
 SPATE-2008

Filter Objects: Programming
Models and Applications

Rushikesh K. Joshi
Department of Computer Science & Engineering
Indian Institute of Technology Bombay

 SPATE-2008

Abstractions for (product) aspect
capture in the Popular OO
Paradigms in Practice

 Classes
 objects
 member functions
 inheritance and dynamic binding
 visibility control
 interobject, interclass relations
 components, component composition

 SPATE-2008

Product Concerns and their
programming expressions
 Can separate concerns be expressed separately and be

traceable eventually?

 If the answer is yes
 Independent development processes for the concerns
 Independent abstractions (representations)
 Proceed to integration mechanisms

 Limitations of popular OOP
 Many cross-cutting concerns posed problem

 Design reuse vs. implementation reuse
 Transparencies for system/context variabilities
 Generic concerns covering multiple abstractions

 Rise of new paradigms: AOP extensions
 Context relations, compositional filters, aspect oriented

programming

 SPATE-2008

A Static Solution

 Aspect specifications separate from base
specifications

 Aspects weaved with bases by a Weaver

 Static (compile time) weaving

 Weaved code looses aspects  no
traceability of aspects into first class
runtime elements of the language

 SPATE-2008

Limitations of aspects

 Implementation-centric approach

 Lacks Process

 Non-first class abstractions

 Contracts may get violated and
encapsulation broken

 SPATE-2008

Some other static approaches

 Overloading, Template classes to more
powerful generic specification
languages
 Generic (e.g. XML based) specification

applied to base code which is
transformed

 SPATE-2008

Some Dynamic Approaches

 Subclassing and Polymorphism

 Using Metalevel protocols: e.g.
Smalltalk’s metaclasses

 Reflection into PL implementations

 SPATE-2008

Our approach:
Introduce First Class Communication
Abstractions (Filter objects)

 Honor encapsulation, target messaging

 Communication Aspects are first class
entities in base language: objects with
member functions and local state

 Abstractions used for Specification are very
similar to those available in the base
language

 Weaving is replaced by object level binding
at runtime

 SPATE-2008

An Interobject Communication
Scenario

o1 o2

m

Entities(Objects/Components)
Message generation
Message flow
Message delivery
Method Dispatch
Response flow
Response delivery

 SPATE-2008

Targeting messaging,
leaving objects as they are

o1 o2

m

Entities (Objects/Components)
Message generation
Message flow
Message delivery
Methods
Response flow
Response delivery

 SPATE-2008

Message Processing + Message Control
Layer

 Message Processing
 Determines response by the receiver

once the message is dispatched to the
receiver

 Implementation of the
component/object’s contract

 Message Control
 Activities on/over messages in transit

 i.e. during to and fro information flow

 SPATE-2008

Possible Message Paths/Moves

 Primitives:
Process
Forward
Replace
Force
Delay
Bounce

 SPATE-2008

Class level specification: An
Example

Class Dictionary {
…

}

Class Cache: filter Dictionary {

….
}

 SPATE-2008

Instance level pairing (not
weaving)

plug and unplug

main () {
Dictionary *d=..;
Cache *c=..;

plug d c;
…
unplug d;

}

 SPATE-2008

First class representation in an
OOPL

Class Dictionary {
public: Meaning SearchWord(Word);

}
class Cache : filter Dictionary {
upfilter:

Meaning SearchCache(Word) filters SearchWord;
downfilter:

Meaning ReplaceCacheEntry (Meaning) filters SearchWord;
public:

double hitRatio ();
private:

… implementation

}

 SPATE-2008

Dynamic Grouping and
Layering

LB AL AP

Callers
Servers

Common
Server-side
cache

 SPATE-2008

Orthogonal Collaborative Frameworks:
Crosscutting functionalities

Object1
Object3

Object2

Object4

Filter Object Network

 SPATE-2008

Patterns at Messaging Layer
 Message replacement

 Receiver Replacement

 Routing, destination selection

 Repeater

 Message Content Replacement (value transformer)

 Decoration (logger)

 Message hold/delay and synchronize

 SPATE-2008

Replacer
 A filter member function operates as a replacement function

to its corresponding server member function
FastServer | oldServer =
filter interface:

funcReplacer (in) upfilters oldServer :: func (in)
= [v <-- self.func (in); bounce (v);]

client fastServeroldServer

 SPATE-2008

Router
 A filter member function operates as a router function

balancer | searchEngine =
filter interface:

searchRouter (item) upfilters SearchEngine ::search (item)
= [newDest <-- self.nextDest();
 v<--newDest.search(item); bounce (v);]

client filter dest newDest

 SPATE-2008

Repeater
 A filter member function dispatches the filtered invocation to

multiple servers
enrollFilter | centralEnroller =
filter interface:

libEnroll (student) upfilters centralEnroller :: enroll (student)
= [if (student.dept == civil) civilLib-->enroll (student);
 if (student.status == minor)minorBody-->

enroll(student);
 pass;]

client repeater server1 server2server3

 SPATE-2008

Two Models for Distributed
Middlewares

 Need-to-filter principle: A server is
declared as Filterable Server

interface Filterable {
attach (in Object filter)
detach ();

};
interface Server : Filterable {
service ();
}

 Filter Object aware Middleware (e.g.
MICO extensions)

 SPATE-2008

Dynamic Functional Evolution
(functional cross-cut)

 A Readers and Writers Solution
 (Hansen 1978)

process resource
s: int
proc StartRead when s>0 : s++; end
proc EndRead if s >1: s--; end
proc StartWrite when s==1: s--; end
proc EndWrite if s==0: s++; end
s=1;

 SPATE-2008

Evolution Requirement

 Solve the same problem with additional
constraint that further reader requests
should be delayed as long as there are
writers waiting or using the resource

 SPATE-2008

The Approach

Old monitorOld reading and writing clients

Old monitor Old reading and writing clients

Injected Filter

 SPATE-2008

Evolution using Filter Process
process problemSolver: filter resource
www : int
upfilter:

SW_Ufilter filters StartWrite
SR_Ufilter filters StartRead

downfilter:
EW_Dfilter filters EndWrite

proc SW_Ufilter: www++; pass; end
proc EW_Dfilter: www---; end
proc SR_Ufilter: when www==0: pass; end

www=0;

 SPATE-2008

Dining Philosophers with
Deadlocks
process Fork [i:0..N-1];

s: int

owner: int

 proc Pickup (ph) when $s = 1$: $s=s-1 $; $onwer=ph$; endproc

 proc PutDown (ph) if $s = 0$: $s=s+1;$ $owner=none$; endproc

s = 1; owner=none;

process Philosopher [i:0..N-1];

 proc PickForks() Fork [i].pickup(i); Fork[(i+1) % N].pickup(i); endproc

 proc Eat() eat; endproc

 proc PutDownForks() Fork[i].putdown(i); Fork [(i+1)% N].putdown(i); endproc

proc Think() think; endproc

..... phil cycle ..

end process

 SPATE-2008

Filter Process for Fork Processes

process ForkFilter[i:0..N-1] : filter Fork[0..N-1];

upfilter proc PickFilter (p) filters Pickup() if (i=p) Monitor.pickup (i); pass;
endproc

downfilter proc PutFilter (p) filter PutDown() Monitor.putdown(i) endproc

end process

process Monitor ;

s[N]: int;

proc Pickup (p) when (s[p] AND s[(p+1)%N]) : s[p]=s[(p+1)%N]=0;

endproc

proc Putdown (f) s[f]=1 endproc

for (i=0; i<N; i=i+1) s[i]=1;

endprocess

 SPATE-2008

Summary of Implementations
and Models
1. Models for C++/COM components

3. TJF (Translator for Java Filters)

5. Middleware: MICO kernel extensions
Filter aware middleware

 Implementations of Filter Objects in Distributed Systems
over AspectJ+RMI

 Distributed Filter Processes (Unimplemented)

 Extensions to theory of objects, operational semantics and a
light weight language with an interpreter of sigmaF calculus

 SPATE-2008

Ongoing work
 Calculus, Semantics (Abadi/Cardelli style)

and implementations

 Applications, Notations, Methods and
Patterns

 Component Adapters

