
the library/package support that the language
development environments support
 Gui, database connectivity, distribution and

component orientation, strings, collections, patterns,
i/o etc.

Distributed Objects

Network

Interoperability

Network

C++
object

C++
object

Java
object

Fortran
Module

Common language bridge

Design Patterns
 Commonly occurring non-trivial designs
 Collection of classes connected in a specific

configuration
 Creational patterns

 Singleton, factory, prototype
 Structural patterns

 Proxy, adapter
 Behavioral patterns

 Strategy, visitor, observer, chain of responsibility

Object Oriented Analysis and
Design Methods
 How to capture requirements?

 Use cases
 How to identify objects?

 Coad and Yourdon method
 CRC of Kent beck

 How to represent designs?
 Static behaviors

 Class diagrams
 Dynamic behavior

 Interaction diagrams, state diagrams, activity diagrams,
collaboration diagrams

 Deployment/Packaging Behavior
 Package diagrams
 Deployment diagrams (machines and component allocations)

 Modeling Languages: e.g. UML

Some Recent Developments
 Software Architectures

 Architectural description languages
 Architecture to realization mappings
 Model Driven Architectures

 Component Technologies and Web
Services

 Aspect Orientation and Advanced
separation of concerns

