
 SPATE-2008

Filter Objects: Programming
Models and Applications

Rushikesh K. Joshi
Department of Computer Science & Engineering
Indian Institute of Technology Bombay

 SPATE-2008

Abstractions for (product) aspect
capture in the Popular OO
Paradigms in Practice

 Classes
 objects
 member functions
 inheritance and dynamic binding
 visibility control
 interobject, interclass relations
 components, component composition

 SPATE-2008

Product Concerns and their
programming expressions
 Can separate concerns be expressed separately and be

traceable eventually?

 If the answer is yes
 Independent development processes for the concerns
 Independent abstractions (representations)
 Proceed to integration mechanisms

 Limitations of popular OOP
 Many cross-cutting concerns posed problem

 Design reuse vs. implementation reuse
 Transparencies for system/context variabilities
 Generic concerns covering multiple abstractions

 Rise of new paradigms: AOP extensions
 Context relations, compositional filters, aspect oriented

programming

 SPATE-2008

A Static Solution

 Aspect specifications separate from base
specifications

 Aspects weaved with bases by a Weaver

 Static (compile time) weaving

 Weaved code looses aspects no
traceability of aspects into first class
runtime elements of the language

 SPATE-2008

Limitations of aspects

 Implementation-centric approach

 Lacks Process

 Non-first class abstractions

 Contracts may get violated and
encapsulation broken

 SPATE-2008

Some other static approaches

 Overloading, Template classes to more
powerful generic specification
languages
 Generic (e.g. XML based) specification

applied to base code which is
transformed

 SPATE-2008

Some Dynamic Approaches

 Subclassing and Polymorphism

 Using Metalevel protocols: e.g.
Smalltalk’s metaclasses

 Reflection into PL implementations

 SPATE-2008

Our approach:
Introduce First Class Communication
Abstractions (Filter objects)

 Honor encapsulation, target messaging

 Communication Aspects are first class
entities in base language: objects with
member functions and local state

 Abstractions used for Specification are very
similar to those available in the base
language

 Weaving is replaced by object level binding
at runtime

 SPATE-2008

An Interobject Communication
Scenario

o1 o2

m

Entities(Objects/Components)
Message generation
Message flow
Message delivery
Method Dispatch
Response flow
Response delivery

 SPATE-2008

Targeting messaging,
leaving objects as they are

o1 o2

m

Entities (Objects/Components)
Message generation
Message flow
Message delivery
Methods
Response flow
Response delivery

 SPATE-2008

Message Processing + Message Control
Layer

 Message Processing
 Determines response by the receiver

once the message is dispatched to the
receiver

 Implementation of the
component/object’s contract

 Message Control
 Activities on/over messages in transit

 i.e. during to and fro information flow

 SPATE-2008

Possible Message Paths/Moves

 Primitives:
Process
Forward
Replace
Force
Delay
Bounce

 SPATE-2008

Class level specification: An
Example

Class Dictionary {
…

}

Class Cache: filter Dictionary {

….
}

 SPATE-2008

Instance level pairing (not
weaving)

plug and unplug

main () {
Dictionary *d=..;
Cache *c=..;

plug d c;
…
unplug d;

}

 SPATE-2008

First class representation in an
OOPL

Class Dictionary {
public: Meaning SearchWord(Word);

}
class Cache : filter Dictionary {
upfilter:

Meaning SearchCache(Word) filters SearchWord;
downfilter:

Meaning ReplaceCacheEntry (Meaning) filters SearchWord;
public:

double hitRatio ();
private:

… implementation

}

 SPATE-2008

Dynamic Grouping and
Layering

LB AL AP

Callers
Servers

Common
Server-side
cache

 SPATE-2008

Orthogonal Collaborative Frameworks:
Crosscutting functionalities

Object1
Object3

Object2

Object4

Filter Object Network

 SPATE-2008

Patterns at Messaging Layer
 Message replacement

 Receiver Replacement

 Routing, destination selection

 Repeater

 Message Content Replacement (value transformer)

 Decoration (logger)

 Message hold/delay and synchronize

 SPATE-2008

Replacer
 A filter member function operates as a replacement function

to its corresponding server member function
FastServer | oldServer =
filter interface:

funcReplacer (in) upfilters oldServer :: func (in)
= [v <-- self.func (in); bounce (v);]

client fastServeroldServer

 SPATE-2008

Router
 A filter member function operates as a router function

balancer | searchEngine =
filter interface:

searchRouter (item) upfilters SearchEngine ::search (item)
= [newDest <-- self.nextDest();
 v<--newDest.search(item); bounce (v);]

client filter dest newDest

 SPATE-2008

Repeater
 A filter member function dispatches the filtered invocation to

multiple servers
enrollFilter | centralEnroller =
filter interface:

libEnroll (student) upfilters centralEnroller :: enroll (student)
= [if (student.dept == civil) civilLib-->enroll (student);
 if (student.status == minor)minorBody-->

enroll(student);
 pass;]

client repeater server1 server2server3

 SPATE-2008

Two Models for Distributed
Middlewares

 Need-to-filter principle: A server is
declared as Filterable Server

interface Filterable {
attach (in Object filter)
detach ();

};
interface Server : Filterable {
service ();
}

 Filter Object aware Middleware (e.g.
MICO extensions)

 SPATE-2008

Dynamic Functional Evolution
(functional cross-cut)

 A Readers and Writers Solution
 (Hansen 1978)

process resource
s: int
proc StartRead when s>0 : s++; end
proc EndRead if s >1: s--; end
proc StartWrite when s==1: s--; end
proc EndWrite if s==0: s++; end
s=1;

 SPATE-2008

Evolution Requirement

 Solve the same problem with additional
constraint that further reader requests
should be delayed as long as there are
writers waiting or using the resource

 SPATE-2008

The Approach

Old monitorOld reading and writing clients

Old monitor Old reading and writing clients

Injected Filter

 SPATE-2008

Evolution using Filter Process
process problemSolver: filter resource
www : int
upfilter:

SW_Ufilter filters StartWrite
SR_Ufilter filters StartRead

downfilter:
EW_Dfilter filters EndWrite

proc SW_Ufilter: www++; pass; end
proc EW_Dfilter: www---; end
proc SR_Ufilter: when www==0: pass; end

www=0;

 SPATE-2008

Dining Philosophers with
Deadlocks
process Fork [i:0..N-1];

s: int

owner: int

 proc Pickup (ph) when $s = 1$: $s=s-1 $; $onwer=ph$; endproc

 proc PutDown (ph) if $s = 0$: $s=s+1;$ $owner=none$; endproc

s = 1; owner=none;

process Philosopher [i:0..N-1];

 proc PickForks() Fork [i].pickup(i); Fork[(i+1) % N].pickup(i); endproc

 proc Eat() eat; endproc

 proc PutDownForks() Fork[i].putdown(i); Fork [(i+1)% N].putdown(i); endproc

proc Think() think; endproc

..... phil cycle ..

end process

 SPATE-2008

Filter Process for Fork Processes

process ForkFilter[i:0..N-1] : filter Fork[0..N-1];

upfilter proc PickFilter (p) filters Pickup() if (i=p) Monitor.pickup (i); pass;
endproc

downfilter proc PutFilter (p) filter PutDown() Monitor.putdown(i) endproc

end process

process Monitor ;

s[N]: int;

proc Pickup (p) when (s[p] AND s[(p+1)%N]) : s[p]=s[(p+1)%N]=0;

endproc

proc Putdown (f) s[f]=1 endproc

for (i=0; i<N; i=i+1) s[i]=1;

endprocess

 SPATE-2008

Summary of Implementations
and Models
1. Models for C++/COM components

3. TJF (Translator for Java Filters)

5. Middleware: MICO kernel extensions
Filter aware middleware

 Implementations of Filter Objects in Distributed Systems
over AspectJ+RMI

 Distributed Filter Processes (Unimplemented)

 Extensions to theory of objects, operational semantics and a
light weight language with an interpreter of sigmaF calculus

 SPATE-2008

Ongoing work
 Calculus, Semantics (Abadi/Cardelli style)

and implementations

 Applications, Notations, Methods and
Patterns

 Component Adapters

