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Fig. 1. We present a view-based convolutional network that produces local, point-based shape descriptors. The network is trained such that geometrically and
semantically similar points across different 3D shapes are embedded close to each other in descriptor space (left). Our produced descriptors are quite generic
— they can be used in a variety of shape analysis applications, including dense matching, prediction of human affordance regions, partial scan-to-shape
matching, and shape segmentation (right).

We present a new local descriptor for 3D shapes, directly applicable to a
wide range of shape analysis problems such as point correspondences, se-
mantic segmentation, affordance prediction, and shape-to-scan matching.
The descriptor is produced by a convolutional network that is trained to
embed geometrically and semantically similar points close to one another
in descriptor space. The network processes surface neighborhoods around
points on a shape that are captured at multiple scales by a succession of
progressively zoomed out views, taken from carefully selected camera posi-
tions. We leverage two extremely large sources of data to train our network.
First, since our network processes rendered views in the form of 2D images,
we repurpose architectures pre-trained on massive image datasets. Second,
we automatically generate a synthetic dense point correspondence dataset
by non-rigid alignment of corresponding shape parts in a large collection
of segmented 3D models. As a result of these design choices, our network
effectively encodes multi-scale local context and fine-grained surface detail.
Our network can be trained to produce either category-specific descriptors
or more generic descriptors by learning from multiple shape categories.
Once trained, at test time, the network extracts local descriptors for shapes
without requiring any part segmentation as input. Our method can produce
effective local descriptors even for shapes whose category is unknown or
different from the ones used while training. We demonstrate through sev-
eral experiments that our learned local descriptors are more discriminative
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compared to state of the art alternatives, and are effective in a variety of
shape analysis applications.
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1 INTRODUCTION
Local descriptors for surface points are at the heart of a huge variety
of 3D shape analysis problems such as keypoint detection, shape
correspondence, semantic segmentation, region labeling, and 3D
reconstruction [Xu et al. 2016]. The vast majority of algorithms
addressing these problems are predicated on local surface descrip-
tors. Such descriptors characterize the local geometry around the
point of interest in a way that the geometric similarity between two
points can be estimated by some simple, usually Euclidean, metric
in descriptor space. A large number of descriptors have been devel-
oped for specific scenarios which can encode both local analytical
properties like curvature as well as some notion of the larger context
of the point within the shape, such as the relative arrangement of
other shape regions.

Yet the aim in shape analysis is frequently not geometric but func-
tional, or “semantic”, similarity of points and local shape regions.
Most existing descriptors rely on two main assumptions: (a) one
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can directly specify which geometric features are relevant for se-
mantic similarity, and (b) strong post-process regularization, such
as dense surface alignment, can compensate for all situations when
the first assumption fails [Xu et al. 2016]. The latter is typically
computationally expensive, difficult to develop, and task-specific:
it benefits greatly from access to better descriptors that reduce the
post-processing burden. In this work, we challenge the first assump-
tion. As several examples in this paper show, it is hard to hand-craft
descriptors that effectively capture functional, or “semantic” shape
properties since these are often a complex function of local geom-
etry, structure and context - for example, see the geometric and
structural variability of “palm affordance” object regions in Figure
1 (i.e., regions where humans tend to place their palms when they
interact with these objects). An additional challenge in this func-
tional, or “semantic” shape analysis is that local descriptors should
be invariant to structural variations of shapes (e.g., see keypoint
matching and segmentation in Figure 1), and should be robust to
missing data, outliers and noise (e.g., see partial scans in Figure 1).

Since it is hard to decide a-priori which aspects of shape geometry
are more or less relevant for point similarity, we adopt a learning
approach to automatically learn a local descriptor that implicitly
captures a notion of higher level similarity between points, while
remaining robust to structural variations, noise, and differences in
data sources and representations. We also aim to achieve this in
a data-driven manner, relying on nothing other than examples of
corresponding points on pairs of different shapes. Thus, we do not
need to manually guess what geometric features may be relevant
for correspondence: we deduce it from examples.
Recent works have explored the possibility of learning local de-

scriptors that are robust to natural shape deformations [Masci et al.
2015; Monti et al. 2017] or are adaptable to new data sources [Zeng
et al. 2016]. Yet in contrast to findings in the image analysis com-
munity where learned descriptors are ubiquitous and general [Han
et al. 2015; Simo-Serra et al. 2015; Yi et al. 2016], learned 3D descrip-
tors have not been as powerful as 2D counterparts because they
(1) rely on limited training data originating from small-scale shape
databases, (2) are computed at low spatial resolutions resulting in
loss of detail sensitivity, and (3) are designed to operate on specific
shape classes, such as deformable shapes.
To overcome these challenges, we introduce a multi-scale, view-

based, projective representation for local descriptor learning on
3D shapes. Given a mesh or a point cloud, our method produces
a local descriptor for any point on the shape. We represent the
query point by a set of rendered views around it, inspired by the
approach of Su et al. [2015] for global shape classification. To better
capture local and global context, we render views at multiple scales
and propose a novel method for viewpoint selection that avoids
undesired self-occlusions. This representation naturally lends itself
to 2D convolutional neural networks (CNN) operating on the views.
The final layer of the base network produces a feature vector for
each view, which are then combined across views via a pooling layer
to yield a single descriptive vector for the point. The network is
trained in a Siamese fashion [Bromley et al. 1993] on training pairs
of corresponding points.
The advantages of our approach are two-fold. First, the spatial

resolution of the projected views is significantly higher than that of

voxelized shape representations, which is crucial to encoding local
surface details while factoring in global context. Second, 2D rendered
views are similar to natural images, allowing us to repurpose neural
network architectures that have achieved spectacular success in
2D computer vision tasks. We initialize our framework with filters
from a base network for classifying natural images [Krizhevsky
et al. 2012], whose weights are pretrained on over a million image
exemplars [Russakovsky et al. 2015].

To fine-tune the network architecture for descriptor learning, we
require access to training pairs of semantically similar points. Here,
we make another critical observation. Although correspondence
data is available only in limited quantities, large repositories of
consistently segmented and labeled shapes have recently become
available [Yi et al. 2016]. We can rely on semantic segmentation
to guide a part-aware, non-rigid alignment method for semantic
correspondence, in order to generate very large amounts of dense
training data. Our synthetic dataset of ∼977M corresponding point
pairs is the largest such repository, by several orders of magnitude,
assembled so far for learning.

To summarize, the contributions of this paper are:
• A new point-based, local descriptor for general 3D shapes,
directly applicable to a wide range of shape analysis tasks,
that is sensitive to both fine-grained local information and
context.

• A convolutional network architecture for combining rendered
views around a surface point at multiple scales into a single
compact, local descriptor.

• Amethod for per-point view selection that avoids self-occlusions
and provides a collection of informative rendered projections.

• A massive synthetic dataset of corresponding point pairs for
training purposes.

We demonstrate that our descriptors can be directly used in many
applications, including key point detection, affordance labeling for
human interaction, and shape segmentation tasks on complete 3D
shapes. Further, they can be used for partial shape matching tasks
on unstructured scan data without any fine-tuning. We evaluate
our method on sparse correspondence and shape segmentation
benchmarks and demonstrate that our point-based descriptors are
significantly better than traditional hand-crafted and voxel-based
shape descriptors.

2 RELATED WORK
Representing 3D geometric data with global or local descriptors is a
longstanding problem in computer graphics and vision with several
applications. Global analysis applications, such as recognition and
retrieval, require global descriptors that map every shape to a point
in a descriptor space. Local analysis, such as dense feature matching
or keypoint detection, needs local descriptors that map every point
on a shape to a point in descriptor space. In this section we present
a brief overview of traditional hand-crafted descriptors and learned
representations.

Traditional shape descriptors. Traditionally, researchers and engi-
neers relied on their intuition to hand-craft shape descriptors. Exam-
ples of global shape descriptors include 3D shape histograms [Ankerst
et al. 1999], spherical harmonics [Saupe and Vranic 2001], shape
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Fig. 2. Given a pair of surface points (shown in red color) on two shapes, we generate a set of rendered images that capture the local context around each
point in multiple scales. Each set of images is processed through an identical stack of convolutional, pooling and non-linear transformation layers resulting in
a 4096 dimensional descriptor per point. We aggregate these descriptors across all the input views by using a view pooling strategy and further reduce the
dimensionality of the descriptor. We train this network with an objective function (contrastive loss) to ensure that geometrically and semantically similar (or
dissimilar) point pairs are assigned similar (or dissimilar) descriptors.

distributions [Osada et al. 2002], light-field descriptors [Chen et al.
2003], 3DZernikemoments [Novotni and Klein 2003], and symmetry-
based features [Kazhdan et al. 2004]. Examples of local per-point
shape descriptors include spin images [Johnson and Hebert 1999],
shape contexts [Belongie et al. 2002], geodesic distance functions [Zhang
et al. 2005], curvature features [Gal and Cohen-Or 2006], histograms
of surface normals [Tombari et al. 2010], shape diameter [Shapira
et al. 2010], PCA-based descriptors [Kalogerakis et al. 2010], heat ker-
nel descriptors [Bronstein et al. 2011], and wave kernel signatures
[Aubry et al. 2011; Rodola et al. 2014]. These descriptors capture
low-level geometric information, which often cannot be mapped
reliably to functional or “semantic” shape properties. In addition,
these descriptors often lack robustness to noise, partial data, or large
structural shape variations. They frequently rely on a small set of
hand-tuned parameters, which are tailored for specific datasets or
shape processing scenarios. We refer the reader to the recent survey
of Xu et al. [2016] for a more detailed discussion on hand-crafted
descriptors.

Learned global descriptors. With the recent success of learning
based methods, specifically deep neural networks, there has been
a growing trend to learn descriptors directly from the data itself
instead of manually engineering them. This trend has become appar-
ent in the vision communitywith the proposal of both global [Krizhevsky
et al. 2012] and local [Han et al. 2015; Simo-Serra et al. 2015; Yi et al.
2016] deep image descriptors.
With the availability of large 3D shape collections [Chang et al.

2015], we have seen a similar trend to learn 3D shape descriptors,
mostly focusing on learning global descriptors. Early efforts in-
volved shallow metric learning [Ohbuchi and Furuya 2010] and
dictionary learning based on clustering (bags-of-words models)
[Lavoue; 2012; Liu et al. 2006] or sparse coding [Litman et al. 2014].
As a direct extension of the widely successful deep learning tech-
niques in 2D image grids to 3D, voxel-based shape representations

have been widely adopted in deep learning for 3D shape recogni-
tion [Maturana and Scherer 2015; Qi et al. 2016; Song and Xiao
2016; Wu et al. 2015]. An alternative approach is to first extract a
set of hand-crafted geometric features, then further process them
through a deep neural network for shape classification and retrieval
[Xie et al. 2015]. Sinha et al. [2016] apply deep networks on global
shape embeddings in the form of geometry images. In the context
of RGB-D images, neural networks have been proposed to combine
features learned from both RGB images and depth data [Bo et al.
2014; Lai et al. 2014; Socher et al. 2012]. All the above-mentioned
learned global 3D features have shown promising results for 3D
object detection, classification, and retrieval tasks. Our focus in this
paper, on the other hand, is to learn point-based shape descriptors
that can be used for dense feature matching, keypoint detection,
affordance labeling and other local shape analysis applications.

Our method is particularly inspired by Su et al.’s multi-view con-
volutional network for shape classification [Su et al. 2015], which has
demonstrated high performance in recent shape classification and
retrieval benchmarks [Savva et al. 2016]. Multi-view architectures
have also been employed recently for shape segmentation [Kaloger-
akis et al. 2017]. These architectures are designed to produce a single
representation for an entire shape [Su et al. 2015], or part label con-
fidences [Kalogerakis et al. 2017]. In contrast, our architecture is
designed to produce surface point descriptors. Instead of optimizing
for a shape classification or part labeling objective, we employ a
siamese architecture that compares geometric similarity of points
during training. Instead of fixed views [Su et al. 2015], or views
selected to maximize surface coverage [Kalogerakis et al. 2017], we
use local views adaptively selected to capture multi-scale context
around surface points. We also propose an automatic method to
create a massive set of point-wise correspondence data to train our
architecture based on part-guided, non-rigid registration.
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Learned surface descriptors. Recently, there have been some ef-
forts towards learning surface point descriptors. In the context of de-
formable models, such as human bodies, deep learning architectures
have been designed to operate on intrinsic surface representations
[Boscaini et al. 2015, 2016; Masci et al. 2015; Monti et al. 2017]. The
learned intrinsic descriptors produced by these architectures exhibit
invariance to isometric or near-isometric deformations. However,
in several shape classes, particularly man-made objects, even rigid
rotations of parts can change their underlying functionality and
semantic correspondences to other parts (e.g. rotating a horizontal
tailplane 90 degrees in an airplane would convert it into a vertical
stabilizer). Our network attempts to learn the invariance to shape
deformations if and when such invariance exists. We also note that
in a recent large-scale benchmark [Rodola et al. 2017], developed
concurrently to our work, learning-based extrinsic methods seem
to outperform learning-based intrinsic methods in the case of de-
formable shapes with missing parts. In another concurrent work,
Yi et al.[2017] synchronize the spectral domains of shapes to learn
intrinsic descriptors that are more robust to large structural vari-
ations of shapes. To initialize this synchronization, they assume
pre-existing extrinsic alignments between shapes. In our case, we
do not make any assumptions about consistent shape alignment or
orientation.

Wei et al. [2016] learn feature descriptors for each pixel in a depth
scan of a human for establishing dense correspondences. Their de-
scriptors are tuned to classify pixels into 500 distinct regions or 33
annotated keypoints on human bodies. They are extracted per pixel
in a single depth map (and view). In contrast, we produce a single,
compact representation of a 3D point by aggregating information
across multiple views. Our representation is tuned to compare sim-
ilarity of 3D points between shapes of different structure or even
functionality, going well beyond human body region classification.
The method of Guo et al. [2015] first extracts a set of hand-crafted
geometric descriptors, then utilizes neural networks to map them
to part labels. Thus, this method still inherits the main limitations
of hand-crafted descriptors. In a concurrent work, Qi et al. [2017]
presented a classification-based network architecture that directly
receives an unordered set of input point positions in 3D and learns
shape and part labels. However, this method relies on augmenting
local per-point descriptors with global shape descriptors, making
it more sensitive to global shape input. Zeng et al. [2016] learns a
local volumetric patch descriptor for RGB-D data. While they show
impressive results for aligning depth data for reconstruction, limited
training data and limited resolution of voxel-based surface neighbor-
hoods still remain key challenges in this approach. Instead, our deep
network architecture operates on view-based projections of local
surface neighborhoods at multiple scales, and adopts image-based
processing layers pre-trained on massive image datasets. We refer
to the evaluation section (Section 6) for a direct comparison with
this approach.
Also related to our work is the approach by Simo-Serra et al.

[Simo-Serra et al. 2015], which learns representations for 64 × 64
natural image patches through a Siamese architecture, such that
patches depicting the same underlying 3D surface point tend to
have similar (not necessarily same) representation across different

viewpoints. In contrast, our method aims to learn surface descrip-
tors such that geometrically and semantically similar points across
different shapes are assigned similar descriptors. Our method learns
a single, compact representation for a 3D surface point (instead of
an image patch) by explicitly aggregating information from mul-
tiple views and at multiple scales through a view-pooling layer in
a much deeper network. Surface points can be directly compared
through their learned descriptors, while Simo-Serra et al. would
require comparing image descriptors for all pairs of views between
two 3D points, which would be computationally very expensive.

3 OVERVIEW
The goal of our method is to provide a function f that takes as input
any surface point p of a 3D shape and outputs a descriptor Xp ∈ RD
for that point, where D is the output descriptor dimensionality.
The function is designed such that descriptors of geometrically and
semantically similar surface points across shapes with different
structure are as close as possible to each other (under the Euclidean
metric). Furthermore, we favor rotational invariance of the function
i.e. we do not restrict our input shapes to have consistent alignment
or any particular orientation. Our main assumption is that the input
shapes are represented as polygon meshes or point clouds without
any restrictions on their connectivity or topology.

We follow amachine learning approach to automatically infer this
function from training data. The function can be learned either as a
category-specific one (e.g. tuned for matching points on chairs) or as
a cross-category one (e.g. tuned to match human region affordances
across chairs, bikes, carts and so on). At the heart of our method
lies a convolutional neural network (CNN) that aims to encode this
function through multiple, hierarchical processing stages involving
convolutions and non-linear transformations.

View-based architecture. The architecture of our CNN is depicted
in Figure 2 and described in detail in Section 4. Our network takes
as input an unordered set of 2D perspective projections (rendered
views) of surface neighborhoods capturing local context around each
surface point in multiple scales. At a first glance, such input repre-
sentation might appear non-ideal due to potential occlusions and
lack of desired surface parametrization properties, such as isometry
and bijectivity. On the other hand, this view-based representation
is closer to human perception (humans perceive projections of 3D
shape surfaces), and allows us to directly re-purpose image-based
CNN architectures trained on massive image datasets. Since images
depict shapes of photographed objects (along with texture), convo-
lutional filters in these image-based architectures already partially
encode shape information. Thus, we initialize our architecture using
these filters, and further fine-tune them for our task. This initializa-
tion strategy has provided superior performance in other 3D shape
processing tasks, such as shape classification and retrieval [Su et al.
2015]. In addition, to combat surface information loss in the input
view-based shape representation, our architecture takes as input
multiple, local perspective projections per surface point, carefully
chosen so that each point is always visible in the corresponding
views. Figure 2 shows the images used as input to our network for
producing a descriptor on 3D airplane wingtip points.
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Learning. Our method automatically learns the network parame-
ters based on a training dataset. To ensure that the function encoded
in our network is general enough, a large corpus of automatically
generated shape training data is used, as described in Section 5.
Specifically, the parameters are learned such that the network favors
two properties: (i) pairs of semantically similar points are embed-
ded nearby in the descriptor space, and (ii) pairs of semantically
dissimilar points are separated by a minimal constant margin in
the descriptor space. To achieve this, during the learning stage, we
sample pairs of surface points from our training dataset, and process
their view-based representation through two identical, or “Siamese”
branches of our network to output their descriptors and measure
their distance (see Figure 2).

Applications. We demonstrate the effectiveness of the local de-
scriptors learned by our architecture on a variety of geometry pro-
cessing applications including labeling shape parts, finding human-
centric affordances across shapes of different categories, and match-
ing shapes to depth data (see Section 7).

4 ARCHITECTURE
Wenow describe our pipeline and network architecture (Figure 2) for
extracting a local descriptor per surface point. To train the network
in our implementation, we uniformly sample the input shape surface
with 1024 surface points, and compute a descriptor for each of these
points. We note that during test time we can sample any arbitrary
point on a shape and compute its descriptor.

Pre-processing. In the pre-processing stage, we first uniformly
sample viewing directions around the shape parameterized by spher-
ical coordinates (θ , ϕ) (150 directions in our implementation). We
render the shape from each viewing direction such that each pixel
stores indices to surface points mapped onto that pixel through per-
spective projection. As a result, for each surface sample point, we
can retrieve the viewing directions from which the point is visible.
Since neighboring viewing directions yield very similar rendered
views of surface neighborhoods, we further prune the set of view-
ing directions per surface sample point, significantly reducing the
number of redundant images fed as input into our network. Pruning
is done by executing the K-mediods clustering algorithm on the
selected viewing directions (we use their spherical coordinates to
measure spherical distances between them). We set K = 3 to select
representative viewing directions (Figure 3). To capture multi-scale
contexts for each surface point and its selected viewing directions,
we create M = 3 viewpoints placed at distances 0.25, 0.5, 0.75 of
the shape’s bounding sphere radius. We experimented with various
viewpoint distance configurations. The above configuration yielded
the most robust descriptors, as discussed in Section 6. Increasing
the number of viewing directions K or number of distancesM did
not offer significant improvements.

Input. The input to our network is a set of rendered images depict-
ing local surface neighborhoods around a surface point p based on
the viewpoint configuration described above. Specifically, we render
the shape surface around p from each of the selected viewpoints,
using a Phong shader and a single directional light (light direction
is set to viewpoint direction). Since rotating the 3D shape would

uniformly sampled 
view directions

views point of 
interest is visible in

representative 
views

Fig. 3. For a given point (in green), we show uniformly sampled viewpoints
around the shape (in red). We identify the subset of these viewing directions
the point is visible from (in blue). Then we perform view clustering to select
3 representative viewing directions.

result in rotated input images, to promote rotational invariance, we
rotate the input images L = 4 times at 90 degree intervals (i.e, 4
in-plane rotations), yielding in total K ×M × L = 36 input images
per point. Images are rendered at 227 × 227 resolution.

View-pooling. Each of the above input images is processed through
an identical stack of convolutional, pooling and non-linear transfor-
mation layers. Specifically, in our implementation, our CNN follows
the architecture known as AlexNet [Krizhevsky et al. 2012]. It in-
cludes two convolutional layers, interchanged with two pooling
layers and ReLu nonlinearities, followed by three additional con-
volutional layers with ReLu nonlinearities, a pooling layer and a
final fully connected layer. We exclude the last two fully connected
layers of Alexnet, (“fc7”), (“fc8”). The last layer is related to im-
age classification on ImageNet, while using the penultimate layer
did not improve the performance of our method as shown in our
experiments (see Section 6).
Passing each rendered image through the above architecture

yields a 4096 dimensional descriptor. Since we have 36 rendered
views in total per point, we need to aggregate these 36 image-based
descriptors into a single, compact point descriptor. The reason is
that evaluating the distance of every single image-based descriptor
of a point with all other 36 image-based descriptors of another point
(1296 pairwise comparisons) would be prohibitively expensive. Note
that these 36 views are not ordered in any manner, thus there is
no one-to-one correspondence between views and the image-based
descriptors of different points (as discussed earlier, shapes are not
consistently aligned, points are unordered, thus viewing directions
are not consistent across different points).
To produce a single point descriptor, we aggregate the descrip-

tors across the input 36 rendered views, by using an element-wise
maximum operation that selects the most discriminative descrip-
tors (largest feature entries) across views. A similar strategy of
“max-view pooling” has also been effectively used for shape recog-
nition [Su et al. 2015] - in our case, the pooling is applied to local
(rather than global) image-based descriptors. Mathematically, given
36 image-based descriptors Yv,p ∈ R4096 of a point p for views
v = 1 . . . 36, max view-pooling yields a single descriptor Yp ∈ R4096
as follows: Yp =max

v
(Yv,p ).

We also experimented with taking the average image-based de-
scriptor values across views (“average” view-pooling) as a baseline.
However, compared to “max” view-pooling, this strategy led to
worse correspondence accuracy, as discussed in Section 6. An al-
ternative strategy would be to concatenate all the view descriptors,
however, this would depend on an ordering of all views. Ordering
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the views would require consistent local coordinate frames for all
surface points, which is not trivial to achieve.

Dimensionality reduction. Given the point descriptorYp produced
by view-pooling aggregation, we further reduce its dimensionality to
make nearest neighbor queries more efficient and also down-weigh
any dimensions that contain no useful information (e.g. shading
information). Dimensionality reduction is performed by adding one
more layer in our network after view pooling that performs a linear
transformation: Xp =W · Yp , whereW is a learned matrix of size
K × 4096, where K is the dimensionality of the output descriptor.
The output dimensionalityK was selected by searching over a range
of values K = 16, 32, 64, ..., 512 and examining performance in a
hold-out validation dataset. Based on our experiments, we selected
K = 128 (see Section 6).

5 LEARNING
Our learning procedure aims to automatically estimate the param-
eters of the function encoded in our deep architecture. The key
idea of our learning procedure is to train the architecture such that
it produces similar descriptor values for points that are deemed
similar in geometric and semantic sense. To this end, we require
training data composed of corresponding pairs of points. One pos-
sibility is to define training correspondences by hand, or resort to
crowd-sourcing techniques to gather such correspondences. Our
function has millions of parameters (40M), thus gathering a large
enough dataset with millions of correspondences, would require a
significantly large amount of human labor, plus additional human
supervision to resolve conflicting correspondences. Existing corre-
spondence benchmarks [Kim et al. 2013] have limited number of
shapes, or focus on specific cases, e.g. deformable shapes [Bogo et al.
2014].
We instead generate training correspondences automatically by

leveraging highly structured databases of consistently segmented
shapes with labeled parts. The largest such database is the seg-
mented ShapeNetCore dataset [Yi et al. 2016] that includes 17K
man-made shapes distributed in 16 categories. Our main observation
is that while these man-made shapes have significant differences in
the number and arrangement of their parts, individual parts with
the same label are often related by simple deformations [Ovsjanikov
et al. 2011]. By computing these deformations through non-rigid
registration executed on pairs of parts with the same label, we can
get a large dataset of training point correspondences. Even if the re-
sulting correspondences are potentially not as accurate as carefully
human-annotated point correspondences, their massive quantity
tends to counterbalance any noise and imperfections. In the next
paragraphs, we discuss the generation of our training dataset of
correspondences and how these are used to train our architecture.

Part-based registration. Given a pair of consistently segmented
shapesA and B, our registration algorithm aims to non-rigidly align
all pairs of segments with the same label in the two shapes. First,
we sample 10K points PA and PB from their mesh representation.
The points are tagged with the part labels of their corresponding
faces. Let PℓA, P

ℓ
B denote the sets of points originating from a pair of

corresponding parts with the same label ℓ in A and B respectively.
For each part, we compute an initial affine transformation Tℓ for
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Fig. 4. Visualization of training point correspondences computed through
part-based registration for pairs of shapes from ShapeNetCore. Correspond-
ing points are shown in similar colors.

PℓA so that it has the same oriented bounding box as PℓB . Then for
each point a ∈ PℓA, we seek a translation (offset) o(a) that moves it
as-close-as possible to the surface represented by PℓB , while offsets
for neighboring points in PℓA are as similar as possible to ensure a
smooth deformation. In the same manner, for each point b ∈ PℓB , we
compute an offset o(b) that smoothly deforms the part PℓB towards
PℓA. To compute the offsets, we minimize a deformation energy that
penalizes distances between the point sets of the two parts, and
inconsistent offsets between neighboring points:

Edef =
∑
a∈P ℓ

A

dist2(a + o(a), PℓB ) +
∑
b ∈P ℓ

B

dist2(b + o(b), PℓA)

+
∑

a,a′∈N (a)
| |o(a) − o(a′)| |2 +

∑
b,b′∈N (b)

| |o(b) − o(b ′)| |2 (1)

where N (a),N (b) are neighborhoods for each point a,b respectively
(in our implementation, we use 6 nearest neighbors per point), and
dist computes the distance of a translated point to the closest com-
patible point of the other point set. The energy can be minimized
using an ICP-based procedure: given closest pairs of compatible
points on the two parts initially, offsets are computed by minimiz-
ing the above energy, then closest pairs are updated. The final offsets
provide a dense correspondence between closest compatible points
of A and B.
Altough alternative deformation procedures could be used (e.g.

as-rigid-as possible deformations [Sorkine and Alexa 2007; Sumner
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ShapeNetCore # shapes # aligned # corresponding
Category used shape pairs point pairs
Airplane 500 9699 97.0M

Bag 76 1510 15.1M
Cap 55 1048 10.5M
Car 500 10000 100.0M
Chair 500 9997 100.0M

Earphone 69 1380 13.8M
Guitar 500 9962 99.6M
Knife 392 7821 78.2M
Lamp 500 9930 99.3M
Laptop 445 8880 88.8M

Motorbike 202 4040 40.4M
Mug 184 3680 36.8M
Pistol 275 5500 55.0M
Rocket 66 1320 13.2M

Skateboard 152 3032 30.3M
Table 500 9952 99.5M

Table 1. Our training dataset statistics.

et al. 2007]), we found that our technique provides satisfactory pairs
(Figure 4), and is fast enough to provide a massive dataset: 100K
pairs of parts with 10K points each were aligned in 12 hours on
3 CPUs with 14 hyperthreaded cores each. Table 1 lists statistics
about the training dataset we created for 16 ShapeNetCore classes.

Network training. All the parameters w of our deep architecture
are estimated by minimizing a cost function, known as contrastive
loss [Hadsell et al. 2006] in the literature of metric and deep learning.
The cost function penalizes large descriptor differences for pairs of
corresponding points, and small descriptor differences for pairs of
non-corresponding points. We also include a regularization term in
the cost function to prevent the parameter values from becoming
arbitrarily large. The cost function is formulated as follows:

L(w)=
∑

a,b ∈C
D2(Xa ,Xb )+

∑
a,c<C

max(m−D (Xa ,Xc ), 0)2 +λ | |w| |2 (2)

where C is a set of corresponding pairs of points derived from
our part-based registration process and D measures the Euclidean
distance between a pair of input descriptors. The regularization
parameter (known also as weight decay) λ1 is set to 0.0005. The
quantitym, known as margin, is set to 1 - its absolute value does
not affect the learned parameters, but only scales distances such
that non-corresponding point pairs tend to have a margin of at least
one unit distance.
We initialize the parameters of the convolution layers (i.e., con-

volution filters) from AlexNet [Krizhevsky et al. 2012] trained on
the ImageNet1K dataset (1.2M images) [Russakovsky et al. 2015].
Since images contain shapes along with texture information, we
expect that filters trained on massive image datasets already par-
tially capture shape information. Initializing the network with filters
pre-trained on image datasets proved successful in other shape pro-
cessing tasks, such as shape classification [Su et al. 2015].

The cost function is minimized through batch gradient descent.
At each iteration, 32 pairs of corresponding points a,b ∈ C are ran-
domly selected. The pairs originate from random pairs of shapes for
which our part-based registration has been executed beforehand. In
addition, 32 pairs of non-corresponding points a, c < C are selected,
making our total batch size equal to 64. To update the parameters
at each iteration, we use the Adam update rule [Kingma and Ba
2014], which tends to provide faster convergence compared to other
stochastic gradient descent schemes.

Implementation. Our method is implemented using the Caffe deep
learning library [Jia et al. 2014]. Our source code, results and datasets
are publically available on the project page:
http://people.cs.umass.edu/~hbhuang/local_mvcnn/.

6 EVALUATION
In this section we evaluate the quality of our learned local descrip-
tors and compare them to state-of-the-art alternatives.

Dataset. Weevaluate our descriptors onKim et al.’s benchmark [Kim
et al. 2013], known as the BHCP benchmark. The benchmark con-
sists of 404 man-made shapes including bikes, helicopters, chairs,
and airplanes originating from the Trimble Warehouse. The shapes
have significant structural and geometric diversity. Each shape has
6-12 consistently selected feature points with semantic correspon-
dence (e.g. wingtips). Robust methods should provide descriptor
values that discriminate these feature points from the rest, and
embed corresponding points closely in descriptor space.

Another desired descriptor property is rotational invariance. Most
shapes in BHCP are consistently upright oriented, which might
bias or favor some descriptors. In general, 3D models available
on the web, or in private collections, are not expected to always
have consistent upright orientation, while existing algorithms to
compute such orientation are not perfect even in small datasets (e.g.
[Fu et al. 2008]). Alternatively, one could attempt to consistently
align all shapes through a state-of-the-art registration algorithms
[Huang et al. 2013], however, such methods often require human
expert supervision or crowd-sourced corrections for large datasets
[Chang et al. 2015]. To ensure that competing descriptors do not
take advantage of any hand-specified orientation or alignment in
the data, and to test their rotational invariance, we apply a random
3D rotation to each BHCP shape. We also discuss results for our
method when consistent upright-orientation is assumed (Section
6.3).

Methods. We test our method against various state-of-the-art
techniques, including the learned descriptors produced by the volu-
metric CNN of 3DMatch [Zeng et al. 2016], and several hand-crafted
alternatives: PCA-based descriptors used in [Kalogerakis et al. 2010;
Kim et al. 2013], Shape Diameter Function (SDF) [Shapira et al. 2010],
geodesic shape contexts (SC) [Belongie et al. 2002; Kalogerakis et al.
2010], and Spin Images (SI) [Johnson and Hebert 1999]. Although
3DMatch was designed for RGB-D images, the method projects the
depth images back to 3D space to get Truncated Distance Function
(TDF) values in a volumetric grid, where the volumetric CNN of
that method operates on. We used the same type of input for the vol-
umetric CNN in our comparisons, by extracting voxel TDF patches
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Fig. 5. Visualization of point correspondence based on our learned descriptors for representative point-sampled BHCP shapes. Corresponding points have the
same RGB color.
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Fig. 6. CMC plots for each category in the BHCP benchmark for all competing methods (single-category training for learning methods).
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Fig. 7. Correspondence accuracy for each category in the BHCP benchmark for all competing methods (single-category training for learning methods).

around 3D surface points. To ensure a fair comparison between
our approach and 3DMatch, we trained the volumetric CNN of the
3DMatch on the same training datasets as our CNN. We experi-
mented with two training strategies for 3DMatch: (a) training their

volumetric CNN from scratch on our datasets, and (b) initializing
the volumetric CNN with their publicly available model, then fine-
tuning it on our datasets. The fine-tuning strategy worked better
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Fig. 8. Correspondence accuracy for each category in the BHCP benchmark under cross-category training.

than training their CNN from scratch, thus we report results under
this strategy.

Training settings. We evaluated our method against alternatives
in two training settings. In our first training setting, which we call
the “single-category” setting, we train our method on the point-wise
correspondence data (described in Section 5) from a single category
and test on shapes of the same or another category. In an attempt
to build a more generic descriptor, we also trained our method in
a “cross-category” setting, for which we train our method on train-
ing data across several categories of the segmented ShapeNetCore
dataset, and test on shapes of the same or other categories. We
discuss results for the “single-category” setting in Section 6.1, and
results for the “cross-category” setting in Section 6.2.

Metrics. We use two popular measures to evaluate feature de-
scriptors produced by all methods. First, we use the Cumulative
Match Characteristic (CMC) measure which is designed to capture
the proximity of corresponding points in descriptor space. In par-
ticular, given a pair of shapes, and an input feature point on one of
the shapes, we retrieve a ranked list of points on the other shape.
The list is ranked according to the Euclidean distance between these
retrieved points and the input point in descriptor space. By record-
ing the rank for all feature points across all pairs of shapes, we
create a plot whose Y-axis is the fraction of ground-truth corre-
sponding points whose rank is equal or below the rank marked on
the X-axis. Robust methods should assign top ranks to ground-truth
corresponding points.
Another popular measure is correspondence accuracy, also pop-

ularized as the Princeton’s protocol [Kim et al. 2013]. This metric
is designed to capture the proximity of predicted corresponding
points to ground-truth ones in 3D space. Specifically, given a pair
of shapes, and an input feature point on one of the shapes, we find
the nearest feature point in descriptor space on the other shape,
then measure the Euclidean distance between its 3D position and
the position of the ground-truth corresponding point. By gathering
Euclidean distances across all pairs of shapes, we create a plot whose
Y-axis demonstrates the fraction of correspondences predicted cor-
rectly below a given Euclidean error threshold shown on the X-axis.
Depending on the application, matching symmetric points can be
acceptable. Thus, for both metrics, we discuss below results where
we accept symmetric (e.g. left-to-right wingtip) matches, or not
accepting them.

6.1 Results: single-category training.
In this setting, to test our method and 3DMatch on BHCP air-
planes, we train both methods on training correspondence data
from ShapeNetCore airplanes. Similarly, to test on BHCP chairs,
we train both methods on ShapeNetCore chairs. To test on BHCP
bikes, we train both methods on ShapeNetCore bikes. Since both
the BHCP and ShapeNetCore shapes originate from 3D Warehouse,
we ensured that the test BHCP shapes were excluded from our train-
ing datasets. There is no helicopter class in ShapeNetCore, thus
to test on BHCP helicopters, we train both methods on ShapeNet-
Core airplanes, a related but different class. We believe that this test
on helicopters is particularly interesting since it demonstrates the
generalization ability of the learning methods to another class. We
note that the hand-crafted descriptors are class-agnostic, and do not
require any training, thus we simply evaluate them on the BHCP
shapes.

Figures 6 demonstrates the CMC plots for all the methods on the
BHCP dataset for both symmetric and non-symmetric cases (we re-
fer to our method as ‘local MVCNN’, or in short ‘LMVCNN’). Figure
7 shows the corresponding plots for the corresponding accuracy
measure. Table 2 reports the evaluation measures numerically for
all methods. According to both the CMC and correspondence accu-
racy metrics, and in both symmetric and non-symmetric cases, we
observe that our learned descriptors outperform the rest, including
the learned descriptors of 3DMatch, and the hand-engineered local
descriptors commonly used in 3D shape analysis. Based on these re-
sults, we believe that our method successfully embeds semantically
similar feature points in descriptor space closer than other meth-
ods. Figure 5 visualizes predicted point correspondences produced
by our method for the BHCP test shapes. We observed that our
predicted correspondences appear visually plausible, although for
bikes we also see some inconsistencies (e.g., at the pedals). We be-
lieve that this happens because our automatic non-rigid alignment
method tends to produce less accurate training correspondences
for the parts of these shapes whose geometry and topology vary
significantly. In the supplementary material, we include examples
of correspondences computed between BHCP shapes.

6.2 Results: cross-category training.
In this setting, we train our method on the training correspondence
data generated for all 16 categories of the segmented ShapeNetCore
dataset (∼977M correspondences), and evaluate on the BHCP shapes
(again, we ensured that the test BHCP shapes were excluded from
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Fig. 9. Evaluation of alternative algorithmic choices on the BHCP dataset (airplanes).

Method ours (single class) ours (‘Mixed 16’) ours (‘Mixed 13’) 3DMatch (single class) PCA SI SC SDF
CMC 87.1% 86.9% 83.2% 66.2% 43.3% 51.2% 77.3% 34.5%(symmetry)
CMC 83.3% 82.8% 77.4% 47.6% 39.8% 49.8% 73.8% 35.3%(no symmetry)

Corr. accuracy 65.9% 59.8% 54.1% 47.6% 39.8% 49.8% 56.1% 35.3%(symmetry)
Corr. accuracy 58.5% 51.3% 46.2% 40.6% 32.7% 43.1% 50.5% 28.5%(no symmetry)

Table 2. Numerical results for correspondence accuracy and CMC for all methods averaged over the BHCP dataset. We include the single-category and
cross-category settings of our method. Correspondence accuracy is reported based on fraction of correspondences predicted correctly below Euclidean distance
error threshold 0.25. CMC is reported for 100 retrieved matches.

this training dataset.) Figure 8(a) demonstrates the CMC plots and
Figure 8(b) demonstrates the correspondence accuracy plots for our
method trained across all 16 ShapeNetCore categories (“Mixed 16”)
against the best performing alternative descriptor (shape contexts)
for the symmetric and non-symmetric case averaged over all BHCP
classes (see supplementary material for plots per class). As a refer-
ence, we also include the plots for our method trained in the single-
category setting (“Single Class”). We observed that the performance
of our method slightly drops in the case of cross-category training,
yet still significantly outperforms the best alternative method.
We further stretched the evaluation of our method to the case

where we train it on 13 categories of the segmented ShapeNetCore
(“Mixed 13”), excluding airplanes, bikes, and chairs, i.e. the categories
that also exist in BHCP. We observe that the performance of our
method is still comparable to the SC descriptor (higher in terms of
CMC, but a bit lower in terms of correspondence accuracy). This
means that in the worst case where our method is tested on shape
categories not observed during training, it can still produce fairly
general local shape descriptors that perform favorably compared to
hand-crafted alternatives.

6.3 Results: alternative algorithmic choices.
In Figure 9, we demonstrate correspondence accuracy (symmetric
case) under different choices of architectures and viewpoint config-
urations for our method. Specifically, Figure 9(a) shows results with
view-pooling applied after the pool5, fc6 and fc7 layer of AlexNet.
View-pooling after fc6 yields the best performance. We also demon-
strate results with an alternative deeper network, known as VGG16
[Simonyan and Zisserman 2014], by applying view-pooling after its
fc6 layer. Using VGG16 instead of AlexNet offers marginally better

performance than AlexNet, at the expense of slower training and
testing. Figure 9(b) shows results with different output dimensional-
ities for our descriptor, and Figure 9(c) shows results with different
viewpoint distance configurations. Our proposed configuration of-
fers the best performance. Figure 9(d) shows results when we fix
the AlexNet layers and update only the weights for our dimension-
ality reduction layer during training (“no AlexNet fine-tuning”),
and when we remove the dimensionality reduction layer and we
just perform view-pooling on the raw 4096-D features produced by
AlexNet again without fine-tuning (“raw AlexNet”). It is evident
that fine-tuning the AlexNet layers and using the dimensionality
reduction layer are both useful to achieve high performance. Figure
9(d) shows performance when “average” view pooling is used in
our architecture instead of “max” view pooling. “Max” view pooling
offers significantly higher performance than “average” view pooling.
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Fig. 10. Evaluation wrt various number of views, and upright orientation
on the BHCP dataset (airplanes)

Figure 10 demonstrates results under different numbers of sam-
pled views, and results assuming consistent upright orientation (i.e.
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we apply random rotation to BHCP shapes only about the upright
axis). The plots indicate that the performance of our method is very
similar for both the arbitrary orientation and consistent upright
orientation cases (slightly higher in the upright orientation case,
which makes sense since the test views would tend to be more
similar to the training ones in this case). In the presence of fewer
sampled views (e.g. 18 or 24), the performance of our method drops
slightly, which is an expected behavior since less surface informa-
tion is captured. The performance of our method is quite stable
beyond 30 views. Table 3 reports the execution times to compute
our descriptor per point with respect to various number of views.
The reported execution times include both the stage for rendering
views and the stage for processing these renderings through our
network. We observe that the execution time tends to scale linearly
with the number of views. We also note that multiple surface points
could be processed in parallel.

view size 18 24 30 36 48
execution time 0.27s 0.44s 0.51s 0.57s 0.91s
Table 3. Execution time wrt different numbers of used views

7 APPLICATIONS
In this section, we utilize our learned point descriptors for a wide
variety of shape analysis applications, and evaluate with respect to
existing methods, and benchmarks. Specifically, we discuss applica-
tions of our descriptors to shape segmentation, affordance region
detection, and finally matching depth data with 3D models.

Fig. 11. Examples of shape segmentation results on the BHCP dataset.

Category JointBoost JointBoost Guo et al.our descriptors hand-crafted
Bikes 77.3% 72.4% 69.6%
Chairs 71.8% 65.7% 60.1%

Helicopters 91.7% 91.1% 95.6%
Airplanes 85.8% 85.1% 81.7%
Average 81.7% 78.6% 76.7%
Table 4. Mesh labeling accuracy on BHCP test shapes.

Shape segmentation. We first demonstrate how our descriptors
can benefit shape segmentation. Given an input shape, our goal is to
use our descriptors to label surface points according to a set of part
labels. We follow the graph cuts energy formulation by [Kalogerakis
et al. 2010]. The graph cuts energy relies on unary terms that assesses
the consistency of mesh faces with part labels, and pairwise terms
that provide cues to whether adjacent faces should have the same
label. To evaluate the unary term, the original implementation relies
on local hand-crafted descriptors computed per mesh face. The
descriptors include surface curvature, PCA-based descriptors, local
shape diameter, average geodesic distances, distances from medial
surfaces, geodesic shape contexts, and spin images. We replaced all
these hand-crafted descriptors with descriptors extracted by our
method to check whether segmentation results are improved.
Specifically, we trained our method on ShapeNetCore classes

as described in the previous section, then extracted descriptors
for 256 uniformly sampled surface points for each shape in the
corresponding test classes of the BHCP dataset. Then we trained a
JointBoost classifier using the same hand-crafted descriptors used
in [Kalogerakis et al. 2010] and our descriptors. We also trained the
CNN-based classifier proposed in [Guo et al. 2015]. This method
proposes to regroup the above hand-crafted descriptors in a 30x20
image, which is then fed into a CNN-based classifier. Both classifiers
were trained on the same training and test split. We used 50% of the
BHCP shapes for training, and the other 50% for testing per each
class. The classifiers extract per-point probabilities, which are then
projected back to nearest mesh faces to form the unary terms used
in graph cuts.
We measured labeling accuracy on test meshes for all methods

(JointBoost with our learned descriptors and graph cuts, JointBoost
with hand-crafted descriptors and graph cuts, CNN-based classifier
on hand-crafted descriptors with graph cuts). Table 4 summarizes
the results. Labeling accuracy is improved on average with our
learned descriptors, with significant gains for chairs and bikes in
particular.

Matching shapes with 3D scans. Another application of our de-
scriptors is dense matching between scans and 3D models, which
can in turn benefit shape and scene understanding techniques. Fig-
ure 12 demonstrates densematching of partial, noisy scanned shapes
with manually picked 3D database shapes for a few characteristic
cases. Corresponding (and symmetric) points are visualized with
same color. Here we trained our method on ShapeNetCore classes
in the single-category training setting, and extracted descriptors for
input scans and shapes picked from the BHCP dataset. Note that we
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Fig. 12. Dense matching of partial, noisy scans (even columns) with 3D complete database shapes (odd columns). Corresponding points have consistent colors.

did not fine-tune our network on scans or point clouds. To render
point clouds, we use a small ball centered at each point. Even if the
scans are noisy, contain outliers, have entire parts missing, or have
noisy normals and consequent shading artifacts, we found that our
method can still produce robust descriptors to densely match them
with complete shapes.

Predicting affordance regions. Finally, we demonstrate how our
method can be applied to predict human affordance regions on
3D shapes. Predicting affordance regions is particularly challeng-
ing since regions across shapes of different functionality should be
matched (e.g. contact areas for hands on a shopping cart, bikes, or
armchairs). To train and evaluate our method, we use the affordance
benchmark with manually selected contact regions for people in-
teracting with various objects [Kim et al. 2014] (e.g. contact points
for pelvis and palms). Starting from our model trained in the cross-
category setting, we fine-tune it based on corresponding regions
marked in a training split we selected from the benchmark (we use
50% of its shapes for fine-tuning). The training shapes are scattered
across various categories, including bikes, chairs, carts, and gym
equipment. Then we evaluate our method by extracting descriptors
for the rest of the shapes on the benchmark. Figure 13 visualizes
corresponding affordance regions for a few shapes for pelvis and
palms. Specifically, given marked points for these areas on a ref-
erence shape (first column), we retrieve points on other shapes
based on their distance to the marked points in our descriptor space.
As we can see from these results, our method can also generalize
to matching local regions across shapes from different categories
with largely different global structure. We refer the reader to the
supplementary material for more results.

8 CONCLUSION
We presented a method that computes local shape descriptors by
taking multiple rendered views of shape regions in multiple scales
and processing them through a learned deep convolutional network.
Through view pooling and dimensionality reduction, we produce
compact local descriptors that can be used in a variety of shape
analysis applications. Our results confirm the benefits of using such
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Fig. 13. Corresponding affordance regions for pelvis and palms.

view-based architecture. We also presented a strategy to generate
synthetic training data to automate the learning procedure.
There are a number of avenues of future directions that can

address limitations of our method. Currently, we rely on a heuristic-
based viewing configuration and rendering procedure. It would be
interesting to investigate optimization strategies to automatically
select best viewing configurations and rendering styles to maximize
performance. We currently rely on perspective projections to cap-
ture local surface information. Other local surface parameterization
schemes might be able to capture more surface information that
could be further processed through a deep network. Our automatic
non-rigid alignment method tends to produce less accurate training
correspondences for parts of training shapes whose geometry and

Reference Model 1 Model 2

Fig. 14. Our learned descriptors are less effective in shape classes for which
training correspondences tend to be erroneous.
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topology vary significantly. Too many erroneous training corre-
spondences will in turn affect the discriminative performance of our
descriptors (Figure 14). Instead of relying on synthetic training data
exclusively, it would be interesting to explore crowdsourcing tech-
niques for gathering human-annotated correspondences in an active
learning setting. Rigid or non-rigid alignment methods could benefit
from our descriptors, which could in turn improve the quality of the
training data used for learning our architecture. This indicates that
iterating between training data generation, learning, and non-rigid
alignment could further improve performance. Finally, zero-shot
learning techniques [Xian et al. 2017] also represent an interest-
ing avenue to improve the generalization of data-driven surface
descriptors.
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