
Subtyping in Object
orientation

CS 329 Lecture 6

Aug 8, 2007

Rushikesh K. Joshi

Revisiting the function subtyping rule

g: S1-->S2, T1<:S1, S2 <: T2

g: T1-->T2

or in other words,

g:S1-->S2, (S1-->S2) <: (T1-->T2)

g:T1-->T2

ok, what is the relation of g with 'f' then,
 with signature of f as T2 f(T1)?

Note that f does not appear in the above formula. Why?
The answer is that f is just a value of type T1-->T2,

and g a value of type S1-->S2. By applying the above rule, we can say that
where a value f having type T1-->T2 is expected, value g can be given,

as type of g is a subtype of T1-->T2.

Subtyping induced by Subclassing

A obj;
obj = new A(); // a correct assignment

obj = new B(); // this will be correct if B is a subclass of A

We can use an instance of B where a type A is expected.
variable obj has type A, but the instance of B is being used.

Subclass defines a subtype.

Now we will address the problem of relating member functions in
classes which are related through the subclass relationship.

Should the overriding function defined in subclass be a subtype of
the corresponding function defined in the superclass, or should it
be the other way?

Types in Inheritance

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);

}

Problem 1

what rules should be applied to
ensure type safety of invocation
obj--> f (v) in the main program?

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f(L1 x) {....}

}

Problem 2

What rules should be applied to
permit B::f() the status as an
overriden function that overrides
A::f()?

Towards Type Rules for (1) Member Function
Invocation, and for (2) Member Function Definition

Problem 1 in the earlier slide relates to
type safety of a member function

invocation

Whereas Problem 2 relates to typing
restrictions on member function
definitions in order to establish

overriding

But What's the benefit of overriding?

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);

}

The benefit is
dynamic binding.

In the program on the left, an
invocation to obj->f() gets
bound to either A::f() or to
B::f() depending on the class
that is instantiated against
variable obj. In this program,
this user choice occurs at
runtime, but that is fine for
the invocation. The binding to
the actual member function
to be called also happens at
runtime if overriding is used.

Dynamic Binding of member functions

A member function invocation statement is
checked against the static type signatures, but
the member function implementation that gets

actually invoked is decided at runtime.

The function that is defined in the creation class of
the object that is being used is picked up.

Solving Problem 1: Type checking of the invocation
statement

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Problem 1

what rules should be applied to ensure type safety of invocation
obj--> f (v) in the main program?

We can see that f is being invoked through instance variable obj.
Variable obj has static type A. Depending on the choice, obj may contain an instance of
either A or B. However, the call to obj-->f() can be type-checked wrt the static type of obj
variable, which is A.

So we need to only ensure that v: T1 AND x:T2 by asserting J<:T1 AND K<:T2J<:T1 AND K<:T2

And answer to question 2 (next slide) will ensure that this type-checking wrt the static signatures will be enough for
the invocation statement to work correctly for all overloadings of f in all possible subclasses of A.

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f(L1 x) {....}

}

Solving Problem 2: Ensuring type safety during
dynamic binding, which is a property associated with
overriden functions

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Problem 2

What rules should be applied to permit B::f() the status as an overriden function that
overrides A::f()?

As seen from the program on the left, we are looking forward to correct working of
overriden functions where a signature from the superclass is expected. This is
achieved if we simply apply the function subtyping rule making f::B <: f::A, i.e.

T1 <: L1 AND L2 <: T2

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f(L1 x) {....}

}

Example of correct overriding

main () {
A obj;
int v;
int x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

v: int, x: int
=> Acceptable for invocation obj->f() =>Acceptable for B::f() to

 be overriding A::f()

The above program is type-safe

class A {
public int f (int x) {....}

}

class B extends A {
public int f(float x) {....}

}

 int A::f (int) <: int B::f(float)

Another Example of correct overriding

main () {
A obj;
nonnegativeint v;
float x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

v: nonnegativeint, x: float
nonnegativeint <: int
float <: int
=> Acceptable for invocation obj->f()

We have nonnegativeint <: int <: float
so v will work correctly as parameter to B::f
Also, value returned from B::f will get assigned correctly (i.e. safely) to x, a value of
type float.

The above program is type-safe

class A {
public int f (int x) {....}

}

class B extends A {
public int f(float x) {....}

}

So here are the rules

main () {
A obj;
J v;
K x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

The rule for type safe invocation The rule for type safe overriding
We make sure that J <: T1 AND T2 <: K Here we make sure that T1 <: L1 AND

 L2 <: T2

How do these two rules together make sure that all Js and Ks following the rule for type
safe invocation will work correctly with all possible L1s and L2s following the rule for type
safe overriding?

Fortunately Subtyping is Transitive. So we get J <: T1 <: L1, and L2 <: T2 <: K
This makes it possible for v:J to work safely as parameter into B::f(), and value
returned by B::f() gets assigned safely to variable x:K.

class A {
public T2 f (T1 x) {....}

}

class B extends A {
public L2 f (L1 x) {....}

}

What if the rule of type safe invocation is not followed?

main () {
A obj;
int v;
char x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
The rule fails! Here it's fine!

float, the return type of A::f is not a subtype
of char

● The compiler which guarantees static type checking can refuse to compile such a
program, as it cannot guarantee type safety at compile time for all possible object value
assignments to variable obj.

class A {
public float f (int x) {....}

}

class B extends A {
public int f (float x) {....}

}

What if the rule of overriding is not followed?
Carefully observe all the types

main () {
A obj;
int v;
float x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
The rule is followed! Here it's not!

In this case, B::f can be permitted to exist as an independent function that has no
subtyping relation with A::f

But since they both happen to use the same name 'f', they form a set of overloaded
functions.

class A {
public float f (int x) {....}

}

class B extends A {
public char f (float x) {....}

}

What if the rule of type safe invocation is not followed,
but there exists an overloaded function somewhere
down the chain?

main () {
A obj;
int v;
char x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
 The rule is not followed! Here also the rule is not followed!

 The two functions are considered overloaded

In this case, though there is an overloading available in the subclass B, the type safety of
x=obj-->f() cannot be guaranteed at compile time since the instance can be created
either from A or from B. So a compile time type error can be generated.

class A {
public float f (int x) {....}

}

class B extends A {
public char f (float x) {....}

}

What if the rule of type safe invocation is not followed,
but there exists an overloaded function in the static
type of the variable through which the invocation is
being made?

main () {
A obj;
int v;
char x;

read choice from the user;
if (choice==0) obj = new A();

else obj = new B();

x = obj --> f (v);
}

Check the rule for type safe invocation Check the rule for type safe overriding
 The rule is not followed! Here also the rule is followed for one pairing,

 and there is also one overloaded definition in A

Solve it.

 Do Java, C++ implement really these rules? Find out by writing programs.

class A {
public float f (int x) {....}
public char f (float x) {....}

}

class B extends A {
public float f (int x) {....}

}

Dynamic Binding in presence of multiple
overridings within a single inheritance chain

The search for the implementation starts from the
creation class of the object, and it continues up
the inheritance chain. The first function that is

found to be the subtype of the static type
signature expected is picked up for dispatch. This

binding happens during runtime.

what additional problem can occur with multiple inheritance?

