
 Types

CS 329 Lecture 3

Aug 1, 2007

Rushikesh K. Joshi

Types and Values

Types can be considered as sets

The members of the set that represents a
type represent all possible values of the

type

Value Assignment

T var;
var = v1;
var = v2;

A variable of type T can be assigned a
value that is a member of the set

defining type T

Assignment statement can be used to change the
assignment of a value to a variable of given type; only
that the value should be from the set defining the type.

An example

bool = {true, false}

b1 = true;
b2 = false;

...
b1=b2

The type is bool

b1, b2 are the only possible values of this
type

Cardinality of a type

The count of all possible discrete values

bool = {true, false}
#bool = 2

Week = {Mon,Tue,Wed,Thu,Fri,Sat,Sun}
#Week = 7

Primitive Types

Sets of discrete values

To specify a type, simply enumerate all
its values

e.g. int = {-MAX,..,0...,+Max}

e.g. bool, int, float, char, short int,
unsigned int, enumerated data types

etc.

Language definitions provide some standard primitive types from
which composite types such as structures, functions, lists can be

constructed

Composite Types

These are constructible from other types

e.g. struct xyz {
int i;
char c;

}

A structure or a record is thus a
composite formed by taking a cross
product of multiple types

Composite Types: Product
types

Record R1 {
T1 v1;
T2 v2;

}
R1 = T1 X T2
#R1 = #T1 x #T2

Example: if T1=T2=bool, #R1 = 4.
R1 = { (t,t), (t,f), (f,t), (f,f) }

The cardinality again represents the count of all possible values of
the given type.

Composite Types: Function
types
A function T2 f (T1) is a mapping from set T1 to set T2. i.e. f

computes a value of type T2 given a value of type T1 as
input parameter.

f: T1 --> T2

If T1 is boolean, and T2 is also boolean, we have
f={{(t->t),(f->t) },{(t->t) (f->f)},{(t->f),(f->t)},{(t->f),(f-

>f)}}

how many different function bodies can you write against a
function signature T2 f(T1)?

ans: #f = (#T2) (#T1)

Cardinality and values of a
function type

The elements of the set corresponding to
a function type are all possible

mappings for a given function signature.

A function body is merely one of the many
possible values for the function type.

cardinality of a function type is the number of
discrete function bodies (i.e. mappings) for the

function type.

Thus we can represent a function body as a value of a function
type, or in other words, a program is a value and its

specification, a type.

Composite types: Array types
int A[10]

It can be modeled as a function that maps integers from
range 1..10 to int

so type of array A is T1-->int, where T1={1..10}

default initializer is the default mapping.
Cardinality of an array type represents the number of

possible valuations of the array
e.g. 1111111111 is one of the many possible valuations.

Any other mapping can be used as a value of A, if the
mapping is a valid value of the type that defines A.
A function type represents an array more naturally than a product type

since we have the associated operation of indexing. Record elements are
accessed by their names, whereas array elements are accessed by their

indices.

Type Errors

Consider Type
int A[10]

In 'C', if you access element A[10], it
constitutes an error. Since the type is

undefined on index=10, such an access
is called type error, or type violation.

Depending on the design of the programming language, a type
error may get detected at compile time, or at runtime, or go

undetected by the language's runtime environment, and may
eventually get trapped inside the operating system such as

through a segmentation fault.

