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Why Do We need Architecture?Why Do We need Architecture?

• Understand the system
– Complex systems

• Organize the development
– According to architectural partitioning

• Reuse
– Componentization 

• Evolution 
– Changes and dependencies



Processes and ProductsProcesses and Products

• Process Architecture
– About the process of software development

• Product Architecture
– About the product under development



Several Approaches to Architecture Several Approaches to Architecture 
[e.g. see in [e.g. see in MalveauMalveau & & MoubrayMoubray 2001]2001]

• Zachman Framework (IBM)
– 30 architectural viewpoints

• Open Distributed Processing (ISO 
standard)
– 5 viewpoint reference model

• Domain Analysis
• 4+1 View Model (Unified Process-

Rational)
• Academic Software Architecture



The The ZachmanZachman FrameworkFramework
[[ZachmanZachman institute of framework advancementinstitute of framework advancement]]

– “To keep the business from disintegrating, the concept of information 
systems architecture is becoming less of an option and more of a
necessity” – Zachman in 1987

– Developed by Zachman from observing how architectures in 
engineering, construction and manufacturing managed change

– Intersection between roles in the design process and product 
abstractions

– Roles (in rows): Owner, Designer, Builder
– Product Abstractions (in columns): What is it made up of (data),

How it works (process), Where are the components located  
(geometry)

– 3 additional columns: Who (people), When (time), Why 
(motivation)

– 2 additional rows: Planner, Subcontractor
– Columns have no order



ZachmanZachman Row 1: Planner’s viewRow 1: Planner’s view
Things important to businessThings important to business

• Column why (Motivation)
– Business motivation, End: goals and measures of each goal, 

defines scope and boundaries
• Column How (Process)

– Class of High level processes with inputs and output
• Column What (Data)

– Class of Business data objects that enterprise is interested in
• Column Who (People)

– Class of business organizations/people
• Column When (Time)

– Events related to each process
• Column Where (Network)

– Class of locations where the processes are executed



ZachmanZachman Row 2: Owner’s viewRow 2: Owner’s view
Enterprise Semantic modelEnterprise Semantic model

• Column why (Motivation)
– Ends/business goals and means/business strategy

• Column How (Process)
– E.g. structured method-processes and flows

• Column What (Data)
– E/R type model representing business entities, business 

relationships
• Column Who (People)

– Work flow model- control, coordination, operation
• Column When (Time)

– Master schedule (e.g. PERT)
• Column Where (Network)

– Nodes, branches, warehouses etc.



ZachmanZachman Rows 3,4,5Rows 3,4,5

• Designer
– Logical models-e.g. data entity relations, ooad

• Builder
– Physical models-e.g. Tables, hardware

• Subcontractor/Implementor
– Filelds, control blocks, statements



Open Distributed Processing Open Distributed Processing 
Reference Model Reference Model 

• For architecture supporting distribution, 
internetworking, interoperability and portability

• Five viewpoints
– Enterprise (purpose, scope and policies)
– Information (semantics of information and information 

processing)
– Computational (functional decomposition)
– Engineering (infrastructure to support distribution)
– Technology (for implementation: Mappings between 

objects and specific standards and technologies)
• The set of viewpoints is not closed
• Each of the viewpoint is object oriented



ODP: Enterprise viewpointODP: Enterprise viewpoint

• Directly understandable by managers and end users
• Defines business purpose, scope and policies
• Includes permissions, prohibitions and obligations
• Example:

– Active objects: managers, tellers, customers
– Passive objects: accounts
– Bank managers must advise customers when interest rate 

changes (obligation)
– Cash less than 40000 can be drawn per day (prohibition)
– Money can be deposited (permission)



ODP: Information viewpointODP: Information viewpoint

• Definitions of information schemas as objects
– State and structure of objects

• E.g. account = balance and amount withdrawn today
• Three kinds of schemas:

– static
• At midnight, amount withdrawn today=2000

– Invariant
• At anytime, amount withdrawn today <=40000

– Dynamic
• A deposit of X increases the balance by X and a withdrawal of X 

decreases the balance by X
• Always constrained by invariant

• Schemas may relate objects
– E.g. in customer object: owns account static schema



ODP: Computational viewpointODP: Computational viewpoint
• Software components which are capable of supporting distribution
• Large grained object encapsulations, subsystem interfaces and 

behaviors
• Objects can offer multiple interfaces
• 3 types of interactions among objects

– Operational : client-server, RPC : with parameters and results
– Stream oriented
– Signal oriented

• Inheritance of Interface and subtyping
• Operations such as object creation, trading for an interface, interface 

creation, binding, operation invocation 
• Examples

– Application objects: Bank branch with bank teller (deposit, withdraw) 
and bank manager (create account, deposit, withdraw) interfaces for 
customers

– ODP infrastructural objects: Trader



ODP: Engineering viewpointODP: Engineering viewpoint

• Brings out the distributed nature of the system
• Objects and Channels
• Objects

– Basic engineering objects correspond to computational objects
– Infrastructural objects such as protocol objects

• E.g. stub, binder and protocol object (proxy/skeletons) + 
communication interface between protocol objects

• Engineering structure of the system is described 
– E.g. cluster, nucleus object, capsule of clusters, a machine node, 

a cluster may contain many engineering objects, an object can 
contain many activities, inter-cluster communication via channels



ODP: Transparencies DefinedODP: Transparencies Defined
• Access

– hides the difference in data representation and invocation mechanism –
enables heterogeneous systems to communicate

• Failure
– Hides failures and possible recoveries of objects for fault tolerance

• Location
– Hides the location information while finding and bind to an object

• Relocation
– Masks the changes in the location of an object from its clients

• Migration
– Masks the awareness of changes in location of the object from itself and 

from others
• Replication

– Masks the existence of replicated objects
• Persistence

– Masks activation and deactivation of objects
• Transaction

– Masks coordination of activities to achieve consistency



4+1 View Model4+1 View Model
[P.B. [P.B. KutchenKutchen, 1995], 1995]

• Sometimes software architecture suffers from system 
designers who go too far..other software engineers fail to 
address the concerns of all customers

• 4+1 view model: Has 5 concurrent views
• Logical view- e.g. object model using object oriented 

design method
• Process view – concurrency and synchronization 

aspects
• Physical view – mapping of components to hardware, 

distribution aspect
• Development view – organization of the actual software 

modules – libraries, packages, subsystems
• Use case view



Unified Process Model of Unified Process Model of 
ArchitectureArchitecture

• Architecture description is a proper extract of the models 
of the system (use case model, analysis model, design 
model, deployment model, implementation model)
– e.g. Contains only architecturally significant use cases, whereas 

final use case model contains all use cases;
– Similarly architectural view of design model realizes only the 

architectural use cases
– First version of architecture is extract at the end of elaboration 

phase and so on
• Developed iteratively during elaboration phase
• Focus on significant structural elements of the system

– Subsystems, classes, components, nodes

• Use cases and architecture



Chicken and EggChicken and Egg

• Use cases architecture



Commonly occurring Architectural Commonly occurring Architectural 
PatternsPatterns

• Fundamental structural organization schemas 
• For example:

– Layers
– Pipes and Filters
– Blackboard
– Broker
– Model-View-Controller
– Presentation-Abstraction-Control
– Microkernel
– Reflection



Frameworks: An Approach to Frameworks: An Approach to 
ArchitectureArchitecture

• Partially complete software
• It is instantiated as a product
• For product families/product lines
• Frozen spots and hot spots



Enabling Techniques Enabling Techniques 

• Abstraction
• Encapsulation
• Information Hiding
• Modularization
• Separation of Concerns
• Coupling and Cohesion
• Sufficiency, Completeness and Primitiveness
• Separation of Policy and Implementation
• Separation of Interface and Implementation
• Single point of reference
• Divide and Conquer
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