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Abstract

We introduce a deep generative network for 3D shape de-
tailization, akin to stylization with the style being geometric
details. We address the challenge of creating large varieties
of high-resolution and detailed 3D geometry from a small
set of exemplars by treating the problem as that of geometric
detail transfer. Given a low-resolution coarse voxel shape,
our network refines it, via voxel upsampling, into a higher-
resolution shape enriched with geometric details. The out-
put shape preserves the overall structure (or content) of the
input, while its detail generation is conditioned on an in-
put “style code” corresponding to a detailed exemplar. Our
3D detailization via conditional refinement is realized by a
generative adversarial network, coined DECOR-GAN. The
network utilizes a 3D CNN generator for upsampling coarse
voxels and a 3D PatchGAN discriminator to enforce local
patches of the generated model to be similar to those in the
training detailed shapes. During testing, a style code is fed
into the generator to condition the refinement. We demon-
strate that our method can refine a coarse shape into a va-
riety of detailed shapes with different styles. The generated
results are evaluated in terms of content preservation, plau-
sibility, and diversity. Comprehensive ablation studies are
conducted to validate our network designs. Code is avail-
able at https://github.com/czq142857/DECOR-GAN.

1. Introduction
Creating high-quality detailed 3D shapes for visual de-

sign, AR/VR, gaming, and simulation is a laborious process
that requires significant expertise. Recent advances in deep
generative neural networks have mainly focused on learning
low-dimensional [1, 8, 18, 48, 49] or structural representa-
tions [6, 27, 35, 45, 50] of 3D shapes from large collections
of stock models, striving for plausibility and diversity of
the generated shapes. While these techniques are effective
at creating coarse geometry and enable the user to model
rough objects, they lack the ability to represent, synthesize,
and provide control over the finer geometric details.

In this work, we pose the novel problem of 3D shape de-
tailization, akin to stylization with the style defined by geo-

Figure 1: Our 3D detailization network, DECOR-GAN, re-
fines a coarse shape (red, leftmost) into a variety of detailed
shapes, each conditioned on a style code characterizing an
exemplar detailed 3D shape (green, topmost).

metric details. We wish to address the challenge of creating
large varieties of high-resolution and detailed 3D geome-
tries from only a small set of detailed 3D exemplars by treat-
ing the problem as that of geometric detail transfer. Specifi-
cally, given a low-resolution coarse content shape and a de-
tailed style shape, we would like to synthesize a novel shape
that preserves the coarse structure of the content, while re-
fining its geometric details to be similar to that of the style
shape; see Figure 1. Importantly, the detail transfer should
not rely on any annotations regarding shape details.

Our conditional detailization task cannot be accom-
plished by simply copying local patches from the style
shape onto the content shape, since (a) it is unknown which
patches represent details; (b) it may be difficult to integrate
copied patches into the content shape to ensure consistency.
To this end, we train a generative neural network that learns
detailization priors over a collection of high-resolution de-
tailed exemplar shapes, enabling it to refine a coarse in-
stance using a detail style code; see top of Figure 1.

To date, there has been little work on generating high-
resolution detailed 3D shapes. For example, surface-based
representations that synthesize details on meshes [22, 29]
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lack the ability to perform topological changes (as in several
plant detailization results in Figure 1) and, due to complex-
ities of mesh analysis, do not consider large shape contexts,
limiting their notion of details to homogeneous geometric
texture. To allow topological variations while leveraging a
simpler domain for analyzing the content shape, we choose
voxel representations for our task. However, 3D grids do
not scale well with high resolution, which necessitates a net-
work architecture that effectively leverages limited capac-
ity. Also, regardless of the representation, careful choices
of network losses must be made to balance the conflicting
goals of detailization and (coarse) content preservation.

To tackle all these challenges, we design DECOR-GAN,
a novel generative adversarial network that utilizes a 3D
CNN generator to locally refine a coarse shape, via voxel
upsampling, into a high-resolution detailed model, and a
3D PatchGAN discriminator to enforce local patches of the
generated model to be similar to those in the training de-
tailed shapes. Our generator learns local filters with limited
receptive field, and thus effectively allocates its capacity to-
wards generating local geometry. We condition our refine-
ment method on a single detail style code that provides an
intuitive way to control the model while also ensuring that
generated details are consistent across the entire shape. We
train our approach adversarially, using masked discrimina-
tors to simultaneously ensure that local details are stylisti-
cally plausible and coherent, while the global shape (i.e.,
downsampled version of the detailized shape) still respects
the coarse source shape. Our method can be trained even
with a small number of detailed training examples (up to 64
for all of our experiments), since our convolutional genera-
tor only relies on learning local filters.

We demonstrate that DECOR-GAN can be used to re-
fine coarse shapes derived by downsampling a stock model
or neurally generated by prior techniques. The user can con-
trol the style of the shape detailization either by providing
a style code from an exemplar or by interpolating between
existing styles. Thus, our technique offers a complementary
latent space for details which could be used jointly with
existing techniques that provide latent spaces for coarse
shapes. We quantitatively evaluate our method using mea-
sures for content preservation, plausibility, and diversity.
We also provide a comprehensive ablation study to validate
our network designs, while demonstrating that simpler ap-
proaches (such as only using a reconstructive loss) do not
provide the same quality of generated details.

2. Related work

Deep learning models have explored many possible rep-
resentations for understanding and generating 3D content.
These include encoders and decoders for voxel [4, 10, 49],
point cloud [14, 40], mesh [17, 36, 47], atlas chart [18, 52],
and implicit occupancy function representations [9, 33, 51].

High-Resolution 3D Representations. While most rep-
resentations can approximate the coarse shape of an object,
specialized techniques have been developed for each repre-
sentation to improve the quality of surface geometric detail,
and hallucinate high-frequency detail from low-frequency
input (“super-resolution”). For implicit functions, detail has
been improved by training a coarse model, then increas-
ing the accuracy and focusing on local details [12]. An
alternative approach uses convolutional layers to generate
input-point-specific features for the implicit network to de-
code [39]. Single-view 3D reconstruction quality has also
been improved by using local image features to recover ge-
ometric detail in the implicit network [51]. For voxel rep-
resentations, several hierarchical methods increase quality
and resolution [19, 41, 48]. Smith et al. [44] take a dif-
ferent approach by reconstructing a voxel grid from high-
resolution 2D depth maps. Taking this further, Mildenhall
et al. [34] acquire high-resolution 3D geometry by merging
several calibrated images into a neural implicit function. A
PatchMatch approach has been used to reconstruct a partial
3D surface scan by directly copying patches from training
models [11]. Wang et al. [54] proposed a patch-based up-
scaling approach to super-resolve point clouds. Although
these methods improve surface detail, they cannot be con-
ditioned on an input style code and do not easily allow for
controlled surface detail generation.

Mesh-based learning methods have been proposed to ad-
just the subdivision process of an input mesh to control sur-
face details [29], synthesize surface textures using multi-
scale neurally displaced vertices [22], or reconstruct a sur-
face with reoccurring geometric repetitions from a point
cloud [20]. While able to produce highly detailed surfaces,
these methods cannot alter the topology of the input mesh or
mix geometric details from a collection of style shapes. In a
similar vein, our 3D detailization solution also differs from
conventional image [26] or 3D upsampling [43] with the
added controllability while requiring much fewer detailed
high-resolution shapes during training.

Shape Detail Transfer. Mesh “quilting” is an early non-
learning-based method for shape detail transfer; it tiles the
surface of a coarse shape with copies of a geometric texture
patch [55]. Takayama et al. [46] transfer a detailed patch
from one shape to another by matching parametrizations.
Chen et al. [7] extend 2D PatchMatch to surfaces in 3D.
These methods are not automatic and/or require explicit fac-
torization of the shape into content and detail layers. Ma et
al. [31] solve the analogy – “shape : target :: exemplar : ?”
– by automatically assembling exemplar patches. They
require accurate surjective correspondences, local self-
similarity and, most importantly, three input shapes to im-
plicitly define the style-content factorization.

Among learning-based methods, Berkiten et al. [3] trans-
fer displacement maps from source to target shapes in one-



Figure 2: The network architecture. The training data is shown in blue and the loss functions are shown in green. Note that
there is only one generator G and discriminator D – the blocks are duplicated for clarity.

shot fashion. Wang et al. [53] propose neural cages to warp
a detailed object to the coarse shape of another. Neither of
these methods can mix details from multiple shapes or syn-
thesize new topology. Chart-based methods [2, 18] map a
common 2D domain to a collection of shape surfaces, which
can be used to transfer details to and between shapes. How-
ever, they also cannot synthesize new topology, and can ac-
curately represent only relatively simple base shapes.

Image Synthesis. Several methods control content and
style in 2D image generation [16, 28, 38]. Recent ap-
proaches to generative imaging [15, 25, 38] employ a Patch-
GAN discriminator [24] that has also been used to construct
a latent space for 3D shape categories [49]. One effective
way to condition a generative image model is to inject a la-
tent code into each level of the generator [13, 37]. We build
upon these techniques in our generator design, which con-
structs a latent space over shape detail that is injected into
the generator architecture to guide detail synthesis. We sim-
ilarly employ a PatchGAN to ensure that the generated 3D
shape resembles patches from training shapes.

3. Method

3.1. Network architecture and loss functions

The network structure for DECOR-GAN is shown in
Figure 2. In the training stage, the network receives one
of the M coarse shapes (643 voxels, referred to as “con-
tent shapes”), as well as a latent code describing the style of
one of the N detailed shapes (2563 voxels). The network is
trained to upsample the content shape by 4 times according
to the style of the detailed shape.

Network overview. We use a GAN approach and train
a generative model that can generate a shape with local
patches similar to those of the detailed shapes. For the gen-
erator we utilize a 3D CNN, and for the discriminator we
use 3D CNN PatchGANs [24] with receptive fields of 183.
We use an embedding module to learn an 8-dimensional la-
tent style code for each given detailed shape. Please refer to
the supplementary material for the detailed architectures of
the networks. Note that we only use one generator and one
discriminator in our system, and Figure 2 shows duplicated
networks solely for the sake of clarity.

Enforcing consistency between coarse input and fine
output. We guide the generator to generate upsampled
voxels that are consistent with the coarse input voxels, in
the sense that the downsampled version of the fine out-
put should be identical to the coarse input content shape.
To enforce this, we employ two masks: a generator mask
and a discriminator mask. The generator mask ensures that
empty voxels in the input content shape correspond with
empty voxels in the output, and enables the generator to fo-
cus its capacity solely on producing plausible voxels within
the valid region. We use a dilated mask to allow the gen-
erator to have some freedom to accommodate for different
styles as well as allow for more topological variations. Fig-
ure 6 demonstrates the effect of using the generator mask.
The discriminator mask ensures that each occupied voxel in
the input content shape leads to creation of fine voxels in
its corresponding area of the output. We apply discrimina-
tor masks on real and fake patches to only keep the signals
of regions corresponding to occupied patches, so that lack
of voxels in those patches will be punished. In our experi-



ments, we use discriminator masks with 1/2 of the resolu-
tion of the detailed shapes to fit the entire model into the
GPU memory. More details of generating our masks are
provided in the supplementary.

Preventing mode collapse. Employing one global dis-
criminator may result in mode collapse: the generator may
output the same style regardless of the input style code, and
the discriminator may ignore the style when determining
whether a patch is plausible or not. Therefore, our discrim-
inator is split into N +1 branches at the output layer, where
N is the number of detailed shapes used in training, with the
additional 1 standing for a global discriminator branch con-
sidering all styles. During training, the global branch com-
putes a global GAN loss, and the appropriate style-specific
branch computes a style-specific loss. The two losses are
weighed in order to control the tradeoff between general
plausibility and stylization.

Loss function. We now detail the different terms in our
loss function. We denote the set of N detailed shapes by S
and the set of M coarse shapes by C. The binary discrim-
inator masks of shape s ∈ S and shape c ∈ C are denoted
as MD

s and MD
c , respectively. The binary generator masks

of shape s ∈ S and shape c ∈ C are denoted as MG
s and

MG
c , respectively. We denote the latent style code of s ∈ S

by zs. We denote the generator and discriminator as G and
D, respectively. The global branch of D is denoted as Dg

and the branch for the detailed shape s ∈ S is denoted as
Ds. ◦ stands for element-wise product. We use the adver-
sarial loss in LSGAN [32] as our GAN loss, therefore, our
discriminator loss is composed of the global branch’s loss
and the style branch’s loss:

LD = Lglobal
D + Lstyle

D , (1)

where

Lglobal
D = Es∼S

||(Dg(s)− 1) ◦MD
s ||22

||MD
s ||1

+ Es∼S,c∼C
||Dg(G(c, zs) ◦MG

c ) ◦MD
c ||22

||MD
c ||1

,

(2)

Lstyle
D = Es∼S

||(Ds(s)− 1) ◦MD
s ||22

||MD
s ||1

+ Es∼S,c∼C
||Ds(G(c, zs) ◦MG

c ) ◦MD
c ||22

||MD
c ||1

.

(3)

Our GAN loss for the generator is

LGAN = Lglobal
GAN + α · Lstyle

GAN , (4)

where

Lglobal
GAN = Es∼S,c∼C

||(Dg(G(c, zs) ◦MG
c )− 1) ◦MD

c ||22
||MD

c ||1
,

(5)

Lstyle
GAN = Es∼S,c∼C

||(Ds(G(c, zs) ◦MG
c )− 1) ◦MD

c ||22
||MD

c ||1
.

(6)

In addition, we add a reconstruction loss: if the input coarse
shape and the style code stem from the same detailed shape,
we expect the output of the generator to be the ground-truth
detailed shape.

Lrecon = Es∼S
||G(s↓, zs) ◦MG

s − s||22
|s|

(7)

where |s| is the volumn (height × width × depth) of the
voxel model s, and s↓ is the content shape downsampled
from s. The reconstruction loss both speeds up convergence
in the early stage of training, as well as helps avoid mode
collapse.

The final loss function for the generator is a weighted
sum of the GAN loss and the reconstruction loss.

Ltotal = LGAN + β · Lrecon (8)

3.2. Implementation details

In our implementation, we take several measures to han-
dle the large memory footprint incurred when processing
3D high-resolution voxels. We use 2563 voxels as our high-
resolution detailed shapes and 643 voxels as low-resolution
content shapes. In order to discard unused voxels, we crop
each shape according to its dilated bounding box by crop-
ping the content shape first, then use the upsampled crop
region as the crop region of the high resolution models.
Moreover, since most man-made shapes are symmetric, we
assume all training shapes possess bilateral symmetry, and
hence only generate half of the shape.

Another important consideration is that voxels are ex-
pected to hold binary values, as opposed to continuous in-
tensities in images. As reported in the supplementary ma-
terial of IM-NET [9], a naive GAN with CNN architectures
performs poorly on binary images, as pixels with any value
other than 0 or 1 will be considered as fake by the discrim-
inator, thus preventing continuous optimization. We follow
the approach in IM-NET and apply a Gaussian filter with
σ = 1.0 to the training high-resolution voxel grids to make
the boundary smoother, as a pre-processing step. We pro-
vide some analysis in Sec 4.4.

We set α = 0.2 for car, α = 0.1 for airplane, and α =
0.5 for chair. We set β = 10.0. More discussion about
the parameters can be found in Sec 4.4. We train individual
models for different categories for 20 epochs on one Nvidia
Tesla V100 GPU; training each model takes 6 to 24 hours
depending on the category.

4. Results and evaluation
We conducted experiments on three categories from

ShapeNet [5]: car, airplane, and chair. We use only the



bilaterally-symmetric models, apply an 80% / 20% train/test
split of the coarse content shapes, and select 64 fine de-
tailed shapes. We choose a 643 voxel resolution for coars-
ening airplanes and cars, and a coarser resolution of 323 for
chairs to further remove topological details. Note that our
network is designed to upsample any input by 4 times. We
use marching cubes [30] to extract the surfaces visualized in
the figures. More categories (table, motorbike, laptop, and
plant) can be found in the supplementary, where we lift the
bilateral symmetry assumption for some categories.

4.1. Style-content hybrids

In Figure 3, we show results obtained by upsampling a
content shape with a latent code to guide the style of the out-
put shape. While the style-specific discriminator encourages
the generator to use style-appropriate patches, the global
discriminator ensures that in case no such plausible patches
exist, the generator will compromise on using patches from
other styles and not generate implausible details. More re-
sults can be found in the supplementary.

4.2. Latent space

We can explore styles in a continuous way within the 8-
dimensional latent space of styles, and have created a GUI
app for it (see Sec 4.5). We visualize the chair style space
in Figure 4, revealing grouping of similar styles.

4.3. Evaluation metrics

We now discuss the metrics used to evaluate our method.
See the supplementary for the full details. Strict-IOU mea-
sures the Intersection over Union between the downsam-
pled output voxels and the input voxels to evaluate how
much the output respects the input. Loose-IOU is a relaxed
version of Strict-IOU, which computes the percentage of
occupied voxels in the input that are also occupied in the
downsampled output. Local Plausibility (LP) is defined as
the percentage of local patches in the output shape that are
“similar” (according to IOU or F-score) to at least one lo-
cal patch in the detailed shapes, which defines the metrics
LP-IOU and LP-F-score. We evaluate the Diversity (Div)
of the output shapes by computing the percentage of output
shapes that are consistent with their input style code. An
output shape with input style code zs whose local patches
are most similar to those of the detailed shape s is consid-
ered as a “consistent” output. We measure Div-IOU and
Div-F-score according to similarity metrics for patches. We
evaluate the plausibility of the generated shapes by training
a classifier to distinguish generated and real shapes, and use
the mean classification accuracy as Cls-score. Following
Fréchet Inception Distance (FID) [23], we use FID to com-
pare the output shapes with all available shapes in a cate-
gory, denoted as FID-all; or only the detailed shapes pro-
viding styles, denoted as FID-style. For Cls-score and FID,

a lower score is better; for others, a higher score is better.

4.4. Ablation study

We now verify the necessity of the various parts of our
network. We report the quantitative results for chairs in this
section, and other categories in the supplementary.

Generator and Discriminator Masks. In Table 1, and
Figure 5 (top) we compare our proposed method with sev-
eral variations on it: a. Recon. only, in which we remove the
discriminator and train the network with onlyLrecon, to val-
idate the effectiveness of adversarial training. This results
in the network essentially mode-collapsing (reflected by the
low Div scores). b. No Gen. mask, in which we remove the
generator mask. To still respect the input shape, we add a
loss term to punish any voxels generated outside the gener-
ator mask. This results in comparable performance to our
method locally, but since the generator needs to allocate a
portion of its capacity to ensure no voxels are generated out-
side the generator mask, it is left with less capacity for gen-
erating the output shape. This is reflected in deterioration
of global plausibility (reflected by the higher Cls-score). c.
Strict Gen. mask, in which we use the un-dilated, “strict”
generator mask, which results in a harsh drop in quality. d.
No Dis. mask, in which we remove the discriminator mask,
performs even worse, with some outputs completely empty,
because patches with no occupied voxels are considered as
real by the discriminator. e. Conditional Dis. 1, in which
we remove both the generator mask and the discriminator
mask, and condition the discriminator on the occupancy of
the input coarse voxels, i.e., a conditional GAN. In this set-
ting, each discriminator output will have a receptive field of
13 in the input coarse voxels. This leads to failure in gen-
erating diverse outputs, possibly due to the discriminator
wasting capacity on parsing the input conditions. f. Con-
ditional Dis. 3 modifies the receptive field of Conditional
Dis. 1 to 33, but runs into similar issues.

One may notice that there is a considerable difference be-
tween LP-IOU and LP-F-score, and they sometimes contra-
dict each other. This is due to IOU being sensitive to small
perturbations on the surface, especially when the structure
is thin. F-score, on the other hand, is less sensitive. Due to
the strictness of IOU, Div-IOU is usually higher than Div-
F-score. In addition, we observe that Cls-score is consistent
with apparent visual quality. Therefore, in the following,
we only report Loose-IOU, LP-F-score, Div-IOU and Cls-
score. The full tables can be found in supplementary.

We also show the effect of the generator mask in Fig-
ure 6. Evidently, the raw generator output (b) has various ar-
tifacts outside the masked region, which are removed upon
applying the generator mask (a). However, new artifacts
may be created in the process, such as the one shown in
(c). Finding the connected components of (c) from (b) can
remove such artifacts.



Figure 3: Results by upsampling coarse voxels with different style codes. In each table, we show on the top the detailed
shapes that correspond to the input style codes. We show the input coarse voxel models on the left, where chairs are 323 and
the others are 643.



Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Div-IOU ↑ Div-F-score ↑ Cls-score ↓ FID-all ↓ FID-style ↓
Recon. only 0.976 0.993 0.260 0.935 0.325 0.188 0.627 53.2 411.7
No Gen. mask 0.655 0.792 0.452 0.973 0.825 0.806 0.672 121.9 379.9
Strict Gen. mask 0.587 0.587 0.344 0.941 0.150 0.100 0.750 305.5 548.2
No Dis. mask 0.145 0.167 N/A N/A N/A N/A 0.843 2408.9 2714.1
Conditional Dis. 1 0.947 0.981 0.259 0.949 0.291 0.194 0.593 51.3 402.7
Conditional Dis. 3 0.928 0.977 0.246 0.963 0.197 0.206 0.603 55.8 418.2
Proposed method 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5

Table 1: Ablation on the generator and discriminator masks. “N/A” is due to empty outputs. Best results are marked in bold.

Figure 4: Visualization of 64 latent codes for chairs via T-
SNE embedding. For each latent code, the corresponding
style shape is displayed in its location.

Figure 5: Ablation study. The input content shape and style
code are shown on the left. The result with our default pa-
rameters is placed inside a box.

Parameter α and the number of styles. In Tables 2
we show results of setting the parameter α to values
0.0, 0.2, 0.5, as well as completely omitting Lglobal

GAN , which
can be seen as using a very large α that would dominate the
other terms. α controls the trade-off between global plausi-
bility (and respecting the coarse content), and adherence to
the style code. As shown by the increase in Div-IOU, the
higher α is, the more stylized the output will be. However,

16 detailed shapes as styles
Loose-IOU ↑ LP-F-score ↑ Div-IOU ↑ Cls-score ↓

α = 0.0 0.840 0.956 0.147 0.695
α = 0.2 0.750 0.971 0.875 0.667
α = 0.5 0.738 0.970 0.997 0.690
No Lglobal

GAN 0.735 0.963 1.000 0.692
32 detailed shapes as styles

α = 0.0 0.864 0.962 0.184 0.598
α = 0.2 0.812 0.974 0.838 0.636
α = 0.5 0.757 0.974 0.934 0.662
No Lglobal

GAN 0.728 0.969 0.997 0.690
64 detailed shapes as styles

α = 0.0 0.868 0.983 0.163 0.589
α = 0.2 0.864 0.985 0.353 0.619
α = 0.5 0.805 0.973 0.800 0.644
No Lglobal

GAN 0.741 0.965 0.950 0.669

Table 2: Ablation on parameter α and the number of styles.

Figure 6: The effectiveness of the generator mask. This
example is taken from row 2, column 5 of Figure 3.

the decrease in Loose-IOU and increase in Cls-score hint
that a higher α also makes the output less considerate of the
content and less globally plausible. This can also be seen in
the qualitative results in Figure 5 (bottom).

Simultaneously, we also test the effect of varying the size
of the detailed-shape dataset used in training, between 16,
32, and 64. As expected, both Cls-score and Loose-IOU
monotonically improve with the increase in dataset size,
showing plausibility improves, because the network has a
larger collection of patches to choose from. This can be
seen in Figure 5 (g), where the network was trained with
16 detailed shapes, and generated small bumps on the seat
and the back, clearly stemming from a vestige of the arm.
The same phenomenon can be found in (l) where there is no
global discriminator. By increasing the size of the detailed-
shape dataset, the vestige disappears and the back becomes
more square-like, as shown in (g) (h) (k).

Gaussian filter. The effect of the preprocessing with the
Gaussian filter blurring of the detailed shapes is shown in
Table 3 and Figure 7. The larger σ is, the more blurry the
training high-resolution voxels are, and the better the opti-
mization goes. Without the Gaussian filter (σ = 0.0), the
output looks like (a) Recon. only in Figure 5, indicating that



Figure 7: Ablation study on σ of the Gaussian filter. The
input content shape and style code are shown on the left.
The result with default parameters is placed inside a box.

Loose-IOU ↑ LP-F-score ↑ Div-IOU ↑ Cls-score ↓
σ = 0.0 0.952 0.943 0.153 0.544
σ = 0.5 0.919 0.952 0.172 0.580
σ = 1.0 0.805 0.973 0.800 0.644
σ = 1.5 0.719 0.985 0.944 0.667
σ = 2.0 0.614 0.982 0.575 0.711

Table 3: Ablation on σ of the Gaussian filter.

the network may have reached a state where it is not easy to
optimize a local patch to other styles, because the patches
of different styles are not continuous for the optimization.
As σ is increased, the output shape becomes more styl-
ized, however above some threshold, the shape becomes too
blurry to be reconstructed, especially thin structures. Pro-
gressive training, where the network is trained with larger
σ then switches to smaller and smaller σs during multiple
steps, may work better.

4.5. GUI application

As an application of our method, we have created a GUI
application where a user can explore the style space, to fa-
cilitate interactive design. Please refer to the supplementary.

4.6. GAN application

Since state-of-the-art 3D GANs are unable to generate
detailed outputs, our method can be used directly to upsam-
ple a GAN-generated shape into a detailed shape, as long
as the GAN output can be converted into a voxel grid. In
Figures 8, we show results on upsampling shapes from IM-
GAN [9]. See more results in the supplementary.

5. Conclusion, limitation, and future work
This paper introduces the first method to perform high-

resolution conditional detail-generation for coarse 3D mod-
els represented as voxels. The coarse input enables con-
trol over the general shape of the output, while the input
style code enables control over the type of details gener-
ated, which in tandem yield a tractable method for generat-
ing plausible variations of various objects, either driven by
humans or via automatic randomized algorithms.

One main limitation is memory, similar to other voxel
methods: a high-resolution voxel model, e.g., 2563, over-
flows GPU memory when upsampled to 10243. We would
like to explore more local networks to upsample patch-by-
patch, or a recursive network. A second limitation is that

Figure 8: Upsampling GAN-generated shapes into detailed
shapes. In the first row we show a sequence of generated
shapes from IM-GAN via linearly interpolating two random
latent codes. The last two rows show our upsampled results.

Figure 9: Sensitivity on parameter α. The input content
shape and style code are shown on the left.

we mainly transfer local patches from the training shapes
to the target. Therefore, we cannot generate unseen pat-
terns, e.g., a group of slats on a chair back with a different
frequency from those on training shapes, see last row of
Figure 8. The network also lacks awareness to global struc-
tures and in some cases the generated shapes may present
topological inconsistencies, see, e.g., second-to-last row of
Figure 3. Lastly, as is often the case with GAN training, pa-
rameter tuning may be elaborate and fragile, see Figure 9.

Many immediate follow-ups suggest themselves. One
would be to learn a meaningful, smooth, latent space, so that
all latent codes will produce valid styles and latent space in-
terpolation produce smooth transitions. Likewise, exploring
hierarchies of details could enable more elaborate and con-
sistent output. A complete decoupling of fine details, the
coarse shape, and the semantic shape category is also inter-
esting as it would enable training across larger collections
of shapes, with the same styles employed across different
shape categories. Lastly, we of course eye various advance-
ments in voxel representation to reach higher resolutions.

We are excited about the future prospects of this work for
detailization of 3D content. Immediate applications include
amplification of stock data, image-guided 3D style genera-
tion, and enabling CAD-like edits that preserve fine detail.
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[19] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hi-
erarchical surface prediction for 3D object reconstruction. In
3DV, 2017. 2

[20] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-
Or. Point2mesh: A self-prior for deformable meshes. ACM
Trans. Graph., 2020. 2

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 12

[22] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-
Or. Deep geometric texture synthesis. ACM Trans. Graphics,
2020. 1, 2

[23] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local Nash equi-
librium. In NeurIPS, 2017. 5, 12

[24] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 3

[25] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In CVPR, 2020. 3

[26] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe
Shi. Photo-realistic single image super-resolution using a
generative adversarial network. In CVPR, 2017. 2

[27] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. GRASS: Generative recursive
autoencoders for shape structures. ACM Trans. Graphics,
2017. 1

[28] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In NeurIPS, 2017. 3

[29] Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaud-
huri, Noam Aigerman, and Alec Jacobson. Neural subdivi-
sion. ACM Trans. Graphics, 2020. 1, 2

[30] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3D surface construction algorithm. In SIG-
GRAPH, 1987. 5

[31] Chongyang Ma, Haibin Huang, Alla Sheffer, Evangelos
Kalogerakis, and Rui Wang. Analogy-driven 3D style trans-
fer. Computer Graphics Forum (Proc. Eurographics), 2014.
2

[32] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares generative
adversarial networks. In ICCV, 2017. 4

[33] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In CVPR,
2019. 2

[34] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:



Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[35] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,
Niloy Mitra, and Leonidas Guibas. StructureNet: Hierarchi-
cal graph networks for 3D shape generation. ACM Trans.
Graphics, 2019. 1

[36] Charlie Nash, Yaroslav Ganin, SM Eslami, and Peter W
Battaglia. Polygen: An autoregressive generative model of
3D meshes. arXiv preprint arXiv:2002.10880, 2020. 2

[37] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, 2019. 3

[38] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli
Shechtman, Alexei Efros, and Richard Zhang. Swapping au-
toencoder for deep image manipulation. NeurIPS, 2020. 3

[39] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. ECCV, 2020. 2

[40] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017. 2

[41] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3D representations at high resolu-
tions. In CVPR, 2017. 2

[42] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training GANs. In NeurIPS, 2016. 12

[43] Irina Sánchez and Verónica Vilaplana. Brain MRI super-
resolution using 3d generative adversarial networks. In First
International Conference on Medical Imaging with Deep
Learning, Amsterdam, 2018. 2

[44] Edward Smith, Scott Fujimoto, and David Meger. Multi-
view silhouette and depth decomposition for high resolution
3D object representation. In NeurIPS, 2018. 2

[45] Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha
Chaudhuri, and Leonidas Guibas. ComplementMe: Weakly-
supervised component suggestions for 3d modeling. SIG-
GRAPH Asia, 2017. 1

[46] Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo
Igarashi, Tamy Boubekeur, and Olga Sorkine-Hornung.
GeoBrush: Interactive mesh geometry cloning. Computer
Graphics Forum (Proc. Eurographics), 2011. 2

[47] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2Mesh: Generating 3D mesh
models from single RGB images. In ECCV, 2018. 2

[48] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-CNN: Octree-based convolutional neural
networks for 3D shape analysis. In SIGGRAPH, 2017. 1, 2

[49] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3D generative-adversarial modeling. In
NeurIPS, 2016. 1, 2, 3

[50] Ruidi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan
Chen. PQ-NET: A generative part Seq2Seq network for 3D
shapes. In CVPR, 2020. 1

[51] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. DISN: Deep implicit surface

network for high-quality single-view 3D reconstruction. In
NeurIPS, 2019. 2

[52] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingNet: Point cloud auto-encoder via deep grid deformation.
In CVPR, 2018. 2

[53] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3D deformations. In CVPR, 2020. 3

[54] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and
Olga Sorkine-Hornung. Patch-based progressive 3D point
set upsampling. In CVPR, 2019. 2

[55] Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Des-
brun, Baining Guo, and Heung-Yeung Shum. Mesh quilting
for geometric texture synthesis. ACM Trans. Graphics, 2006.
2



A. Supplementary material

A.1. Details of network architectures

We provide detailed architectures of the generator and
the discriminator used in our system in Figure 10. We train
individual models for different categories for 20 epochs on
one Nvidia Tesla V100 GPU. Training each model takes
approximately 6 hours for category chair, 12 hours for air-
plane, and 24 hours for car. The training batch size is set
to 1. We use Adam optimizer with lr=0.0001, beta1=0.9,
beta2=0.999.

A.2. The generator and discriminator masks

First, To ensure each empty voxel in the input content
shape leads to empty voxels in its corresponding area of the
output, we mask out voxels generated outside a predefined
valid region. The region is denoted as the generator mask.
There are two masking options: the “strict” generator mask,
by upsampling the occupied voxels in the content shape to
the desired resolution; and the “loose” generator mask, by
upsampling the occupied voxels in the content shape after
dilating them by 1 voxel. In both cases we use nearest-
neighbor upsampling. In our system, we apply the “loose”
generator mask to the raw generator output to keep only
voxels within the area of the mask. The reason for using the
“loose” mask is to allow the generator to have some free-
dom to accommodate for different styles as well as allow
for more topological variations as the dilation may close
holes. The generator mask enables the generator to focus
its capacity solely on producing plausible voxels within the
valid region.

Second, to ensure each occupied voxel in the input con-
tent shape leads to creation of fine voxels in its correspond-
ing area of the output, we require that an occupied coarse
voxel is also occupied in the downsampled version of the
generator output. We achieve this by training the discrim-
inator to penalize lack of voxels. If all real patches used
in training have at least one voxel occupied at their cen-
ter 43 areas, then any patches that have empty 43 center
areas will be considered fake under the view of the dis-
criminator. Therefore, the discriminator will encourage all
input patches to have occupied voxels in their center ar-
eas. Hence, we can encourage voxels to be generated in-
side the desired region by a. training the discriminator us-
ing patches with occupied center areas as real patches, and
b. training the generator by feeding to the discriminator
those local patches that should have their center areas oc-
cupied. These two can be done easily by applying binary
masks to the discriminator to only keep the signals of the de-
sired patches. For the real patches, given a detailed shape,
we can obtain a discriminator mask by checking each lo-
cal patch for whether their center areas are occupied by at
least one voxel. For the fake (generated) shape, we obtain

its discriminator mask by upsampling the content shape via
nearest-neighbor. In our experiments, we use discriminator
masks with 1/2 of the resolution of the detailed shapes so
that the entire model can fit into the GPU memory.

A.3. Style-content hybrids

We show more results of style-content hybrid shapes in
Figure 11 12 13 14 15 16 17. Note that we lift the bilat-
eral symmetry assumption for category motorbike, laptop,
and plant.

A.4. Latent space

We show a visualization of the style space for airplanes
in Figure 18 and cars in Figure 19. The visualization for
chairs can be found in the main paper.

A.5. Evaluation metrics

To quantitatively evaluate the quality of the generated
shapes, we propose the following metrics.

Strict-IOU and Loose-IOU. (higher better) Ideally, the
downsampled version of a generator output should be iden-
tical to the input content shape. Therefore, we can use the
IOU (Intersection over Union) between the downsampled
voxels and the input voxels to evaluate how much the output
shape respects the input. We use max-pooling as the down-
sampling method, and the Strict-IOU is defined as described
above. However, since we relaxed the constraints (see Sec
3.1 of the main paper) so that the generator is allowed to
generate shapes in a dilated region, we define Loose-IOU
as a relaxed version of IOU to ignore the voxels in the di-
lated portion of the input:

Loose-IOU =
|Vin ∩ (Vout ∩ Vin)|
|Vin ∪ (Vout ∩ Vin)|

=
|Vin ∩ Vout|
|Vin|

. (9)

where Vin and Vout are input voxels and downsampled out-
put voxels, and |V | counts the number of occupied voxels in
V . Note that our generated shape is guaranteed to be within
the region of the dilated input due to the generator mask.

LP-IOU and LP-F-score (higher better). If all local
patches from an output shape are copied from the given de-
tailed shapes, it is likely that the output shape looks plausi-
ble, at least locally. Therefore, we define the Local Plausi-
bility (LP) to be the percentage of local patches in the output
shape that are “similar” to at least one local patch in the de-
tailed shapes. Specifically, we define the distance between
two patches to be their IOU or F-score. For LP-IOU, we
mark the two patches as “similar” if the IOU is above 0.95;
for LP-F-score, we mark “similar” if the F-score is above
0.95. The F-score is computed with a distance threshold
of 1 (voxel). In our experiments, we sample 123 patches



in a voxel model. The patch size is a bit less than the re-
ceptive field of our discriminator to reduce computational
complexity. In addition, we want to avoid sampling fea-
tureless patches that are mostly inside or outside the shape,
therefore we only sample surface patches that have at least
one occupied voxel and one unoccupied voxel at their cen-
ter 23 areas. We sample 1000 patches in each testing shape,
and compare them with all possible patches in the detailed
shapes.

Div-IOU and Div-F-score (higher better). For the same
input shape, different style codes should produce different
outputs respecting the styles. Therefore, we want to have
a metric that evaluates the diversity of the outputs with re-
spect to the styles. During the computation of the LP, we
obtain Nijk, the number of local patches from input i, up-
sampled with style j, that are “similar” to at least one patch
in detailed shape k. In an ideal case, any input i upsam-
pled with style j only copies patches from detailed shape
j, therefore we have j = maxkNijk. However, since the
input shape might introduce style bias (e.g., a local struc-
ture that can only be found in a specific detailed shape), we
denote Nik to be the mean of Nijk over all possible j, and
use it to remove such bias. The diversity is defined as

Div = Ei,j [1(j = argmaxk(Nijk −Nik))]. (10)

We obtain Div-IOU and Div-F-score based on the distance
metrics for patches.

Cls-score (lower better). If the generated shapes are in-
distinguishable from real samples, a well-trained classifica-
tion network will not be able to classify whether a shape is
real or fake. We can evaluate the plausibility of the gener-
ated shapes by training such a network and inspect the clas-
sification score. However, the network may easily overfit
if we directly input 3D voxel models, since we have lim-
ited amount of real data. Therefore, we opt to use rendered
images for this task. We train a ResNet [21] using high-
resolution voxels (from which content shapes are downsam-
pled) as real samples, and our generated shapes as fake sam-
ples. The samples are rendered to obtain 24 2562 images
from random views. The images are randomly cropped to
10 642 small patches and feed into the network for training.
We use the mean classification accuracy as the metric for
evaluating plausibility, denoted as Cls-score.

FID-all and FID-style (lower better). Since our method
generates shapes for a single category, it is not well suited
for evaluation with Inception Score [42]. However, we bor-
row the idea from Fréchet Inception Distance (FID) [23]
and propose a customized FID as follows. We first train a
3D CNN classification network on ShapeNet with 1283 or

2563 voxels depending on the input resolution. Afterwards,
we use the last hidden layer (512-d) as the activation fea-
tures for computing FID. We use FID to compare our gener-
ated shapes with all high-resolution voxels from which con-
tent shapes are downsampled, denoted as FID-all; or with a
group of detailed shapes, denoted as FID-style.

Evaluation details For LP and Div, we evaluate on 320
generated shapes (20 contents × 16 styles) since they are
computationally expensive. For other metrics we evaluate
on 1600 generated shapes (100 contents × 16 styles). We
evaluate Div and FID-style with the first 16 styles, and LP
with all 64 styles.

A.6. Ablation study

We provide all quantitative results for our ablation exper-
iments in this section. The numbers for chairs can be found
in Table 4. The numbers for cars can be found in Table 5.
The numbers for airplanes can be found in Table 6.

A.7. GUI application

The video is available at https://youtu.be/xIQ0aslpn8g.
We obtain the 2D style space via T-SNE embedding. After-
wards, we consider each style as a 2D point and obtain the
Delaunay triangulation of the 2D style space. The 8D latent
style code for a given 2D point can be computed by finding
which triangle it is inside and compute a linear interpola-
tion among the three 8D latent codes of the three vertices
via barycentric coordinates.

https://youtu.be/xIQ0aslpn8g


Figure 10: The detailed network architectures. Note that the generator for category chair with 323 inputs has smaller receptive
fields by replacing all kernel-5 convolution layers with kernel-3 convolution layers.



Figure 11: Results by upsampling coarse chairs with different style codes. We show on the top the detailed shapes that
correspond to the input style codes. The input shapes are coarse voxels in the first 6 rows, and downsampled versions of
shapes generated by IM-GAN [9] in the last 5 rows. The input resolution is 323 and the output resolution is 1283.



Figure 12: Results by upsampling coarse cars with different style codes. We show on the top the detailed shapes that
correspond to the input style codes. The input shapes are coarse voxels in the first 8 rows, and downsampled versions of
shapes generated by IM-GAN [9] in the last 8 rows. The input resolution is 643 and the output resolution is 2563.



Figure 13: Results by upsampling coarse airplanes with different style codes. We show on the top the detailed shapes that
correspond to the input style codes. The input shapes are coarse voxels in the first 6 rows, and downsampled versions of
shapes generated by IM-GAN [9] in the last 7 rows. The input resolution is 643 and the output resolution is 2563.



Figure 14: Results by upsampling coarse tables with different style codes. We show on the top the detailed shapes that
correspond to the input style codes. The input shapes are coarse voxels. The input resolution is 163 and the output resolution
is 1283.



Figure 15: Results by upsampling coarse motorbikes with different style codes. Note that we lift the bilateral symmetry
assumption for this category. We show on the top the detailed shapes that correspond to the input style codes. The input
shapes are coarse voxels. The input resolution is 643 and the output resolution is 2563.



Figure 16: Results by upsampling coarse laptops with different style codes. Note that we lift the bilateral symmetry assump-
tion for this category. We show on the top the detailed shapes that correspond to the input style codes. The input shapes are
coarse voxels. The input resolution is 323 and the output resolution is 2563.



Figure 17: Results by upsampling coarse plants with different style codes. Note that we lift the bilateral symmetry assumption
for this category. We show on the top the detailed shapes that correspond to the input style codes. The input shapes are coarse
voxels. The input resolution is 323 and the output resolution is 2563.



Figure 18: Visualization of 64 latent codes for airplanes via T-SNE embedding. For each latent code, the corresponding style
shape is displayed in its location.



Figure 19: Visualization of 64 latent codes for cars via T-SNE embedding. For each latent code, the corresponding style
shape is displayed in its location.



Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Div-IOU ↑ Div-F-score ↑ Cls-score ↓ FID-all ↓ FID-style ↓
Recon. only 0.976 0.993 0.260 0.935 0.325 0.188 0.627 53.2 411.7
No Gen. mask 0.655 0.792 0.452 0.973 0.825 0.806 0.672 121.9 379.9
Strict Gen. mask 0.587 0.587 0.344 0.941 0.150 0.100 0.750 305.5 548.2
No Dis. mask 0.145 0.167 N/A N/A N/A N/A 0.843 2408.9 2714.1
Conditional Dis. 1 0.947 0.981 0.259 0.949 0.291 0.194 0.593 51.3 402.7
Conditional Dis. 3 0.928 0.977 0.246 0.963 0.197 0.206 0.603 55.8 418.2
Proposed method* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
α = 0.0, N = 16 0.704 0.840 0.604 0.956 0.147 0.128 0.695 111.2 409.7
α = 0.2, N = 16 0.583 0.750 0.527 0.971 0.875 0.934 0.667 115.5 371.5
α = 0.5, N = 16 0.570 0.738 0.506 0.970 0.997 0.972 0.690 114.1 367.1
No Lglobal

GAN , N = 16 0.558 0.735 0.491 0.963 1.000 0.981 0.692 125.9 390.3
α = 0.0, N = 32 0.763 0.864 0.551 0.962 0.184 0.156 0.598 131.2 391.7
α = 0.2, N = 32 0.652 0.812 0.495 0.974 0.838 0.831 0.636 103.6 390.1
α = 0.5, N = 32 0.598 0.757 0.470 0.974 0.934 0.934 0.662 111.1 380.0
No Lglobal

GAN , N = 32 0.561 0.728 0.462 0.969 0.997 0.984 0.690 109.1 368.2
α = 0.0, N = 64 0.798 0.868 0.496 0.983 0.163 0.128 0.589 162.5 405.2
α = 0.2, N = 64 0.781 0.864 0.423 0.985 0.353 0.334 0.619 109.2 370.3
α = 0.5, N = 64* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
No Lglobal

GAN , N = 64 0.578 0.741 0.426 0.965 0.950 0.988 0.669 116.3 381.8
σ = 0.0 0.915 0.952 0.435 0.943 0.153 0.125 0.544 71.9 385.7
σ = 0.5 0.869 0.919 0.493 0.952 0.172 0.144 0.580 101.2 379.5
σ = 1.0* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
σ = 1.5 0.592 0.719 0.296 0.985 0.944 0.903 0.667 171.2 413.0
σ = 2.0 0.565 0.614 0.208 0.982 0.575 0.666 0.711 244.8 482.7
β = 0.0 0.730 0.815 0.279 0.967 0.178 0.269 0.669 129.9 391.1
β = 5.0 0.652 0.785 0.448 0.974 0.822 0.775 0.642 135.4 378.7
β = 10.0* 0.673 0.805 0.432 0.973 0.800 0.816 0.644 113.1 372.5
β = 15.0 0.677 0.803 0.443 0.974 0.788 0.744 0.660 132.2 391.2
β = 20.0 0.672 0.794 0.422 0.976 0.797 0.813 0.651 125.0 380.8

Table 4: Quantitative results for our ablation experiments on chairs. “N/A” is due to empty outputs. The models with * are
the same model.



Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Div-IOU ↑ Div-F-score ↑ Cls-score ↓ FID-all ↓ FID-style ↓
Recon. only 0.991 0.998 0.760 0.998 0.172 0.084 0.493 153.4 457.0
No Gen. mask 0.957 0.988 0.741 0.998 0.928 0.825 0.506 72.7 347.2
Strict Gen. mask 0.829 0.829 0.751 0.995 0.159 0.084 0.538 303.2 569.3
No Dis. mask 0.908 0.930 0.722 0.999 0.356 0.359 0.511 81.6 274.4
Conditional Dis. 1 0.924 0.947 0.738 0.999 0.997 0.853 0.501 119.6 427.2
Conditional Dis. 3 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
Proposed method* 0.953 0.964 0.730 0.998 0.584 0.456 0.494 113.8 401.7
α = 0.0, N = 16 0.882 0.987 0.832 0.996 0.275 0.238 0.600 1069.9 1478.7
α = 0.2, N = 16 0.905 0.978 0.766 0.998 1.000 0.934 0.506 79.8 372.3
α = 0.5, N = 16 0.909 0.975 0.772 0.999 1.000 0.941 0.492 84.5 377.7
No Lglobal

GAN , N = 16 0.900 0.972 0.764 0.998 1.000 0.947 0.500 79.6 377.2
α = 0.0, N = 32 0.927 0.987 0.844 0.999 0.134 0.128 0.582 875.2 1251.7
α = 0.2, N = 32 0.932 0.985 0.753 0.999 1.000 0.831 0.498 86.5 373.2
α = 0.5, N = 32 0.922 0.979 0.756 0.999 1.000 0.909 0.507 77.2 356.1
No Lglobal

GAN , N = 32 0.910 0.970 0.745 0.998 1.000 0.928 0.497 68.0 357.1
α = 0.0, N = 64 0.959 0.987 0.825 0.998 0.091 0.119 0.517 651.9 1019.5
α = 0.2, N = 64* 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
α = 0.5, N = 64 0.942 0.986 0.767 0.999 0.975 0.806 0.500 123.9 414.1
No Lglobal

GAN , N = 64 0.927 0.976 0.739 0.998 1.000 0.931 0.502 62.6 338.2
σ = 0.0 0.977 0.994 0.763 0.995 0.119 0.075 0.499 223.3 548.7
σ = 0.5 0.981 0.996 0.773 0.998 0.084 0.100 0.481 284.4 626.9
σ = 1.0* 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
σ = 1.5 0.938 0.983 0.750 0.999 0.991 0.838 0.490 85.6 363.9
σ = 2.0 0.953 0.979 0.780 0.999 0.744 0.438 0.505 151.9 448.2
β = 0.0 0.725 1.000 0.000 0.999 1.000 0.081 0.754 2759.8 3273.4
β = 5.0 0.946 0.986 0.745 0.999 0.975 0.866 0.490 57.2 320.2
β = 10.0* 0.955 0.988 0.759 0.999 0.956 0.706 0.490 83.1 364.1
β = 15.0 0.958 0.989 0.753 0.999 0.894 0.753 0.500 75.8 350.0
β = 20.0 0.950 0.985 0.750 0.998 0.994 0.878 0.505 64.7 334.8

Table 5: Quantitative results for our ablation experiments on cars. The models with * are the same model.



Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Div-IOU ↑ Div-F-score ↑ Cls-score ↓ FID-all ↓ FID-style ↓
Recon. only 0.966 0.980 0.465 0.999 0.166 0.100 0.493 64.8 328.6
No Gen. mask 0.884 0.934 0.477 0.999 0.413 0.259 0.525 66.1 323.7
Strict Gen. mask 0.487 0.487 0.380 0.974 0.069 0.072 0.642 1252.5 1196.9
No Dis. mask 0.508 0.564 0.277 0.998 0.084 0.141 0.539 552.6 859.4
Conditional Dis. 1 0.782 0.855 0.477 0.997 0.347 0.294 0.493 667.5 773.1
Conditional Dis. 3 0.809 0.854 0.443 0.996 0.094 0.119 0.524 717.4 795.9
Proposed method* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
α = 0.0, N = 16 0.843 0.921 0.510 0.999 0.069 0.059 0.516 93.9 331.7
α = 0.1, N = 16 0.764 0.890 0.487 0.997 0.825 0.659 0.502 100.6 307.7
α = 0.2, N = 16 0.720 0.845 0.501 0.990 0.994 0.897 0.504 106.3 308.0
No Lglobal

GAN , N = 16 0.657 0.805 0.516 0.986 1.000 0.947 0.504 132.5 354.9
α = 0.0, N = 32 0.883 0.946 0.503 1.000 0.059 0.066 0.515 95.2 350.9
α = 0.1, N = 32 0.835 0.926 0.459 0.999 0.734 0.538 0.503 71.4 329.4
α = 0.2, N = 32 0.777 0.887 0.481 0.997 0.947 0.788 0.520 79.5 325.6
No Lglobal

GAN , N = 32 0.675 0.818 0.493 0.989 1.000 0.941 0.493 135.2 377.0
α = 0.0, N = 64 0.898 0.959 0.499 0.999 0.059 0.056 0.503 80.2 353.6
α = 0.1, N = 64* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
α = 0.2, N = 64 0.831 0.921 0.463 0.998 0.756 0.600 0.498 67.7 332.0
No Lglobal

GAN , N = 64 0.707 0.833 0.478 0.991 0.997 0.934 0.489 105.8 354.8
σ = 0.0 0.802 0.892 0.422 0.988 0.059 0.041 0.495 205.1 363.0
σ = 0.5 0.883 0.911 0.464 0.997 0.066 0.084 0.508 81.7 327.2
σ = 1.0* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
σ = 1.5 0.845 0.899 0.451 0.997 0.469 0.409 0.518 175.2 372.7
σ = 2.0 0.730 0.767 0.534 0.993 0.278 0.384 0.549 847.1 818.3
β = 0.0 0.384 1.000 0.000 0.940 0.659 0.050 0.811 6342.0 5491.9
β = 5.0 0.892 0.948 0.460 0.999 0.325 0.188 0.492 73.2 310.0
β = 10.0* 0.875 0.947 0.474 0.998 0.516 0.353 0.487 57.3 340.9
β = 15.0 0.895 0.952 0.468 0.999 0.450 0.319 0.500 63.8 354.6
β = 20.0 0.872 0.946 0.459 0.998 0.531 0.475 0.517 69.2 311.6

Table 6: Quantitative results for our ablation experiments on airplanes. The models with * are the same model.


