
Architecture Extraction and 
Modeling for Object Oriented 
Sources

Prof. Rushikesh K Joshi, IIT Bombay
 & Shakeb Sagheer, IIT Bombay

Architects often come into an environment with very little 
documentation, and have to create architectural models from 

existing code before they can proceed with re-engineering of the 
application. In this talk, we will describe an ongoing work about 
techniques for building models from object oriented code with the 

help of a case study.

opengroup conference, Bandra, Feb. 27, 2007



Why extract/recover architecture 
and models from sources?

OO Source-- 
works, has no or 
little documentation

Code has
deviated from
original design

code is messy,
it's hard to crack through the bugs

Features are to be
added, but how and
where?

Refactorings can
be applied but how
and to which part of the
code?

The code needs
to be organized



Approach

● Individual Class Level
● Class Interaction/Coupling Level
● Class Relationships
● Class Groups/Architectural Styling
● File Interactions
● Objects/Components 
● Processes
● Deployment/Networking



Class level Models

● Cohesion Analysis
– access graphs
– concept analysis

Access graphs
vertices: functions and variables
edges: R/W accesses, calls

cohesion analysis can be
performed. 
 
* Need to ntegrate cohesion results 
with coupling



Class level Models

● Interaction/Coupling Analysis 
– Are some methods coupled heavily with other classes 

than with their container classes?
– Coupling metrics can reveal the affinity

● [CSMR 2006 paper]
– challenges

●  Automatic refactoring: which is the right class for a given 
method? But during adjustments, abstractions should not be 
violated.

● Microscopic analysis for identifying candidate members for 
restructring



Class level models

● Relationships
– inheritance, aggregation, association, generalization, 

dependencies etc.
– use existing tools to get a base diagram

● refine it further
– challenges

●  Semantics of relations are often not taken into account 
– e.g. how to infer aggregation? (part-whole semantics)

● Multiplicity of association relation



Groups of Classes

● Which classes together form a logical group?
● Knowledge of architectural styling

– MVC, Layers, C/S, P/P FDP
● File groupings/packaging
● Design patterns
● Partalogy



(Source) File Level Interactions

● What type of components contained in each file
● What type of connectors/semantics of interactions 

among the components
● types of source files: classes, jsp, js, html,  ...
● Member function calls
● Object instantiation
● Calls to servlets
● JSP references..



Executable representations of 
Architectural models 

● Component/connector paradigm
● Capture Architectural scenarios, events
● Timelines/Sequencing
● Kinds of connectors, first class connectors

– A java+aspects based implementation is under 
development

● Ontology for semantics of architectural primitives



A Case Study: Java Pet Store 

● Java Pet Store 2.0 Reference Application is a sample
   J2EE application developed by Sun Microsystems.

● Web application to model a pet store.

● Uses Java Server Pages (JSP's) for client interactions 
and a back-end java functionality to serve requests.

● Key design pattern used is Model-View-Controller 
   (MVC) architecture.



Java Pet Store Raw (automatically 
extracted) Class Diagram

● Gives a static view of class level architecture

● Describes system classes, their attributes and the 
relationship between classes

● Class diagram given here was produced using Sun Microsystems Java Studio 

Enterprise 8 SDK. 



Java Pet Store: Class Groups 
based on packages

● Components manually grouped to show existing 
packages.

● Rectangles drawn to denote package boundaries.
● Pre-existing 'model' and 'controller' packages point 

towards MVC modeling.
● Add dependencies (non association/aggregation)
● Update with Aggregation Analysis, ..
● May still be incomplete in terms of full 

architectural styling (e.g. jsp files don't get 
included)



MVC Architecture used in Petstore
● Application divided into three layers: Model, 

View and Controller
● View 

− User Interface
− HTML pages, JSP's.

● Model
− Represents the structure of data
− Performs application-specific operations on data

● Controller 
− Translates user actions into application function calls 

on model
− Selects appropriate view



MVC Architecture

View Controller

Model

Change
Notification

State
Query

View Selection

User Gestures

State 
Change



Java Pet Store MVC Architecture

● Files divided among View, Model, Controller and 
Utility components.

● View consists of the JSP's.

● Model and Controller have same contents as 
'model' and 'controller' packages resp.

● Model uses a facade design pattern
− CatalogFacade.java acts as facade while handling 

requests



Java Pet Store MVC Architecture

● Utility contains the remaining classes.

● Classification of files into Model-View-Controller 
components gives an idea about the functionality

− but not about interaction semantics



File Level Interaction  
Architecture (FLIA)

● Gives a view of how files are related and how 
source components in them interact.

● A link from file A to file B indicates message/data 
passing from A to B.

● Types of data interchange between files (from the 
point of view of Java Pet Store):

− Object invocations
− Servlet Interaction
− JSP references



FLIA : Type of links

● Object invocations : Using features of classes by 
instantiating objects.

● Servlet Interaction : Sending data to servlets and 
receiving response.

● jsp references: Passing requests/parameters to 
JSPs or HTML files.



FLIA : Link Parameters

● Set of parameters associated with each type of link
− Provide information about the degree of association 

between the two connected components.

● Each link labeled with a tuple of values for these 
parameters.



FLIA : Link Parameters

● Object Invocation : <no_of_classes, 
no_of_objects, no_of_features>

− no_of_classes : Number of classes of the target file 
instantiated.

− no_of_objects : Number of objects of the target classes 
initialized.

− no_of_features : Number of features of the target 
classes accessed.



FLIA : Link Parameters

● Servlet Interaction : <no_of_requests, 
no_of_invocations>

− no_of_request : Number of times a request was send to 
the servlet

− no_of_invocations : Number of methods of the target 
invoked.

● Parameter Passing: <no_of_times, 
no_of_invocations>

− no_of_times : Number of times the parameters are 
passed.



File Level Interaction    
Scenario in Java Pet Store

fileupload.jsp

CatalogFacade.java

FileUploadBean.java

FileUpload-
ResponseServlet.javafileuploadstatus.jsp

FileUpload-
Response.java

<1,1,3>

<1,1,3> <1,1,0*>

<1 ,1>< 2>

Object Invocations

Parameter Passing

Servlet Interaction

<1,1,10>



Summary

● An approach towards extraction of models from 
sources

● Mixed approach: 
− use of analysis techniques + 
− use of manual intervention/available knowledge

● Multifaceted analysis
● Early results on a case study  



Acknowledgements

Shakeeb Sagheer's project work is funded through an R&D 

project at IIT Bombay sponsored by IBM CAS 



Thank You


