
More Composite Types and 
the Subtype Relation

CS 329 Lecture 4

August 2, 2007

Rushikesh K Joshi



Recursive Types: Lists

Some types are defined recursively in order to express the types in 
terms of closed expressions even if there are infinitely many 

possible values for them.

For example, 
a list L of elements of type T:

L = either NULL  or T X L
or in other words,

L = NULL + (T X L), where + defines a 
disjoint union

The set defining the list type contains all possible lists of type T, but 
we have a closed recursive expression for the list type L.



An example list value

L = abcdec

T = {a,b,c,d,e,f,....}

The above value can be shown to be a valid value of list 
type by constructing a terminating recursive expansion 
for the value as given below:

L = a X L
   X b X L
        X c X L

 X d X L
                      X e X L

X c X L
 X NULL



Disjoint Union Type

Union U {
int i;
char c;

}

U = int + char

i.e. 
U = either int or char

A value of type U is either a value of type int or a value of type char.

The union type (either/or) was used in the definition of the list type.

example: A union type defined in C 



Firstly, if T1 and T2 are the same types, 
there is no problem. For example as in 

the below program::   int i; int j; ...  i = j;  

Further, if T1 and T2 are not the same 
types, we may still be able to treat ALL 
values of T1 as values of T2 provided 

that there is some relation between the 
two types. What's that relation?

When can a value of type T1 be 
safely treated as a value of type 
T2?



Subtype Relation

S <: T

we say that type S is a subtype of type T

For primitive types, a subset can be considered as a subtype.

Exmples:
R1 = {1,2,3,4}
R1 <: Int
R2 = {a,b,c,D,E}
R2 <: Char

What can we do with subtypes?

We can use a value of a subtype wherever a value of the 
(super)type is expected. This is stated by the below rule of 
subsumption.



Subsumption Rule

t:S,  S<:T

t:T

The rule states that:
if value t is of type S and S is given as a 

subtype of type T, 
then value t is also a value of type T.



Subtype relation for primitive 
types

For primitive types, subset is subtype.

e.g. S={1,2,3}, T={1,2,3,4}, S<:T

wherever value of a type is expected, a value from the subtype will 
work safely. 

i.e. a call to function  
f(T val) {.....} 

will work correctly with any value of type S sent as a parameter, 
since all values of type S happen to be valid values of type T.

However, subtype relation is not symmetric.
For example, the below function will not work correctly for all values 

of type T when sent as input parameter to f().

f(S val) { A[3]; return A[val];}   For which case does it not work?



Subtype Relation for Product 
types: The width rule

R1 = T1 X T2
R2 = T1 X T2 X T3

R2  can be considered as a subtype of R1

why? because a value of type R2 can be easily considered as a 
value of R1 by ignoring the T3 component in it. 

Example:

R1 = RollNo X Name 
R2 = RollNo X Name X Age



Subtype Relation for Product 
types: The depth rule

R1 = T1 X T2
R2 = S1 X S2 

R2  can be considered as a subtype of R1, when S1 <: T1 and
S2 <: T2

R1 = String X String 
R2 = RollNo X Name 



Subtype Relation for Product 
types: The combined rule

R1 = T1 X T2 
R2 = S1 X S2 X S3

R2  can be considered as a subtype of R1, when S1 <: T1 and
S2 <: T2

R1 = String X String 
R2 = RollNo X Name X Age



Subtype Relation for Product 
types: Record Permutation 
Rule

R1 = T1 X T2 
R2 = T2 X T1

R2  can be considered as a subtype of R1, and vice versa by 
the record permutation rule.

R1 = Name X RollNo
R2 = RollNo X Name 

R1 <: R2,  and R2<:R1

The rule is at conceptual level, and it's implementation in a programming 
language may requires manipulating with the memory layouts for correct 
implementation of the rule.



Properties of subtype 
relation

Reflexive

 Symmetric

 Anti-symmetric 

transitive


