
Variables and
Location Bindings

A CS 329 Lecture

Rushikesh K Joshi
Department of Computer Science & Engineering

IIT Bombay

Variables and Type Bindings (an
overview of what we did already)
int i char c Bool b
Person p Student s Faculty f

In all the declarations above, we have types bound to variable
names.

We know that variables are bound to types in statically typed
languages. In dynamically typed languages, variables do not
have types bound to them, but values do have types.

Values have types just as variable have types. In statically typed
languages, the rules of what values can be assigned to given
variables are governed by subtyping (reflexive, ...and we have seen
these rules already)

Variables and space bindings

● Variables are also bound to locations, i.e they are
allocated space (locations) in which the value of
the variable is stored.

● Storage can be allocated in different storage areas
such as:

● statically allocated (predefined) as for globals
● dynamically allocated on heap (as for allocations through malloc or

new)
● dynamically allocated on stack for parameters passed or for

variables local to function invocations.
● (once the scope of a variable is over, we can free its location for

another use)

A snapshot of location bindings and
variable updates
 address of the variable is written on top of the box and value of the variable is written inside

Junk value (uninitialized)Int i;

i = 10

i = 20

L1

10

20

L1

L1

timeline

L1 is the location for variable i

A snapshot of location bindings
and variable updates for pointer
variables
L1 is location of i, L2 of j , see how their values, i.e. Values at these locations change

Junk valueInt *i;
int j=10

i = &j

*i = 20

L1

timeline

10
L2

L2
L1

10
L2

20
L2

L2
L1

Where to??
i.e. This i is a dangling pointer at present

Changing the value of the pointer
itself!

Junk valueInt *i;
int j=10

i = &j

*i = 20

i = (int) malloc..
*i = 30

L1

timeline

10
L2

L2
L1

10
L2

20
L2

L2
L1

?? Dangling pointer

20
L2

L3
L1

30
L3

We may leave garbage in memory

Junk valueInt *i;
int j=10

i = (int) malloc..
*i = 30

i=&j

L1

timeline

10
L2

?? Dangling pointer

20
L2

L3
L1

30
L3

20
L2

L2
L1

30
L3

At this point, there is no way to use location L3. We lost the
pointer to it which was earlier safe in i. There is no variable
in which we have stored L3. So L3 is out of use, and it's
garbage.

What happens to garbage?

Garbage is memory locations which were earlier allocated and
used, but have gone completely out of use as no one knows its

location.

Garbage may get created when you use the same pointer to store
different locations.

When a specific call to a function, all its local variables are
garbage.

Garbages are freed automatically at runtime if the runtime can
detect that specific locations are turned into garbages... But this

does not happen with pointers in C/C++....

Clearing Garbage by yourself (needed
in some languages and for some specific features
only)

If you use pointers in C or C++, its your responsibility to free
the allocated memory when you donot need it. If not done so,
you may run out of memory soon.

The primitives used to free dynamic allocations are free and
delete. The latter is used for objects.

Example:
int i = (int) malloc (sizeof (int)*10000);
... use the array ..
free (i);
i = (int) a shorter array... a fresh allocation...

Automatic Garbage Collection
If a language does not give you a primitive to get yourself some

bare memory allocated, it usually detects all locations that turn
into garbages.

Some garbages are easy to handle (e.g. Local variables and
parameters allocated on an activation stack of a function

invocation)

But to track dynamically allocated objects, such languages have
their own garbage collectors.

e.g. Java has a runtime garbage collector. And it does not have a
free statement.

 A garbage collector should not consume as less time as possible
and it should keep memory as clean as possible.

Pointer to Pointer

Int **i;
int *j;
int k=21
j = &k
i = &j
int x = **i

L2
L1 for i

L3
L2 for j

21
L3 for k

21
L4 for x

The snapshot after the last statement

Bulk Allocations and Pointer
Arithmetic
Int *A = (int *) malloc (sizeof (int) * 10);
for (j=0; j<10; j++) A[j] = j;

or you can say

for (j=0; j<10; j++) *(A+j)=j;

since the pointer is of type int * , an increase of 1,
takes us to the location of the next int. The location
of the next int may be some k bytes away from the
earlier when k bytes are needed to store an integer.

Using a variable on the left and
right sides of an assignment
statement

Int i;
int j;
i = 10 is ok
i = j is also ok
but 10 = j is not ok, though value of i on the right

hand side is actually just 10, and i=j was ok.

Which only means that there are two types of values
associated when a variable is used.

Lvalue and rvalue

The value of a variable on the right hand side of the
assignment statement refers to the value contained in the

location: rvalue

The value of the variable when used on the left hand side of
the assignment statement, it means the location of the

variable: lvalue

And the assignment statement then means, at the location
value appearing on the left side, write the value appearing

at the right side.

Not all values are valid lvalues in a language. The language applies its rules (of safety
and subtyping).

