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Abstract
Several applications in shape modeling and exploration require identification and extraction of a 3D shape part matching a
2D sketch. We present CustomCut, an on-demand part extraction algorithm. Given a sketched query, CustomCut automatically
retrieves partially matching shapes from a database, identifies the region optimally matching the query in each shape, and
extracts this region to produce a customized part that can be used in various modeling applications. In contrast to earlier work
on sketch-based retrieval of predefined parts, our approach can extract arbitrary parts from input shapes and does not rely
on a prior segmentation into semantic components. The method is based on a novel data structure for fast retrieval of partial
matches: the randomized compound k-NN graph built on multi-view shape projections. We also employ a coarse-to-fine strategy
to progressively refine part boundaries down to the level of individual faces. Experimental results indicate that our approach
provides an intuitive and easy means to extract customized parts from a shape database, and significantly expands the design
space for the user. We demonstrate several applications of our method to shape design and exploration.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Modeling—3D Shape Matching

1. Introduction

Sketch-based interfaces provide an intuitive way to create and ex-
plore three-dimensional shapes [OSSJ09]. Most shapes of interest
can be drawn, and most humans grow up with at least rudimentary
drawing skills [Dec88]. Most humans cannot, however, draw very
well. Hence, sketch-based interfaces need to interpret a crude draw-
ing and map it to a detailed shape. This problem could be tackled in
a data-driven manner: each sketched component is used to search a
repository for a high-quality shape with a matching part, which can
be extracted and incorporated into the design.

Matching a sketched component to a shape database is a chal-
lenging partial matching problem. In the general setting, an ar-
bitrary region of the shape may match the sketch. To reduce the
complexity, existing methods leverage a prior segmentation of each
shape into predefined semantic parts [LF08,XXM∗13]. These parts
are individually matched to the sketch, reducing the problem to one
of global, rather than partial matching [ERB∗12].

In this paper, we present CustomCut, a new end-to-end technique
for sketch-based customized part extraction. In contrast to prior

† Corresponding author: jin@cad.zju.edu.cn

work, we require no prior segmentation of the database shapes into
predefined parts. Instead, we perform on-demand segmentation of
retrieved database shapes, to accurately fit the user intent expressed
in the sketched stroke (Figure 1). This significantly expands the de-
sign space available to the user and enables several applications.

Designing such an algorithm presents hard technical challenges.
Since a presegmented (or prelabeled) database is not available to
us, we must simultaneously identify and extract parts that match
sketched strokes, resulting in a potentially infinite search space. To
prune this search space to a manageable size, we design a strategy
to carefully balance between returning all possible matches, and
providing an overly narrow set of matches. Further, the matching
scheme must be fast enough so that appropriate candidate parts can
be sought interactively. To address this challenge, we take a projec-
tive approach and turn the 3D partial matching problem into a 2D
contour-based one. The 2D contours of all database shapes are seg-
mented into fragments and organized based on fragment similarity,
using an efficient data structure. Given a query sketch, our method
can leverage the structure to quickly return all potentially matched
parts via contour matching and match propagation.

Our paper has two main technical contributions, which together
form the core of our algorithm:
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Figure 1: Given a roughly drawn sketch, our algorithm rapidly
searches a shape database to identify and extract customized parts
that match the sketch. No presegmentation is required: the retrieved
parts can be irregular and not match any standard segmentation.

• A fast, sketch-based, partial 3D shape matching method based
on multi-view projections. The projections are interlinked by
matching fragments across different shapes, based on a novel
randomized compound k-NN graph representation.

• A novel customized segmentation method based on a super-face
graph. The method quickly extracts candidate parts conforming
to a user’s sketch from a matched shape. The extraction employs
a coarse-to-fine strategy to progressively refine part boundaries
down to the level of individual faces.

2. Related work

Sketch-Based Shape Retrieval. With the rapid growth of 3D
shape data, fast and convenient content-based shape retrieval tech-
niques [TV08] have become important. Content-based methods
usually require a user to provide a 3D shape as a query, which intro-
duces a circular dependency in a 3D modeling scenario. In contrast,
sketch-based methods [FMK∗03,SXY∗11,ERB∗12] allow the user
to roughly draw the outline of the desired shape from one or more
viewpoints in 2D. This is typically a more intuitive and convenient
way to describe the user’s intention.

Lee and Funkhouser [LF08] develop a sketch-based system for
retrieving parts from a part database and incorporating them into a
3D model. Xie et al. [XXM∗13] propose a similar system for shape
editing by context-aware part replacement. These systems assume
the parts are pre-generated by automatic segmentation, and hence
retrieval reduces to global 2D-to-3D matching. The systems do not
allow the user to generate new parts with novel cuts, or retrieve
groups of pre-existing parts with one sketch. In contrast, our ap-
proach supports arbitrary cuts of exemplar shapes, driven by the
sketch. Further, because shapes are not pre-segmented, we must do
partial matching from 2D to 3D at interactive rates, which is a sig-
nificant technical challenge.

Shape Segmentation. Segmenting shapes into meaningful parts is
a fundamental problem in many computer graphics tasks and ap-
plications, and both automatic and manual approaches have been
developed to tackle this problem [Sha08, CGF09]. Recently, sev-
eral groups have explored methods for jointly segmenting a set of
shapes [KHS10, HFL, HKG11, SvKK∗11]. By considering a set of
shapes as a whole, the segmentation can exploit shared structure
and hence yield more coherent results. These works greatly ben-
efit exploratory modeling systems by providing an automatically
pre-segmented shape database for part suggestion and re-assembly.

In contrast to these systems, our approach does not assume a
pre-segmented and pre-labeled shape database. Instead, we retrieve
and segment shapes in real time based on a user sketch. Since, we
cannot anticipate the exact boundary of the sketch, an on-the-fly
and contour-aware segmentation method is required.

In contrast to sketch-based mesh cutting methods [FML12], we
do not know the source shape in advance, and we do not sketch
directly on the source shape. Instead, we perform 2D-3D partial
matching to automatically retrieve database shapes matching the
query sketch.

Exploratory Shape Modeling. The idea of incorporating
creativity-inspiring exemplar elements into conventional concep-
tual modeling has been an active topic for the past few years. Lee et
al. [LSK∗10] examine the efficicacy of using galleries of examples
for creativity support during the design process. Chaudhuri et
al. [CK10] mine a 3D shape database to suggest components to
creatively extend a base shape, based on geometric compatibility.
In subsequent work, the authors develop a statistical model of
shape semantics to improve the suggestions [CKGK11]. These
works build upon the Modeling by Example system of Funkhouser
et al. [FKS∗04], which allowed users to query shape databases
with 3D proxies for novel parts.

3. Overview

The pipeline of our algorithm is illustrated in Figure 2. It consists
of two phases: an offline phase and an online phase. In the offline
phase, we construct acceleration structures critical for interactive
on-demand part customization. In the online phase, we extract parts
in response to user sketches.

Offline Phase. First, we extract boundary contours [DFRS03] for
each model in the database from different camera views. Then,
we extract descriptors for the boundary contours at different scales
(Section 5.1).

Next, we organize all boundary contours of all models into a
compound k-nearest neighbors graph, for fast retrieval (Section 4).

Finally, we construct a compact representation of each database
shape: the super-face graph (Section 6.1). A super-face (analogous
to a superpixel [RM03]) is a group of adjacent, similar faces: fac-
toring a shape into its super-faces yields a lower-complexity repre-
sentation of the raw mesh. We use the super-face graph to quickly
extract the part corresponding to a matched query contour.
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Figure 2: Pipeline of our system. In the offline phase, for each model in a given shape database (a), we first extract its boundary contours (b).
We then construct the super-face graph for each model (c), and organize the boundary contours of all models into a randomized compound
k-NN graph (d). In the online phase, the user draws a rough sketch to convey his/her design intent (e). Regions of database shapes matching
the sketch are rapidly identified via partial shape matching (f). A selected part is further refined to optimize its boundary and better match
the sketch (g)

Online Phase. The input sketch is used to retrieve partially match-
ing shapes (via the k-NN graph) and identify their regions match-
ing the sketch (via the super-face graph). The boundary of each
such region is optimized by a coarse-to-fine segmentation strategy:
a rough boundary is first computed at the super-face level and then
refined at the raw face level. In contrast to other methods [Sha08],
our segmentation method takes contour perception, concavity, and
smoothness into consideration (Section 6.3).

4. Data Structure for Fast Partial Matching

At runtime, the user sketches a desired part. The system rapidly
searches the database to find parts matching the sketch. We sup-
port searching for arbitrarily shaped parts, not just those match-
ing a “standard” presegmentation. Hence, we must process each
database shape on the fly, identifying which section of the shape
matches the sketch. This requires an extremely fast 2D-3D partial
matching method.

To compare a 2D sketch to a larger 3D shape, we have two
choices: (a) to infer a 3D proxy from the sketch [IMT99] and match
it to the shape, or (b) to compare the sketch to the 2D contours of
the shape. We choose to do the latter for three reasons: (i) because
it avoids the inherent ambiguity in inferring 3D shape from a 2D
outline; (ii) because partial matching in 3D is significantly more
expensive; and (iii) because the 2D sketch reflects the user’s direct
intent, which may be distorted when converting to 3D.

Therefore, we perform 2D partial matching between the sketch
and multi-view projections of database shapes. In the offline phase,
we render and store boundary contours of each database shape
from a large number of camera views. The boundary contours of
a database shape are extracted from its depth buffers at different
camera views using a contour tracing algorithm [CTSO03]. Then,
the problem reduces to matching the sketch to a section of one of
these exemplar contours.

It is a significant challenge to quickly search the huge set of ex-
emplar contours for sections that match the sketch. Existing algo-
rithms such as partitioning trees [ML14], hashing [AI08], and k-
nearest neighbor graphs [WWZ∗12] are designed for global, not
partial matches.

a

b

Figure 3: A single contour may match a query contour in more
than one section. The shape contour (b) matches the query contour
(a) in four different sections (marked in red).

To rapidly find database shapes whose contours match the
sketch, we propose a new data structure: the Randomized Com-
pound k-Nearest Neighbors Graph (RC-kNNG). The RC-kNNG
has as its vertices all rendered contours of all database shapes. In a
standard k-nearest neighbor graph [WWZ∗12], each contour would
be connected to its k most similar neighbors. This information is
used to quickly retrieve new matches once an initial positive match
is found.

In our partial matching scenario, however, a single contour may
match a query contour in more than one section, as illustrated in
Figure 3. To reflect this, the RC-kNNG allows a contour to be con-
nected to several different sets of k neighbors. Each such set corre-
sponds to a different matched section. Thus, from a partial match in
one shape, we can quickly find several other partial matches with
similar geometry in other shapes.

Construction of the RC-kNNG. Direct construction of the com-
pound kNN graph by exhaustively comparing all possible sections
of all pairs of contours is prohibitively expensive. Instead, we
choose to approximate the graph with a double-random strategy:

1. We first generate n sections (we use n = 6 in our experiments)
from each contour at each scale (Figure 4 (a)). A scale level
comprises uniformly spaced points along the contour: a higher
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Figure 4: Illustration of our randomized compound kNN graph. In
this figure, a solid circle represents a valid section and a dashed
circle represents an invalid one. Given a contour (taken as a node
of our randomized compound kNN graph), we first generate several
sections (a). Then, we find the nearest neighbors for each section
and establish edges between the parent contours of these sections
(b). Finally, we find valid sections and cluster them (c).

level has smaller spacing and hence a larger overall number of
points. Our levels place 50, 150 and 250 points along the contour
respectively. The contours are sampled uniformly in a counter-
clockwise order.
To generate a section, we randomly choose an uncovered point
with a probability p proportional to its curvature c and distance
d to the nearest point covered by other sections: p ∝ c · d. The
section then covers m = 21 consecutive points with the selected
point at the center.

2. We adopt a multiple random divide-and-conquer strat-
egy [WWZ∗12] to construct a kNN graph of all the sections
(Figure 4 (b)).

We collect all “valid” sections into a global list. A section is consid-
ered valid when the distance (which will be defined in Section 5.1)
between it and each of its k nearest neighbors is below a threshold
ε = 0.85. After that, we cluster the global list to get a sparse set of
sections (the cluster centers) which will be used as seed points for
queries (Figure 4 (c)). The clustering is based on the same distance
defined in Section 5.1. The number of clusters is empirically set to
1708.

5. Candidate Shape Retrieval

In this section, we describe how the RC-kNNG is used to quickly
and accurately retrieve candidate parts that match the sketch, from
an unsegmented database.

5.1. Contour Descriptor

Each contour is divided into sections. The query contour, which is
the sketch, has a single section. Database shape contours have sev-

eral sections at each scale (Section 4), each of which may resemble
the query to yield a partial match.

To compare two contour sections, we generate contour de-
scriptors. The particular descriptor we employ is a matrix of an-
gles [RDB10]. The descriptor is calculated from the relative spatial
orientations of lines connecting sampled points on the contour.

A section of a contour has m = 21 sampled points on it. For each
pair of points (bi,b j), we compute an angle metric αi j:

αi j =


〈
bib j,bibi+∆

〉
if i < j,〈

bib j,bibi−∆

〉
if i > j,

0 if ‖i− j‖ ≤ ∆

where ∆ = 2 is an offset parameter and 〈`1, `2〉 denotes the angle
between lines `1 and `2. The contour descriptor is then the angle
matrix A, where Ai j =αi j. On each contour section, the first point is
the first sample in a counterclockwise order. The distance between
two contour sections S and T is the squared Euclidean distance
between their angle matrices AS and AT :

D(S,T ) =
1

m2

m

∑
i=1

m

∑
j=1

(
AS

i j−AT
i j

)2

5.2. Shape Retrieval

We need to identify c partially matching shapes from which candi-
date parts will be presented to the user (our experiments use c = 9).
To achieve this, we query the RC-kNNG for a larger number (21c)
of matching contour sections, and compute a score for each par-
ent shape. The c shapes with highest scores are presented in the
interface.

To generate the pool of contour sections, we first compare the
query contour to all seed sections in the RC-kNNG. The results
are sorted in a priority queue according to increasing descriptor
distance, allowing us to traverse the graph in a best-first manner.
The current best matching section is at the top of the queue. When
it is popped off, its neighbors are compared to the query and added
to the queue if they are not already there. We continue until we have
popped and stored 21c matching sections.

A shape with at least one section in the matched pool is assigned
the following score, which is used to rank the shapes for selecting
the final candidates:

s =
α

t

t

∑
i=1

Di +
β

t
,

where t is the number of matched sections in the shape contour, and
Di is the distance of the ith matched section’s descriptor from the
query. We empirically set α = 0.95, β = 0.05.

6. Progressive Part Extraction

When a user selects a candidate shape with a contour section
matching the sketch, we must quickly and accurately identify and
extract the corresponding part. This presents several challenges:

• A single contour may cover more than one semantic part. By
“semantic part”, we mean one that is typically identified by hu-
man labeling or a traditional segmentation algorithm, such as the
head of an animal or the back of a chair.

c© 2016 The Author(s)
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Figure 5: Different types of parts (red) retrieved by a sketch (blue)
using our algorithm. While some parts may be predefined with an
automatic segmentation algorithm (d), others are irregular, defined
only by the sketch (a,e), and yet others combine multiple “stan-
dard” segments (b: shin + foot, c: head + neck, f: shade + neck).

• The contour boundary may be irregular and not directly corre-
spond to a semantic part boundary. Hence, it can be identified
only with reference to the user’s sketch.
• The segmentation process should run at interactive speeds.

The first two scenarios are illustrated in Figure 5.

We address these challenges with a new super-face graph rep-
resentation (SFG) for a 3D shape. The super-face graph is a dis-
cretized yet fine-grained version of the original model. The vertices
of the graph are a set of super-faces, obtained by an oversegmenta-
tion of the model that respects strong feature boundaries. While we
could also work with the raw faces of the model, their combinato-
rial search space can be infeasibly large. Hence, we find candidate
parts as combinations of super-faces, and subsequently refine the
part boundaries down to the level of individual faces (Section 6.3).

Edges of the graph connect pairs of adjacent super-faces. The
weight of an edge indicates how frequently the super-face pair co-
occurs in a single segment produced by a randomized segmentation
algorithm (Figure 6).

The super-face graph gives us a probabilistic prior for merging
adjacent superfaces into larger patches to represent an arbitrary but
not implausible or disconnected part of the shape. We generate the
super-face graph representations of all database models in the of-
fline phase.

0.995

0.996 0.
96
3

0.873

0.677

0.955

0.
89

aa b c

Figure 6: The construction of the super-face graph for a 3D shape.
Given the Teddy model (a), we partition it into a large number of
super-faces (b). Each super-face is a node of the graph. Adjacent
super-faces are connected by a weighted graph edge (c).

6.1. Super-Face Graph Representation

To construct the super-face graph for a shape mesh, we overseg-
ment the mesh into N patches [HKG11] (we experimented with
N = 50, 100 and 200) and take each patch as a super-face (a vertex
of the graph). Each pair of adjacent super-faces is connected by a
graph edge.

To compute edge weights between nodes, we generate 900 ran-
domized segmentations [GF08] over the shape with the number of
segments varying from 2 to 10. Given a segmentation, we construct
a histogram for each super-face, describing its segment member-
ships. Each bin of the histogram corresponds to a segment, and the
value of the bin is the fractional area of the super-face lying within
the segment (Figure 7). Mathematically, the bin value hg

s of a super-
face s, for a segment g, is defined as:

hg
s =

∑
f ∈ Faces(g)∩Faces(s)

Area( f )

∑
f ∈ Faces(s)

Area( f )
,

where Faces(x) is the set of mesh faces in x, and Area( f ) is the
area of face f .

These histograms serve as feature vectors for determining the
probability that two super-faces may lie in the same segment. We
define P(s,s′) as the probability that two adjacent super-faces s and
s′ lie in the same segment, and it is defined via the χ

2 distance
between their histograms H and H′:

P
(
s,s′
)
= 1−χ

2 (H,H′
)
= 1− 1

2 ∑
gi∈G

(
hgi

s −hgi
s′
)2(

hgi
s +hgi

s′
)2 ,

where G = {gi |1≤ i≤ N } is the set of segments generated by the
randomized segmentation, gi is the ith segment, and N is the num-
ber of segments.

g0

g2

g1

s0

s1

s2

Histogram(s0)   =   1.0      0.0       0.0

g0       g1        g2

Histogram(s1)   =   0.0      1.0       0.0

Histogram(s2)   =   0.2     0.15    0.65

Figure 7: Distributions of super-faces on segments. s0, s1, and s2
are the super-faces. g0, g1, and g2 are the segments generated by
the randomized segmentation on the shape.
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Figure 8: Illustrations of the complexity of contours and their re-
lationship. Depth-discontinuous contour sections are shown in (a).
Topologically different contour sections are illustrated in (b). Iso-
lated contour sections are shown in (c).

To calculate the edge weight between two adjacent super-faces,
we first accumulate the consistency scores over all the different ran-
domized segmentations, and then normalize it using the number of
randomized segmentation operations.

6.2. Fuzzy Part Identification

As a first step, we use the SFG to extract a rough approximation
of the part corresponding to a matched contour section. We can
convert an open section to a closed one by drawing a line between
its ends. This forms a natural perceptual boundary for the projection
of the desired part.

Now, we start with any super-face adjacent to the center of the
contour and perform a flood fill, gathering all super-faces whose
projections lie within the closed contour obtained above.

We must handle several complications here. First, the contour
section may be depth-discontinuous, spanning multiple isolated
parts in 3D (Figure 8(a)). Second, the contour section may en-
close empty space that is not accounted for in the sketch (the blue
and green sections in Figure 8(b)). Third, the same sketch may
match multiple instances of the same part (Figure 8(c)). To ad-
dress these issues, we filter out invalid parts and collapse multi-
ple instances into a single part. The invalid parts generated with
depth-discontinuous contour sections are identified by a group of
isolated super-faces. Such parts are discarded. Multiple instances
of the same part (Figure 8(c)) are identified by matching the sets of
super-faces. Multiple instances of the same parts (Figure 8(c)) are
identified, if the two sets of super-faces are equal. Such repetitions
are also discarded.

6.3. Coarse-to-Fine Boundary Refinement

Once an approximate part is identified, we segment it from the
model and refine its boundary to better match the sketch and re-
spect local geometric cues. We take the following constraints into
consideration:

• Contour closure. As noted above, the line joining the ends of a
contour section forms a natural perceptual boundary for the part.

Hence, the part’s projection should respect this line as much as
possible.

• Super-face co-occurrence. If two super-faces regularly co-
occur in the same segment of a random segmentation, they
should probably both be retained or both excluded from the part.
This acts as a shape prior.

• Concavity. Shape concavity information plays an important role
in achieving high-quality segmentation as concave creases and
seams are generally regarded as natural segmentation boundaries
by humans [AZC∗12].

• Smoothness. The boundary should avoid sharp zigzags.

We propose a novel coarse-to-fine strategy that optimizes the
fuzzy part boundary in two steps: (1) optimize the set of bound-
ary superfaces according to perceptual and co-occurrence priors;
and (2) further refine the boundary at the level of individual faces,
using the remaining constraints.

6.3.1. Coarse Level Extraction

We formulate the coarse level part extraction as a binary labeling
problem which can be solved by minimizing a Gibbs energy Ec:

Ec = ∑
i∈V

E1 (li)+ ∑
(i, j)∈E

E2
(
li, l j

)
,

where V and E represent the nodes and edges of the super face
graph G, respectively, E1(li) is the likelihood energy encoding the
cost when the label of node i is li, and E2

(
li, l j

)
is the prior energy

denoting the cost when the labels of adjacent nodes i and j are li
and l j, respectively. E1 is defined as follows:

E1 (li) =
{

− lnP (i) , li = 1,
− ln(1−P (i)) , li = 0,

where P (i) is the probability of assigning label 1 to node i. Ac-
cording to the contour closure constraint, P(i) is defined as the
fractional area of the ith super-face lying within the contour clo-
sure:

P (i) =
Areain

pro j (i)
Areapro j (i)

,

where Areain
pro j (i) is the area of the projection of the ith super-

face overlapping with the contour closure, Areapro j (i) is the area
of the projection of the ith super-face. E2 is defined according to
the super-face co-occurrence constraint:

E2
(
li, l j

)
=

{
0, li = l j,

ei j, li 6= l j,

where ei j is the edge weight of the SFG. We solve Ec using binary
graph cut [BK04].

6.3.2. Fine Level Extraction

After obtaining the coarse level part, we map each boundary super
face of G onto a vertex in the original surface that is closest to the
center of the super face. For an edge e in G, let v1 and v2 be the
projections of its nodes on the original surface. We propagate from
v1 toward v2 by iteratively finding the neighbour whose projection
on the line v1v2 is closest to v2.

c© 2016 The Author(s)
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Figure 9: Examples of sketch-driven assembly-based modeling.
In each subfigure, we show the designed models (red), the user’s
sketches (blue), and the part suggestions selected by the user.

We then refine the obtained boundary in an iterative manner to
minimize the following energy:

E f = Ev +Es,

where Ev is the concavity energy, and Es is the smoothness energy.
Ev is defined as the sum of all boundary edge’s concavity energy
[KT03]:

Ev = ∑
e∈∂Q

η(1+ cosαe)|e|,

where e represents an edge on the boundary of the candidate part Q,
|·| represents the length of e, αe is the dihedral angle of e, η = 0.1
when e is concave, otherwise η = 1.0. Es is defined as:

Es = ∑
v∈∂Q
|sin〈el ,er〉|,

where v is a vertex on the boundary Q, el is an edge on Q point-
ing to v, and er is another edge on Q starting from v. We apply
snake operations on the boundary vertices to minimize the energy
E f [JLCW06].

7. Applications

Our on-demand sketch-based segmentation algorithm is a general
technique that can drive various modeling applications. Here we
describe some potential applications. Some of these applications
directly use 2D contour queries (sketches). Other applications use
our algorithm as an efficient partial matching method, where a 3D
query is represented by an informative 2D contour.

Sketch-driven assembly-based modeling. A direct application of
our technique is sketch based part composition [LF08]. As our
method does not rely on a pre-segmented database, it can retrieve
more diverse parts for composition. Our method can also improve
the expressiveness of such a system, as the user can draw complex
sketches while still retrieving correctly matching parts. As shown
in Figure 9, our method can create detailed creative shapes.

Contour-driven shape completion. Our algorithm can be used to
suggest possible completions for occluded objects in images, an
important application in computer vision and image editing. Given
a photograph with an occluded object, we manually or automati-
cally trace the boundary of the visible portion and use this trace
as input to our algorithm, which retrieves possible completions of
the shape from the database. Here, 2D-3D partial matching directly
helps us infer the occluded portion. The process is illustrated in

a b

Figure 10: Example of contour-driven shape completion. Given a
photograph of an occluded lamp, the user traces the outer bound-
ary of the visible portion. This trace is used as the query contour.
Our algorithm retrieves possible completions for the object from a
database of lamps. (Photo: Xavier Young)

Figure 11: Example of image-driven part-based modeling. Given
the image (on the top left corner), the user sketches the contours of
the parts of the shape. Our method extract parts from the database.
The user selects the parts and assembles the 3D shape (middle) in
the image. The body part of the generated shape is segmented from
an existing horse shape.

Figure 10. Alternatively, instead of starting with a photo, the user
may directly draw a novel sketch with some occluded components,
for example when constructing a complex 3D scene by sketch-
ing [XCF∗13]. Here, too, our algorithm can be used to help recover
hidden geometry.

Image-driven part-based modeling. Our algorithm can be used
to assemble 3D shapes from images. Given an image of an object,
the user sketches contours of parts of the object. Our method re-
trieves candidate parts from the database according to the user’s
sketch. The user selects appropriate parts and assembles the 3D
shape to match the image. Figure 11 shows an example.

Shape variation. Our pipeline can be used to generate shape varia-
tions by simple adaption, as shown in Figure 12. Given a segmented
shape, we can use any part of the shape as a query to retrieve similar
parts from the shape database. The chosen retrieved part can then
be used to replace the original part to create shape variations. To
extract a query contour from the source part, to be used as the 2D
search key in our algorithm, we first perform Principal Component
Analysis (PCA) on the part. Then, we take the view perpendicular
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Figure 12: Examples of shape variations created with our method.
Given a segmented model (left), we can use one part as the query
to retrieve similar parts from the database. The selected retrieved
part is composited with the non-query parts to create a new shape
(right) with the same layout as the original shape.

aa b c

Figure 13: Example of symmetry-aware selection and editing. The
user selects an arbitrary region of a shape (a). Note that the region
is not the complete wing, i.e. it is not a “standard” segment. We use
our algorithm as a fast partial matching technique, to find other
parts in the same shape with the same contour. This yields the cor-
responding region of the other wing as a symmetric counterpart (b).
Finally, the symmetric pair may be replaced by another, retrieved
from a database using our “shape variations” approach (c).

to the plane containing the first and second principal directions of
the part to calculate the query contour.

Symmetry-aware selection and editing. Our method can also be
used to select a group of similar elements in a single shape for
further editing. For example, in Fig 13, the user picks an arbitrary
region of the leg of a table. The corresponding regions of the other
legs will be automatically identified, by partial matching of the con-
tour of the selected region with the rest of the shape itself. Subse-
quently, the entire selected group can be replaced by similar parts
retrieved from the database, as in the “shape variations” applicaton.

Part suggestion. Our on-the-fly part extraction technique can be
used to suggest parts to extend a base shape [CK10, CKGK11]. In
contrast to previous methods, we do not require a pre-segmented
database. Given a query shape, we treat its outline as the query
contour and feed it to the algorithm. Our method matches the con-
tour to parts of exemplar shapes, and suggests maximal connected
components of the rest of the exemplar as suggestions for creatively

Figure 14: Examples of part suggestions. Given the query shapes
(in green), our system presents a list of part suggestions (in purple).
The assembled shapes are shown below the suggested parts.

extending the shape. The suggested parts can be irregular ones or
from different shape families (see Figure 14).

Multi-scale part suggestion. Our system can suggest parts at var-
ious scales. Given a part retrieved by the method above, we perform
normalized cuts [GF08] on the SFG corresponding to the retrieved
part to generate Tn segments, each of which consists of a group of
adjacent super-faces. Tn is defined as:

Tn =
2Vol (Pr)

Vol (Pp)
,

where Vol (·) is the volume of an object, pr is the retrieved part,
pp is the part in the database model corresponding to the query
(“corresponding part”). We constrain Tn to lie between 1 and 7.
The segments are sorted by increasing Euclidean distance of their
centers from the center of the corresponding part. Given a scale
parameter S, we return the union of the first S segments in the sorted
order as the suggested part. With increasing S, larger and larger
parts adjacent to the corresponding part are returned. An example
is given in Figure 15.

8. Evaluation

We have validated our prototype system, written in C++, on a 64-
bit desktop machine with a 3.5 GHz Intel Core I7-3770K processor,
8GB memory, and an Nvidia GeForce GTX 660 GPU video card.
Figure 16 shows retrieval results generated with our method.

There are 513 3D shapes in our database. From these shapes,
we extracted 10,773 contours. It took ∼3.5 hours to organize these
contours into an RC-kNNG. The average time to construct the
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Scale 0Scale 0 Scale 1Scale 1 Scale 2Scale 2 Scale 3Scale 3

Scale 0Scale 0 Scale 1Scale 1 Scale 2Scale 2 Scale 3Scale 3

Scale 2Scale 2 Scale 0Scale 0 Scale 1Scale 1 Scale 3Scale 3

Scale 1Scale 1 Scale 0Scale 0 Scale 2Scale 2 Scale 3Scale 3

Figure 15: An example of multi-scale part suggestion. The initial
shape and subsequent working models, used as queries, are listed
in the left column. On the right, we show the suggested parts (red)
at different scales for each modeling step. The parts corresponding
to the queries are marked in light blue. The other parts are marked
in light green.

super-face graph of a shape is 20 seconds. Because of the super-
face graph representation, our part extraction is real-time. The time
for the coarse and fine level extractions for one model is 0.15ms
and 10.3ms on average, respectively. Thanks to the two accelera-
tion structures (RC-kNNG and SFG) and the coarse-to-fine part ex-
traction strategy, our system can run interactively during the design
process. Once a user finishes drawing the sketch, it takes 0.56-0.61
seconds (with GPU and multi-core acceleration) on average for our
system to present part suggestions.

RC-kNNG Retrieval Performance. To evaluate the performance
of our RC-kNNG, we compare the following methods:

1. Traditional (single-layer) kNNG constructed by brute force.

2. Wang’s randomized kNNG approximation [WWZ∗12].

3. RC-kNNG constructed by brute force.

4. RC-kNNG with Wang’s randomized approximation
(our method).

For the two kNN graph methods (1 and 2), nodes of the graph are
complete shape contours. Node adjacencies and edge weights are
identified by global comparison of shape contours. To compute the
descriptor of the shape contour, the latter is first sampled at 3 differ-
ent scales. The contour descriptor is then computed for the sampled
points. When searching for partial matches to a query contour, we

aa

b

Figure 16: Retrieval results generated with our method. The re-
trieved parts are ranked from top to bottom, from left to right.

must extract similar contour sections explicitly, significantly slow-
ing down both methods.

For the two RC-kNNG methods (3 and 4), nodes of the graph are
contour sections (Section 4). In our evaluations, we set k = 20 and
extract 6 sections from each shape contour.

The retrieval performance for each method is shown in Table 1.
It is clear that RC-kNNG with Wang’s method, as proposed in this
paper, has the best performance. For retrieval, it is about 97 times
faster than Wang’s kNNG, with only 3 times the construction time.
The kNNG approaches, which require explicit partial matching at
runtime, are much slower. We quantitatively evaluate the quality
of the extracted parts by comparing the contour of the extracted
parts with the user’s sketch in terms of the contour descriptor in-
troduced in Section 5.1. We visualize the retrieved parts in Figure
17. The precision recall curves for the retrieval methods are shown
in Figure 18(a). It is clear that the two RC-kNNG methods perform
better than the two kNNG methods. The reason is that the kNNG
methods, comparing shape contours in a global manner, may match
obviously dissimilar contour sections together.

Increasing Super-Face Counts. In Table 2, we show the timing
statistics for different super-face counts. The coarse-level part ex-
traction time is strongly dependent on the number of super-faces.
However, this is a relatively fast step so this dependence does not
significantly hurt overall performance. Overall, despite quadrupling
the number of super-faces, part extraction remains interactive, com-
pleting in well under 1s.
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Figure 17: Retrieved parts generated with different methods: the brute force kNNG method (a), the Wang’s randomized kNNG approximation
method (b), the RC-kNNG with the brute force method (c), and the RC-kNNG with Wang’s method (d).

Algorithm

Performance
RT CT ME

BF kNNG 4.54s 51.7h 0.0799

Wang kNNG 5.68s 1.15h 0.081

BF RC-kNNG 0.053s 33.89h 0.07

Wang RC-kNNG 0.058s 3.52h 0.07

Table 1: Retrieval performance for different methods on our test
dataset. RT is the retrieval time for a query contour. CT is the
construction time for the data structures. ME is the matching er-
ror for the retrieved parts. BF KNNG represents the Brute force
kNNG method. Wang kNNG represents the Wang’s kNNG approx-
imation method. BF RC-kNNG represents the RC-kNNG with the
brute force method. Wang RC-kNNG represents the RC-kNNG with
Wang’s method.

In Figure 19, we show the qualitative improvement in part ex-
traction as we increase the number of super-faces. With fewer
super-faces, the search space is relatively coarse and the extracted
parts need not perfectly match the sketch. As we increase the num-
ber of super-faces, the search space becomes more fine-grained.
The part contours match the sketch better and better, and the part
boundaries are less constrained to follow suboptimal cuts. Table 3
shows the matching error statistics for different super-face counts.
Note that the error decreases substantially as the shape representa-
tion becomes more fine-grained.

Comparison to pre-segmentation approach. We compare our
method to an approach based on a pre-segmented database of
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(a) Different retrieval methods
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Figure 18: Averaged precision recall curves. (a) shows the preci-
sion recall curves generated with different retrieval methods on a
set of 35 test sketches. (b) shows the precision recall curves gener-
ated with our method under different camera view settings. In (a),
BF kNNG represents the Brute force kNNG method; Wang kNNG
represents the Wang’s kNNG approximation method; BF RC-kNNG
represents represents the RC-kNNG with the brute force method;
Wang RC-kNNG represents the RC-kNNG with Wang’s method (our
method).

Step

SF Count
50 100 200

Construction of SFG 20s 14.01s 19.07s

Coarse extraction (per shape) 0.15ms 0.77ms 3.91ms

Full part extraction 560ms 577ms 605ms

Table 2: Timing statistics with different super-face counts. Full part
extraction measures the time from launch of a query to generation
of a final part.
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SF Count 50 100 200

Matching error 0.45 0.29 0.07

Table 3: Matching error statistics with different super-face counts,
averaged over a set of 20 test sketches.

N= 50N= 50

User SketchUser Sketch

N = 200N = 200

N = 100N = 100

(a)(a) (c)(c)(b)(b) (d)(d)

Figure 19: Improvement in part quality with increasing super-face
count (N). With more super-faces, the extracted part fits the user’s
sketch better and better.

parts. The pre-segmentation method proceeds as follows: 1) Each
database model is pre-segmented into regular (typical semantic)
parts. For example, a human model is decomposed into four parts:
head, torso, arms, and legs. 2) We extract boundary contours for
each part under different camera views. 3) We construct the kNN
graph for the part contours. Each node in the kNN graph repre-
sents the whole-part contour. The edge is established by global
matching between part contours. 4) In the runtime stage, given the
user’s sketch, candidate parts are retrieved through a similar proce-
dure as our method with the only difference that contour matching
is performed in a global manner. The matching error for the pre-
segmentation method is 0.624 averaged over the set of sketches
used to generate Table 3. Apart from the higher matching error,
visual examination also suggests that our method produces bet-
ter results than the pre-segmentation method. We visualize the re-
trieval results generated with our method and the pre-segmentation
method in Figure 20.

Camera view settings. We evaluate the influence of the differ-
ent camera view settings under which we extract contours for the
database models. Figure 18(b) shows the precision recall curve gen-
erated with different camera view settings. The 7 views include 3
canonical side views and 4 corner views. The 21 views include 3
canonical side views, 4 corner views, and 14 uniformly sampled
views [FWX∗13]. The 49 views include 3 canonical side views, 4
corner views, and 42 uniformly sampled views. The 112 views in-
clude 3 canonical side views, 4 corner views, and 105 uniformly

b

dd

c

a

Figure 20: Retrieval results generated with our method and the
pre-segmentation method. Given the user’s sketch, we show the re-
trieval results generated with the two methods. In (b) and (d), re-
sults generated with the pre-segmentation method are on the upper
row; results generated with our method are on the lower row. The
pre-segmentation method retrieves the predefined parts (the head of
the camel model in (b) and the leg of the cow model in (d)), which
are most similar to the user’s sketch. Our method extracts parts (the
“head+leg” part of the camel model in (b) and the lower leg of the
cow model in (d)) on-the-fly according to the user’s sketch.

sampled views. To balance between efficiency and effectiveness,
we use 21 views for all the experiments and applications.

9. Conclusion

We have introduced a sketch-based customized part extraction al-
gorithm for 3D shape modeling. Our approach queries a database
in real time and retrieves parts matching the user’s sketch. In con-
trast to previous methods, our approach does not rely on a pre-
segmented database. Instead, it generates customized parts on-the-
fly to accurately match the sketch, thus significantly enriching the
design space. Candidate parts are identified and segmented by a
fast 2D-to-3D partial matching technique. Our algorithm enables
several applications.

Limitations. In our current implementation, we assume that the
models in the database are manifold. Also, the contour descriptor
we adopt is not scale-invariant.

Future work. We plan to develop more powerful scale-invariant
contour descriptors. Since there have been several improvements
to the angle descriptor [ML11], we would like to incorporate these
more powerful descriptors in our framework. In addition, it would
be nice to incorporate cues from surrounding context to help disam-
biguate sketches. Local symmetry/similarity matching could bene-
fit from the context-based search. The view under which the sketch
is drawn is important: some views are more discriminative than
others. Helping users to draw optimal views and/or helping them
interactively resolve ambiguous sketches, is an important research
direction. The pose of the partial shape used for computing the
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boundary contours is important for our method. If a suboptimal
view is chosen, the method can return inappropriate candidate
parts. It would be interesting to explore the problem of best view
selection in the future. We plan to further investigate alternative for-
mulations of the partial matching problem, together with associated
metrics and benchmarks. It is also of interest to test our method on
a much larger database.
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