White Box lesting

RUSIIIKESI Ke JoSIl
PDepartment of CompuUter SCIEnce & ENgIneering
Indian Instittte o hechneleay: Bomiay.

Why Testing?

¢ [lesting finds errors (Does not
guarantee apbsence of bugs!)

» AN early agreement upen the; test
plan at requirement stage; Is
IMPoeKtE R

Test Driven

m Development

S/

A Test Case

A test case is described through the choice
of inputs for the unit to be tested.

o For example, following are thiree different
test cases to test a function int (1INt X, INt

V) that compares two AUMBPErS and rEPorts
the maximum

Criteria \/altes
=X and YA samie (10,10)
- X > Y (10, 8)
- Y > X (2, 25)

Important Questions

¢ What should be tested

¢ WWhat criteria should be used: to
design tests?

¥ HeW toranalyzerther output?

IS the output of a test
correct?

¢ Manual Validation
— Time consuming

¢ lest Oracles to automatically: test and
validate against the expected

¢ [he testing strategies, the test
Speciiiications) and results: are
decUmERtEd

What criteria to use?

+Should the testing be done based on
externally: observable behavior

OR

¢ shiould the code be seen terdesign
LESk CaSESY

Black box Vs. White Box Testing

¢ External Vs. Internal View

— Black boex testing is based on what Is
required from external point of view.

—\\hlte bex testing Is based on an
INSIAER'S VIEW: Of thEe gIven altifact
¢ lIEStEr as arknewledge o code

¢ lIEST CaseSs) are generated tertest the coding
SERUICEURES

External Vs. Internal View

¢ Black box testing is based on what is
required from external poeint of view

A

B

C

o WHItE veX tESsting IS hased onran
INSIGERFSIVIEW O thEe gIVERI alftiiiact x

Y; }

While(..) {

Black Box Testing

+Also called Functional Testing
¢ [est the artifact firom external point

ofF view

»SpPECS are used te generate test data

E—

Sorter

E—

— [£.@) 2l data sertingl itnctienisi tested on diffierent sets o data
— [Datal can be randomiy, geneErated basedroniiRpuUt types

White Box [esting

#Also called Structural Testing

¢ [est the artifact from internal
(implementation)) point ofi view

¢Cannot detect absence of features

»Coverage measures; are; used, e.q:
= Statemenic Coverage
¢ Each statement is Covered in testing
— Branch CoVErage
o Each branch s covered (e.g. Il i=then-elise)

= PathrerIERtEartesting

¢ SElect dattar such that CReSER! pathstinrthe
PIreGIaIm| aiel COVErEea

Black Box Testing (External)

¢ Functional/Feature Testing
¢ Boundary Value, Tlesting
¢ Tests for absence of features

Use, off specs, to generate: test data

White Box [esting (Internal)

¢ Structural Testing

— Internal structure used to generate test
data

¢ llest fior coverade, off statements,
conaditional Branches, patns

¢ Does not detect absence of features
off software

Static Analysis for Testing Code

¢ No actual execution is done

¢ Check for not well foermed’ control
paths
— Unstructured programs
— UnRreachable code

¢ Variable anomalies
—Unused Variables
— Misused variables references

Statement Coverage

¢ Select a test suit such that each statement
In the program is executed at least once

¢ Motivation: An error may. gdet masked if;
tests do not execute parts of the program

o What Is anl elementary, statement?
Use off syntactic definition’ ot Ianguage:
— ASSIgRIMENT stateEmeEnt
—precealralrcalls

— /01 StatEMENTS 1N conventional 9lock
strUctUirearanguiaigEeS

Statement coverage

¢ A test case may cover many.
Statements

» One may. try tor minimize the nuMmBer
of test cases such that all the
statements are still covered

An Example for Statement
Coverage

int fib (int n) < /* defined on n=0+ */

if (n<2)
feturn n; <

else iF (n>=2)
rectrn (D=1 RB(R=2)); &

Test suit: ?77?

An Example for Statement
Coverage

int fib (int n) < /* defined on n=0+ */

if (n<2)
feturn n; <

else if (n>=2)
rectrn (D=1 RB(R=2)); &

Test suit: <n=3>.,<n=1>

Observations

+» Missing features are not detected

— E.g. If number supplied is negative (n=-
1), the function does not report an error

- This test case is not needed for
Statement coveragde criteria

= DEES net cover implicit statements
- (example onr next slide)

Implicit statements

bool flip (bool var) {
ool local;
i (isTirue(var))

local = false; €

returnriocaly &

J

Test suit: <?7?7> sufficient to cover all statements?

Implicit statements

bool flip (bool var) {
ool local;
i (isTirue(var))

local = false; €

returnriocaly &

J

Test suit: <var=True> sufficient to cover all statements
Error that flip does not work with <var=false> is not detected

Implicit statements
bool flip (bool var) {

bool local=var;
it (isTirue(var))
local = false; €

else { }; &
returnlocal €

} Test suit: <var=True> is not sufficient to cover all statements
Error that flip does not work with <var=tfalse> will get detected
with suit: <var=True>,<var=False>

Basic Path Testing

Select test suit such that basic paths are
covered

— [his guarantees that every statement gets
covered

¢ Representations for:
— ElemEentary, statemenits: assignment, 1o, call
— Conditional statements: lirtheny else
— ConditienalEeopsiVWialE-de) Repeat-Un)

— Seguentialrcomposition: hwersequeniial
St tEMMERNES

A Seqguential Composition

S1: interest = balance = (x/100);
S2: balance = balance + interest;

A Branching Statement

S1: Iff (employee.performance=HIGH)
S2: Incentive = X;

S3: else incentive = x/2;

S4: Print (employee.id, iIncentive)

A While Statement

S1: while (Tend_of _file (file))

S2: read a value from file, and
PR IE;

S3: file.close();

A Repeat Statement

A: tmpl = x; tmp2 = x * X; i=0;
5 repeat

Si: X=X H=tmp; [=1+1;

S2: until x == tmp2);

S3: prnt ¢, 1);

A Switch Case Statement

S1: switch (choice) {

S2: case lea: drink=preparelea(); break;

S3: case Coffee: drink=prepareCoffee(); break;
5S4 case Juice: drink=prepareduice(); break;

Ji
S5: serve (drink):

A Compound Condition

If (a OR b)

X do_some_thing;
else

Vi do_something. else;

Cyclomatic Complexity

¢ No. of iIndependent paths in the basis
set

¢ Upper bound on no. of test that must be
conducted

— to ensure all statements get covered at
least ence

» —No. off regions (Count eUter regiom
also)

» —INO. off predicate nedes, 41
9 — N0, Ol ECgESF—NoL BIFVErLIEES - 2

Cyclomatic Complexity Example

» =INo. of regions (count outer region
also): 3
o —INo. off predicate nedes, + 13 2+1="3
» —INO. oif edges— No. Ol VErtices + 2 =
/-6+2=3
¢ [.e. basis set hasl 3 paths

Cyclomatic Complexity Example

¢ [he 3 independent paths! in basis set
— g IS foungdl to' be true

— 2 S et iound ter be true, BUt biis found te be
e

— 2| IS NOE fOURE e e true) 19 1S) alSer Mot true

Test suite: <a=true, b=false>, <a=false,
b=true>, <a=false, b=false> to test

> i (@rer) then x else y;

Condition Testing

¢ Simple conditions

— Boolean variable

— Relational operator (<, >, <=, ==, >=)
+ Compound conditions

— Composition off 2 or moxre conditions: with

Boolean operators: (&ay, |1, 1)

¢ Error could occur due to

—Wirena Variaple Vallties

—\FOREl CHIGICE, Bl OPERatOS

—\\ronRgl EXpPressioniinside conditions

— PARERtRESIS Prowlems

Condition Testing Strategies

¢ Branch testing:
— Test for true and false for C

— Every simple condition in C is executed
at least ence

¢ Domain hesting:

— Bloolean expression with nrvariables
¢ liest fior all possibler 22 valles

— Relationalf Operators

9 FOI 2 RID:
— test for al less than b
=2l glieater thiantio
— 2 edual torbs

Data Flow Testing Strategies

¢ Selection of paths according to data definition
and usage

¢ DEF(S) = {D] statement S contains definition of D}
o USE(S) = { D] statement S contains use ofi D}

¢ DU chain off variable X: [X,S,S] such that
— X isiinr DEE(S);
— XSt USE (SH)F;
— g,efinition O X 1Nl statement S s liver at statement
¢ e definition s net eVerrndden by, anether defnition)
9 Al strategys cover allfblUrchalns atleast once

Mutation Testing

¢ Change the program code a bit
¢ [est this mutant

¢ Ifi the test does not generate a
detectable error, the test case Is not
enougmn

—[lest once more and continue thus with
mlitatien: testing

Exercise: Try different strategies on the below

program, make a few errors and try the tests again

AwardGrades (List L) {
1. int current=0;
2. while (current<L.size) {
3. if (L [current].marks < 35)
L[current].grade="E"
else
it (L [current].marks <50)

L [current].grade="D";
else
it (L [current].marks <70)
I [current].grade="C-;

else
it (C [eurrent].-marks <90)
S CuUrrentibarace=15r;
else
Efcurrentligrade="A%
cUrrERt=CUFrERt1;

