CS336 Computer-Aided Geometric Design

Problem Sheet

1. Compute the space of tangent vectors for the point $[1,1,1]$ on the ellipsoid given by the equation:

$$
9 X^{2}+16 Y^{2}+144 Z^{2}=169
$$

2. Let $f(u, v)=u^{2}+u+2 v$ and $g(u, v)=v^{2}+2 u+v$. Starting from the initial guess of $(1,1)$, use the Newton-Raphson technique to compute the next two iterations.
3. Formulate a procedure for creating surfaces of revolution.
4. Consider the situation of a drafted extrude where the profile has sharp corners. Describe the geometry/topology near these sharp corners.
5. Prove that a suitable cross section of a constant-radius (say r) blend surface is actually circular of radius r. Is this also a radius of curvature for the blend surface?
6. Given two pints on a unit sphere, derive the parametrization of the great circle passing through it.
7. Let S be the unit cube and let e_{1}, e_{2}, e_{3} be the edges incident at a vertex. Suppose e_{1}, e_{2} are blended first with radius r and e_{3} subsequently with radius R. Describe the geometry of all the surfaces created. Cover the cases when $r<R$ and $r>R$ separately. Describe what happens when this sequence is reversed.
8. Assume that a curve $C(t)=(x(t), y(t), z(t))$ is available in terms of its evaluators. Write pseudo-code to compute its curvature. Do the same for a surface $S(u, v)$.
9. Let P be a polygonal closed curve which may cross itself. Define the winding number for such curves and outline a procedure to compute this.
10. Let S be a solid and H be a hyperplane which cuts the solid into two parts S_{1}, S_{2}. If $S \cap H$ is simply connected, show that $\operatorname{genus}(S)=\operatorname{genus}\left(S_{1}\right)+\operatorname{genus}\left(S_{2}\right)$.
