

Lectures on Martin Fowler
Refactoring Methodology

Part 1: Bad Smells in Code

Rushikesh K. Joshi

Duplicate Code

● Many similar looking code sections
● As program evolves with new functionality

– Copy edits happen

– Lazy programmers

– Inability to conceptualize and parameterize

● Solution strategies:
– Extract Method

– Parameterize

– Template Methods

Long Method

● Longer the method, more difficult it is to
understand

● Many parameters and temporary variables
pose difficulties in solving this problem

● Solutions strategies:
– Extract method

– parameterize

Large Class

● Class is trying to do too much
● Probably less cohesive
● Solution strategies:

– Extract class

– Extract subclass

Long parameter List

● Probably not object oriented
● Too general
● Solution strategies:

– Objectify the values by introducing parameter object

– Send the object itself in, from which the values are
taken in

Divergent Change

● Can't easily change the class when it needs to be
modified
– Many changes needed in the class to get something new

– Possible due to copy-edit code etc.
● e.g. everytime you change data, you may have to change a couple

of methods.. all the time

● Solution strategies:
– Express the variation

● Extract superclass/subclass

– Extract class, Parameterize

Shotgun Surgery

● When a change is made (to a class), it affects
many other classes

● Opposite of divergent change
● Solution strategies:

– Move method(s), move field(s) to concentrate all
changes into one place

– Extract class, Parameterize

– Achieve one-to-one correspondance between changes
and classes that get affected

Feature Envy

● A method is more interested in a class external to its
own class

● High coupling as compared to cohesion
● If it's coupled with many classes, which one is the best

suited class for it?
● Solution strategies:

– Analyze coupling

– Extract and Move method

– Visitor or related patterns may be useful

Data Clumps

● Several data fields flocking together
– In parameters

– As locals

● Solution strategies:
– Form an object out of them, using extract class,

preserve whole object

Primitive Obsession

● Too many primitive data types such as those in
Java
– New programmers use them instead of using

objects

● Solution strategies:
– Repace data values with object structures

– Make types with the help of classes e.g. use array
objects

Switch Statements

● Several switch statements occur together
– If one has to be changed, many have to be

– Show dependence on object types

● Solution strategies:
– Use polymorphism

– Extract method, make subclasses

Parallel Inheritance Hierarchies

● Everytime a subclass is added into one
hierarchy, you have to add one more into
another

● Solution strategies:
– Use instances of one hierarchy into another

– Move method, move field

Lazy Class

● Class that is not being used enough, one that is
too small and can be inlined

● Solution strategies:
– Inline class

– Collapse hierarchy

Sepculative Generality

● Too much future planning that is not being used
● Adds to complexity, get rid of it
● Solution strategies:

– Remove parameter

– Collapse hierarchy

Temporary Fields

● Local temporary variables of a method are
made as instance variables in the class

● Solution strategies:
– Move fields into methods

– Make temporary objects

Message Chains

● Complex interaction between objects by means
of delegation from into another

● Solution strategies:
– Extract method to do the orchestration

Middle Man

● An intermediate is used for some purpose
● Solution strategies:

– Add into hierarchy

– Inline into caller

Inappropriate Intimacy

● Accessibility into private fields
● Coupling breaking encapsulation
● Overuse of friend relation
● Solution strategies:

– Move field

– Move method

– Inner classes

Alternative Classes with Different
Interfaces

● Methods doing same thing with different
signatures

● They may be similar but still not enough to pull
into one hierarchy

● Solution strategies:
– Rename methods to get overloading

– Complete the methods to pull into hierarchy, extract
 superclass

Incomplete Library Class

● Functionality on library classes has to be
developed externally

● Solution strategy:
– Introduce foreign method

● A method in client class with an instance of the server

– Introduce local extension
● A local extension of the server class

Data Class

● Just get/set classes without much functionality
● Fields are public
● Solution strategies:

– Encapsulate

– Move method to move data-use methods from
elsewhere into this class

Refused Bequest

● Subclasses don't need methods from parents
● Solution strategies:

– Push down method

– Push down field

– Replace inheritance with delegation

Comments

● Too many comments may indicate badly written
code!

● Solution strategies:
– Extract method

– Rename method

– Rename parameters

– Introduce assertions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

