
Function Subtypes
Overloading, coercion
Top type, Bottom Type

CS 329 Lecture 5

Aug 6, 2007

Rushikesh K. Joshi

Function Types

float f (int x) {..} has type
int-->float

int g (int x) { ...} has type
int --> int

When can we say that a function type is a
subtype of another function type?

The Subsumption rule
revisited

v:S, S<:T

 v:T

By the above rule of subsumption associated with
subtype relation <: ,

the values of a subtype can be used safely as values of
the (super)type.

Applying the rule to functions,
if (type of g) <: (type of f), we can use g safely wherever

type of f is expected. Consider the program given
below:

An example
int f (int x) {..}
main () {

int v;
int x;

...
x = f (v);
..

}
In the above program when can we use another function g in place
of int f(int) in a type-safe manner?

Consider g to be one of the following and find out which of these will
be safe replacements for f in the above program?:

int --> int int --> float
float --> int float --> float

An example ..
int f (int x) {..}
main () {

int v;
int x;

...
x = f (v);
..

}

 We can see that if g defines its input parameter to be float or int,
there will be no problem in accepting an input parameter v which is
defined as int in the program.

However, if g returns a float type, it will result in loss of information
when the return value gets assigned to variable x which has type
int.

An example ..
int f (int x) {..}
main () {

int v;
int x;

...
x = f (v);
..

}
Both the below functions will be type-safe substitutions for
int f(int).

int g (int)
int g (float)

you can see that as long as there is no assignment of a value of a supertype to a
variable of subtype, the usage is type safe. This safety condition can be observed in
the case of types of input parameters and return results in the above two functions
when they are used in place of int f(int).

Type-subtype relations
among four functions

int-->float

float-->float float-->int

int-->int

subtype of

The function subtyping rule

input parameters contravariant
output result covariant

T2 f (T1)

S2 g (S1)

Overloading

10 + 2.3
10+ 2

2.3 + 10
2.3 + 2.4

Operator '+' is a function
+: T1 X T2 --> T3

The implementation of operator + is internally provided by the
language environment.

Considering the above four possible usages, what can we say about
the Type of this internal function '+'. In other words, what should

be the signature of this internal function '+'?

What's overloading?

The multiple apparent definitions of a function results in overloading
of the function.

The name of the function is the same, but the same name can work
with multiple signatures. That is to say that the function name is

overloaded.

In the above case, + is overloaded with four possible signatures.
However, the language may resolve overloading by using one of

the plans discussed below.

Resolving overloading, Plan A
The language may use a single function

float + float --> float
and implicitly type-cast integers to floats and back if needed

The process of implicit type casting is called 'coercion'

Note that this function is not really a super-type of all other functions.
Its

working relies on implicit coercion, and on correct use of types in the
program for coercion to work correctly.

int i = 10 + 2 will work correctly as
int i = (int) ((float) 10 + (float) 2) with the typecasts implicitly done.

but int i = 10 + 2.3 will result in loss of accuracy since the lvalue type
has been chosen incorrectly as int.

Thus, overloading of 4 signatures can be completely eliminated with the
help of just one signature and the use of coercion wherever required.

Resolving overloading, Plan B

use two overloaded functions

float + float --> float
int + int --> int

and implicitly type-cast (coerce) integers
to floats and back if needed, if one of the

parameters is an int value

Thus, in this case, overloading of 4 signatures is resolved into
overloading of 2 signatures with the help of coercion

Resolving overloading, Plan C

use four different functions

float + float --> float
int + int --> int

int + float --> float
float + int --> float

and select the one with exact matching
signature.

Thus, in this case, there is no coercion, and full overloading is
carried forward into implementation

Top Type

The type of which every other type is a
subtype

example: Object type in Java

A value of any type can be used wherever
a value of the Top type is expected

Bottom Type

A type of which the values can also be
used as values of all other types.

e.g. Type NULLT having a single value
NULL.

