An Introduction
to Object
Orientation

Rushikesh K Joshi

Indian Institute of Technology
Bombay

A talk given at Islampur

mailto:rkj@cse.iitb.ac.in

Abstractions in
Programming

Control Abstractions
Functions, function calls, recursion
Assignment statement

Sequential execution

If then else, while, repeat, case, for statements
Threads

Coroutines

Contiuations and mobility

Rules and inference

Control abstractions can control data flows

Abstractions in
Programming

Data Abstractions
symbols and lists

Types: int, bool, char, float..
Structures

Unions, enumerated types
Arrays, Vectors

operations supported on data abstractions
are mostly general: read, write

Towards Richer
Abstractions

The above control and data
abstraction are low level

High level abstractions need to be
composites of these
Besides function composition, structures:

it makes sense to combine data and
control together to form an interesting
composite abstraction

Examples of Richer
Abstraction

File at OS level
Data: stream of bytes
Operations supported: open, close, read, write, rewind, seek
Process at OS level
Data: control and data segments, page tables, open files, priority..
Control: create, terminate, suspend, resume, trace
Stack Data structure
Data: elements arranged in the form of stack
Control: create, delete, push, pop, top
Table in a spreadsheet/GUI
Data: rows, columns, content
Operations (control): create, delete, add/del row/column, insert element
Name server
Data: name-location bindings arranged in a hierarchy

Operations: add new binding, delete existing binding, create/delete
namespaces

Compare These with Some
Examples of Abstraction in Real life

Fan

Data: motor, capacitor ..
Operations: switch on, off, set speed

Tape
Data: internal circuits, cassette holder

Operations: switch on/of, open/close cassette holder,
play, rewind, forward, record, pause, continue

It’'s @ composite object: player/recorder + cassette
holder

Washing Machine, car, scooter, TV set, mixer...

They have something in common:
Towards Object Abstractions

It is convenient to think of abstractions in
terms of the data that they possess along
with the operations which they allow on them

Data: Internal

Operations: Expose for External Use

User only worries about how to use an
abstraction but now how it is implemented

Such simplicity at high level is possible due to
Thinking data and high level control together

Separating data from exposable operations on them
Hiding data from external environment

Two Basic Principles of Object
Orientation

Abstraction

Object abstraction: data + observable
behavior

Encapsulation

Only observable behavior is exposed, the
rest (mainly the data) is hidden from

external environmpment
o O

Exercise

Define following objects in terms of
their observable behavior

Stack

List

Account

Button

Transaction

Semaphore

Object Orientated
Programming Languages

Provide a core abstraction for defining such
objects

Class and instances: class based languages

Only instances: prototyped based languages

In addition to the core object abstraction,
the benefits of object orientations are
reaped through two additional principles of

Inheritance and
polymorphism through inheritance

A Class and its
implementation

Class X {
INnt X;
public:

int add(int p);

int subtract(int p);
b
Int X:: add (int p) {x=x+p;};
Int X::subtract (int p) {x=x-p;};

Another Example

class Complex {

private:
inti; // real component
intj; // imaginary component

public:
Complex (int x, inty) { i=x; j=y; }
void add (Complex a) ;
void printState (void);

b

void Complex::add(Complex) {

|
Void Complex :: printState (void)
J << Il\nll . }

A, J+=aj }

+=a
{cout<<i<<"+4j"<<

Inheritance

Mechanism for

Pure Extension
= Cl1={f,g,h}
= C2=Cl+{p,q}
Specialization
= Cl1={f,g,h}
= C2=C1 with f’ to be treated as f, rest of 01 as it
iIs+{p,1}
Polymorphism

= Use instances of C2 where instances of C1 are
required

An Example of Inheritance

Hierarchy

e A -

Exercise

Implement classes shape, circle,

rectangle and triangle to support

following abilities for all shapes:
Create, delete, move, clone

What do you keep in the superclass?
~or use at itis

-or specialization and subsequent
polymorphism

An Application that uses this
hierarchy: A Graph Drawing
Editor

Benefits of inheritance

Superclass Shape contains most
common properties

It also contains abstract member

functions which are applicable to all
shapes

Abstract member functions are
concretely defined in subclasses

Application has a lot of code written in
terms of superclass shape

Using Polymorphism

Mouselistner (event e, shape s) {
If (e==draqg)

s->moveTo (currentX, currentY):

}

The above code is applicable to all types of
shapes.

In absence of polymorphism, a switch
statement had to be used

Dynamic Binding of method
dispatches results in Polymorphism

Mouselistner (event e, shape s) {
If (e==dragqg)

s->moveTo (currentX, currentY);

}

The moveTo method bound at runtime

S is supertype (static type), but actual object’s
type (dynamic type) determines which
member function should be dispatched

Abstract Superclasses

Meant for specialization only
Not for instantiation directly

Represent most common behavior for
all its subclasses
E.g. class shape in above example

All methods are unimplemented (pure
virtual in C++/Java)

Hooks, Template Methods and
Concrete Methods

Class X {
public:
f()=0; //hook

 f();;} //template method
h(){....} .//] concrete method
};

Frameworks/Design Patterns use these three
meta-patterns extensively

Terminologies

Class

nstance/Object

mplementation

nterface Information/Data hiding
Encapsulation

Inheritance

Superclass/Base class
Subclass/Derived Class

Contracts

Between class and itself
Can see all its data and member function

Between class and its external
environment

Environment sees only public member
functions/public data

Between class and its subclasses
Subclasses get to see protected members

Purity of Object Orientation

C++
Supports object oriented but does not enforcing

Functions which are non-member functions are
acceptable

Encapsulation can be broken
Java

Enforces classification
= Even main is a member function

Eiffel
Design on the basis of contracts

Smalltalk
Even control constructs are object oriented
Classes are also instances

Tree Vs. Forest

Most common superclass for all
objects in the language

Class Object

" |n smalltalk, Java
Class hierarchies are not implicitly
linked

As in C++

Template classes Vs. Using
class Object

For writing generic code

A generic code is applicable to
different types
C++ Employees template classes

Java relies on super-most generic Class
Object

Bytecodes for Portability of
Programs

Intermediate language

Bytecode interpreter is made available for a
specific OS

Used in interpreter based OO languages such as
Smalltalk and Java

Core Language and
Libraries

Core language contains set of keywords and
its control, data and object abstractions

Some languages also supports abilities such

as treads and interprocess communication

Most of the application development relies on
the library/package support that the language
development environments support

Gui, database connectivity, distribution and
component orientation, strings, collections, patterns,
/0 etc.

Distributed Objects

Network

° o

Interoperability

C++ C++
g @

Network

j j Fortran

Java Module
object

m=====Common language bridge

Design Patterns

Commonly occurring non-trivial designs

Collection of classes connected in a spedcific
configuration

Creational patterns
Singleton, factory, prototype

Structural patterns
Proxy, adapter

Behavioral patterns
Strategy, visitor, observer, chain of responsibility

Object Oriented Analysis and
Design Methods

How to capture requirements?
Use cases

How to identify objects?

Coad and Yourdon method
CRC of Kent beck

How to represent designs?
Static behaviors
= Class diagrams
Dynamic behavior

"= Interaction diagrams, state diagrams, activity diagrams,
collaboration diagrams

Deployment/Packaging Behavior
= Package diagrams
= Deployment diagrams (machines and component allocations)

Modeling Languages: e.g. UML

Some Recent Developments

Software Architectures
Architectural description languages
Architecture to realization mappings
Model Driven Architectures

Component Technologies and Web
Services

Aspect Orientation and Advanced
separation of concerns

