Engineering and Society

A teaching and research paradigm for national development.

Milind Sohoni Centre for Technology Alternatives for Rural Areas, CSE IIT-Bombay

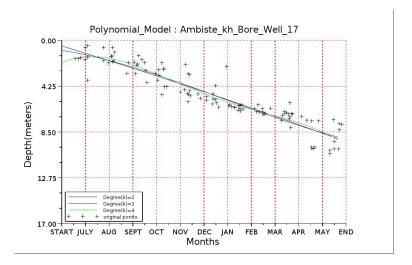
www.ctara.iitb.ac.in www.cse.iitb.ac.in/~sohoni

↓ □ ▶ ↓ □ ▶

Organization of the talk

- The method of science and of engineering.
- Society, Development and R&D.
- The Drinking Water case study.
- Outcomes and the way forward.

June 30, 2012 2 / 35

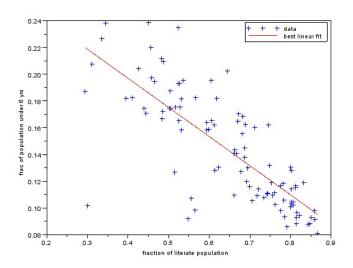

Science-Observing phenomena and explaining them

- Observation and Documentation-need for instruments, identifying variables, careful organization of data
- Formulation of Laws-constructing a relationship between the variables.
- Testing-testing the validity of the law by observing a new scenario or by experiments.

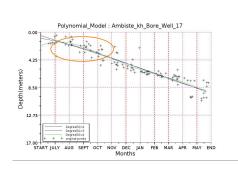
The above steps are repeated till a satisfactory model/theory is obtained.

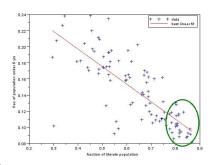
June 30, 2012 3 / 35

An Example-water level in a borewell



June 30, 2012


4 / 35


An Example from Social Sciences-Shahpur taluka, Thane

Population fraction under 6 yrs vs. literate fraction

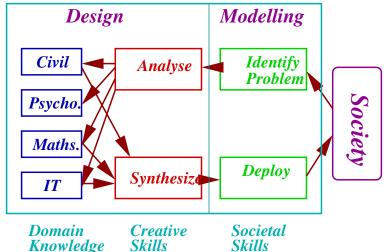
Engineering-where do we want to be?

- What should I do so that my borewell water is no deeper than 4 meters?
- What should I do so that my villages are 90% literate?
- What should I do so that my public transport is better?
- What does the society value?

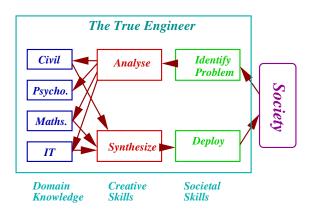
The Engineering Cycle

- Identify a societal problem and a stakeholder!
- Analyse the problem and separate it into elementary subproblems (maybe in different fields)
- Solve the problem in the individual fields.
- Synthesize the complete solution.
- Deploy and get back to stakeholder.

Remember...

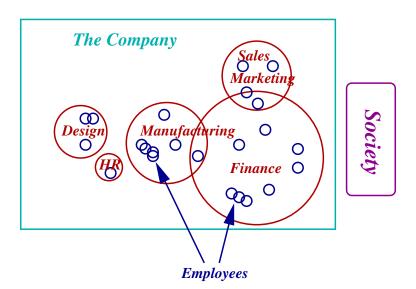

- Science tries to describe reality while Engineering wants to change it.
- Delivering Change is the key engineering function.
- Modelling and Design are the processes by which this is achieved.

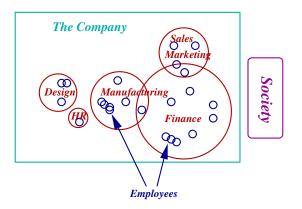
7 / 35


June 30, 2012

Understanding Modelling and Design

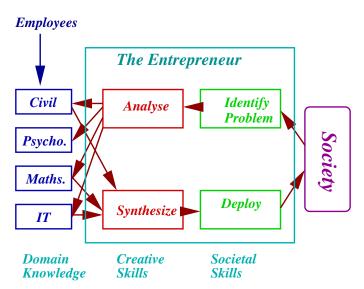
The True Engineer

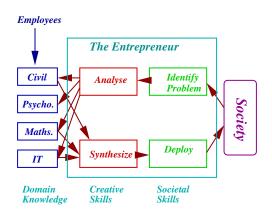

The ideal engineer


- The true engineer is *inter-disciplinary*
- Engineering R&D usually takes place at the domains. It is useless unless there is a stakeholder.

() June 30, 2012 9 / 35

One model—The company


()


- The employee need not be inter-disciplinary.
- The problems taken for solution by a company are those which give the highest return. Thus IT, Pharma, Telecom. find attention while drinking water, solid waste do not.
- Why is it that our young engineers do not start companies in the development sectors?

() June 30, 2012 11 / 35

Another model—The Entrepreneur

12 / 35

- Entrepreneurs have low cost of entry!
- Development problems such as water, agriculture, public health, energy etc. pose unique opportunities for our young engineers.
- However, our engineering colleges must teach interdisciplinarity.

June 30, 2012 13 / 35

A key observation (see my article in Current Science, June 2012)

- There is a huge development deficit which needs attention. This needs both trained engineers and the research to back it up.
- Current set of companies may not have sufficient incentives to address these problems.
- These companies also do not have the need for the 5,00,000 p.a. or so engineering aspirants.
- Our current training of engineers is biased to employee-training and not towards inter-disciplinarity and entrepreneurship.
- Our knowledge base in the development sector is poor.

Thus there is a supply-demand mismatch in both the corporate and the development sector!

June 30, 2012 14 / 35

A possible solution

Attempt both problems at the same time

- University participation in regional development problem
 —formulation and solution.
- Curriculum modification to allow students to take projects with local content and a focus on R&D for regional needs.
- University as an important mediator.

This is not easy and I present a case studs from drinking water.

- How do we identify the problem and break it up into sub-problems.
- Where do we get the relevant data? Who are our stake-holders and who should we report the solutions?
- Are there sufficient incentives for students and faculty members?

() June 30, 2012 15 / 35

Rural Drinking Water

- Much of rural India depends on groundwater for their domestic water needs.
- This water comes from bore-wells, handpumps or dug-wells.
- Gol calls a village safe if there is 40 liters per capita per day (lpcd) of safe water within 1 km of home.
- The urban norm is about 150 lpcd.

June 30, 2012

Stress

When that happens...

- Women have to walk long distances, spend substantial time and effort.
- In some cases, tankers may be used by the district administration to supply water.
- access may reduce to 10-15 lpcd!
- adverse impact on incomes and well-being

June 30, 2012 18 / 35

Area	9000 sq km.
Pop. (Rural)	81 (23) lakhs
Taluka (Tribal)	15 (5)
Habitations (GPs)	8000 (900)
Cities (Mun. Coun.)	37 (12)

- Roughly one rural drinking water engineer and one surface/groundwater engineer for every 20,000 people, 40 habitations and 50 sq.km.
- Huge development agenda-groundwater security, drinking water systems, institution building

Thane

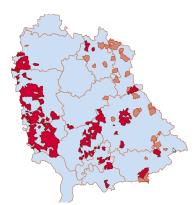
June 30, 2012 19 / 35

Tanker-fed villages

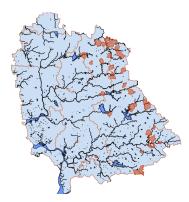
160 out of 1700 were tanker fed. 60 repeatedly so!

Largely in the 4 tribal talukas: Jawhar, Mokhada, Murbad and Shahpur.

Fraction of ST population.


	Ja.	Mo.	Mu.	Sh.
Tanker	0.97	0.93	0.74	0.62
Taluka	0.97	0.91	0.24	0.35

Mean elevation (in m.):


	Ja.	Mo.	Mu.	Sh.
Tanker	344	361	123	197
Taluka	320	350	126	132

More analysis

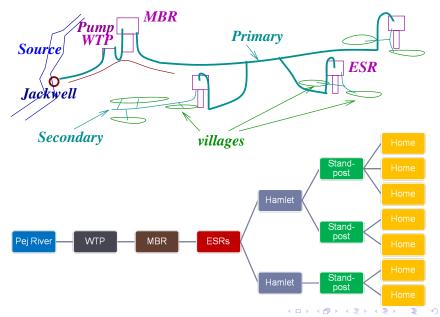
Location of large rural regional drinking water schemes

Location of rivers and lakes

Data from MRSAC, Census 2001, District administrative offices

June 30, 2012 21 / 35

Obvious questions...


- Why cant we have more of rural regional drinking water schemes?
- Basic issues:
 - ► Technical issues : tricky design, suitable water source.
 - ► Economic issues : capital and running costs. Benefits.
 - Social/Governance issues : Ownership, collection of bills, who is to invest?
- Essentially a techno-economic problem which we must understand!

IITB Karjat taluka (Raigad dist.) feasibility study

- feasibility of a rural regional scheme for 70 habitations.
- Using PWD norms and procedures
- reporting back to PWD, local MLA and officials.
- team of 3 students over 6 months.

() June 30, 2012 22 / 35

What all does a scheme have?

Basic Steps

- Assess need, severity and extend of problem. Meeting with all stake-holders.
- Locate a source and judge feasibility and clearances required.
- Through population data and topo-sheet, create a demand scenario. Governance
- Do the network design-Optimization loop
 - Clustering of villages for ESR.
 - ▶ Pipe diameter and head calculation.
 - ► Compute costs as per PWD schedule.
- Do ground-truthing and take stake-holder feedback.
- Write a final report and present in appropriate fora.
 Documentation and Reporting

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆○

June 30, 2012

24 / 35

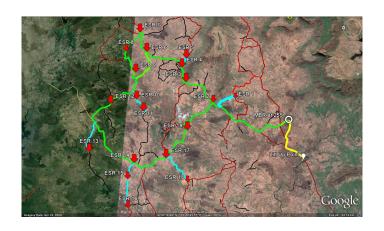
Stakeholders!

Karjat Tribal Block

The source-*Pej river*

Discharge from Bhivpuri Hydel station-hence perennial

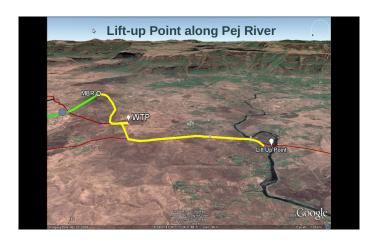
27 / 35


Understanding the demand

Latitude, longitude, elevation, population and growth rate.

-0

The designed network


17 ESRs and a 2-loop network.

A close-up

Hundreds of nodes and edges. Pipes along roads.

Another close-up

Finally...

Estimated Net Investment for design population of 81,400.

200 lcpd	Rs.7051 per capita	Rs. 57 crores
40 lpcd	Rs. 2119 per capita	Rs. 17 crores

Energy costs(at Rs. 5 per unit, pumping efficiency 75%)

- 200 lcpd Rs.400 per capita per annum
- 40 lpcd Rs. 79 per capita per annum
- Energy cost per 1000 litre Rs. 4.56

Net investment for piped water at both norms of 40/200 lpcd to north Karjat is economically feasible.

32 / 35

June 30, 2012

Outcomes

For Karjat: -Development

- Report presented and adopted by 6 beneficiary gram panchayats in gram sabha.
- Demand letter offically presented to district administration.
- MLA Mr. Suresh Lad to take this up with ministry.

For CTARA/IIT: -R&D and inter-disciplinary training

- Novel use of GIS and Google Earth. New optimization problems.
- Expertise in network design and simulations. Use of Branch and LOOP softwares.
- Recognition in the *taluka* as a problem-solver. Excellent experience for students to work as consultants.

June 30, 2012

33 / 35

So, where do we go from here?

- There are examples from other fields as well:
 - ► Energy sector, public transport, more water, town planning,...
- Study TDSL in www.ctara.iitb.ac.in on how to design and offer projects for UGs. Adopt similar offering in your curriculum.
- Set aside some funding and have 2-3 coordinating faculty.
- Have your institution head meet with district collector.
- CTARA can help!

The Development Vision-Engineering colleges as regional solution providers

- close cooperation between field-level administrations and educational and research institutions
- movement of funds to local R&D and avenues for innovation
- training of a new engineer-social scientist-consultant

June 30, 2012 34 / 35

Thanks

-0

35 / 35