CS101 Computer Programming and Utilization

Milind Sohoni

June 3, 2006
(1) So far
(2) The Cowherd of Gokul

The story so far ...

- We have seen various control flows.
- We have seen multi-dimensional arrays and the char data type.
- We saw the use of functions and calling methods.
- We have seen structs, sorting, searching.

This week...

A real life problem..

Srirang

Srirang is a cowherd from Gokul.
He has a single cow. By god's
grace:

- The cow gives 50 litres of milk everyday.
- The expense of maintaining this cow is Rs. 250 per day.
Srirang wishes to sell this milk. Every evening, Srirang gets bids from various parties. Each bid is of the form:
- Name of the bidder.
- The price at which he/she will purchase milk.
- The volume that he/she requires.

Srirang

Srirang is a cowherd from Gokul. He has a single cow. By god's grace:

- The cow gives 50 litres of milk everyday.
- The expense of maintaining this cow is Rs. 250 per day.
Srirang wishes to sell this milk. Every evening, Srirang gets bids from various parties. Each bid is of the form:
- Name of the bidder.
- The price at which he/she will purchase milk.
- The volume that he/she requires.

Looking at the bids, Srirang decides on a price for the next day, say X. This price is offered to all customers. The customers who can afford the price collect the milk and pay Rs. X/litre.

Here is an example:

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

Srirang

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

He fixes a price of Rs.5. Gauri goes away. There is an overall demand of 60 . The others distribute the supply of 50 liters somehow. Sriang earns Rs. 250.

Srirang

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

He fixes a price of Rs.5. Gauri goes away. There is an overall demand of 60 . The others distribute the supply of 50 liters somehow. Sriang earns Rs. 250.

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

He gets a bit greedy and fixes the price to Rs. 7 and makes the following table:

Declared Price	7
Demand	40
Supply	40
Earnings	280

The Poser

Question: What price Rs. X/liter should Srirang set to maximize his profits?

The Poser

Question: What price Rs. X/liter should Srirang set to maximize his profits?

Some Observations:

- Clearly as X increases, the demand decreases.
- For the price X if the demand is greater than 50 then the supply can only be 50 .
- For the price X if the demand is less than 50 then it can be met.
- We need to maximize X*Supply.

The Poser

Question: What price Rs. X/liter should Srirang set to maximize his profits?

Some Observations:

- Clearly as X increases, the demand decreases.
- For the price X if the demand is greater than 50 then the supply can only be 50 .
- For the price X if the demand is less than 50 then it can be met.
- We need to maximize X*Supply.

Key Observation:

- Clearly the optimum X is a price offered by some customer.

The Poser

Question: What price Rs. X/liter should Srirang set to maximize his profits?

Some Observations:

- Clearly as X increases, the demand decreases.
- For the price X if the demand is greater than 50 then the supply can only be 50 .
- For the price X if the demand is less than 50 then it can be met.
- We need to maximize X*Supply.

Key Observation:

- Clearly the optimum X is a price offered by some customer.

Why is this?

- The net earning depends on the demand.
- If, for prices $X_{1}<X_{2}$, the demand is unchanged then clearly X_{2} is prefered.
- The demand can only change when we hit a customer price.

Solution

A computational solution is now easy:

- Try every customer price.
- Compute Demand at that price.
- Compute Supply and Earnings.
- Select the best!

Solution

A computational solution is now easy:

- Try every customer price.
- Compute Demand at that price.
- Compute Supply and Earnings.
- Select the best!

Data required:

The bids
The Maximum Supply (50L)
My Costs (Rs. 250)

The basic data structures are:

```
struct bid
{
    char name [6];
    int price, vol;
}
bid bidlist[10]
int MaxSupply;
```


Solution

A computational solution is now easy:

- Try every customer price.
- Compute Demand at that price.
- Compute Supply and Earnings.
- Select the best!

Data required:

The bids
The Maximum Supply (50L)
My Costs (Rs. 250)

The basic data structures are:

```
struct bid
{
    char name [6];
    int price, vol;
}
bid bidlist[10]
int MaxSupply;
```

The basic functions are:
int ComputeDemand
(bid bidlist[],int price);
int Supply;
Supply=Min(MaxSupply,Demand);

Compute Demand

```
int ComputeDemand(bid bidlist[],
                        int X,int N)
{
    int i,d=0;
    for (i=0;i<N;i=i+1)
        if (bidlist[i].price>=X)
            d=d+bidlist[i].volume;
    return (d);
};
```


Compute Demand

Whats happening?

```
int ComputeDemand(bid bidlist[],
    int \(X\),int \(N\) )
    int i, d=0;
    for ( \(i=0 ; i<N ; i=i+1\) )
        if (bidlist[i].price>=X)
            d=d+bidlist[i].volume;
    return (d);
\};
```


srirang.cpp

int main()
\{
int i,N,MaxSupply, E, Earnings, Xbest;
int X,demand, supply, Sup; bid bids[20];
cout << " N and MaxSupply? \n";
cin >> N >> MaxSupply;
for ($i=0 ; i<N ; i=i+1$)
\{
cin >> bids[i].name >> bids[i].volume >> bids[i].price;
\};
Xbest=0;
Earnings=0;
Sup=0;
IMPORTANT CODE HERE

```
cout << "best price " << Xbest << "\n";
cout << "Earnings " << Earnings << "\n";
cout << "Supply " << Sup << "\n";
```

\};

The important part

```
Xbest=0;
Earnings=0;
Sup=0;
for ( \(i=0 ; i<N ; i=i+1\) )
\{
    X=bids[i].price;
    demand=ComputeDemand(bids,
                                    X,N) ;
    supply=min(demand,MaxSupply);
    E=supply*X;
    if (E>Earnings)
    \{
        Earnings=E;
        Xbest=X;
        Sup=supply;
    \};
\}; // of for
```

Whats happening:

- Keep

Xbest	the best price so far
E	earnings at Xbest
Sup	supply at that price

- Initialize this data, and run across each price. This is because we know that the optimum occurs at some offered price.
- Update the variables above for each price. Call ComputeDemand t do this.

Input and Output

650
roshni 520
prema 158
radha 2010
rukmi 105
gauri 103
neha 106
Thus maximum supply is 50 and there are 6 bids.

Input and Output

650

$$
\text { roshni } 520
$$

$$
\text { prema } 158
$$

radha 2010
rukmi 105
gauri 103
neha 106
Thus maximum supply is 50 and there are 6 bids.

```
[sohoni@nsl-13 lectures]$ ./a.ou
    N and MaxSupply?
best price 8
Earnings 320
Supply 40
Thus we see that the best price is 8 and that the supply at this price is 40 litres. Earnings are Rs. 320.
```


Input and Output

650

$$
\text { roshni } 520
$$

$$
\text { prema } 158
$$

$$
\text { radha } 2010
$$

$$
\text { rukmi } 105
$$

$$
\text { gauri } 103
$$

$$
\text { neha } 106
$$

Thus maximum supply is 50 and there are 6 bids.

```
[sohoni@nsl-13 lectures]$ ./a.ou
    N and MaxSupply?
best price 8
Earnings 320
Supply 40
```

Thus we see that the best price is 8 and that the supply at this price is 40 litres. Earnings are Rs. 320. It is curious that:

- Gauri is refused, and yet..

Input and Output

650

$$
\text { roshni } 520
$$

$$
\text { prema } 158
$$

$$
\text { radha } 2010
$$

rukmi 105
gauri 103
neha 106
Thus maximum supply is 50 and there are 6 bids.

```
[sohoni@nsl-13 lectures]$ ./a.ou
    N and MaxSupply?
best price 8
Earnings 320
Supply 40
```

Thus we see that the best price is 8 and that the supply at this price is 40 litres. Earnings are Rs. 320. It is curious that:

- Gauri is refused, and yet..
- 10 litres of milk is left behind!

Input and Output

650

$$
\text { roshni } 520
$$

$$
\text { prema } 158
$$

$$
\text { radha } 2010
$$

$$
\text { rukmi } 105
$$

$$
\text { gauri } 103
$$

$$
\text { neha } 106
$$

Thus maximum supply is 50 and there are 6 bids.

```
[sohoni@nsl-13 lectures]$ ./a.ou
    N and MaxSupply?
best price 8
Earnings 320
Supply 40
```

Thus we see that the best price is 8 and that the supply at this price is 40 litres. Earnings are Rs. 320.
It is curious that:

- Gauri is refused, and yet..
- 10 litres of milk is left behind!
- So much for MARKET ECONOMY!

Two questions

What if there were 1000 bids?

- There are 1000 possible prices X. Thus the outer loop will run 1000 times. In oher words, ComputeDemand is called 1000 times.
- Each call of

ComputeDemand will take 1000 steps!

- Thus the time taken is 1000^{2}. In other words, this is an $O\left(N^{2}\right)$ algorithm.
Can anything be done?

Two questions

What if there were 1000 bids?

- There are 1000 possible prices X. Thus the outer loop will run 1000 times. In oher words, ComputeDemand is called 1000 times.
- Each call of

ComputeDemand will take 1000 steps!

- Thus the time taken is 1000^{2}. In other words, this is an $O\left(N^{2}\right)$ algorithm.
Can anything be done?
- Sort the bids in decreasing oredr. This takes $O(N \log N)$ time.
Certainly
- Eliminate ComputeDemand.
- Demand D_{i} at price X_{i} is the demand at X_{i-1} plus the volume V_{i}.

$$
D_{i}=D_{i-1}+V_{i}
$$

Two questions

What if there were 1000 bids?

- There are 1000 possible prices X. Thus the outer loop will run 1000 times. In oher words, ComputeDemand is called 1000 times.
- Each call of

ComputeDemand will take 1000 steps!

- Thus the time taken is 1000^{2}. In other words, this is an $O\left(N^{2}\right)$ algorithm.
Can anything be done?
- Sort the bids in decreasing oredr. This takes $O(N \log N)$ time.

Certainly

- Eliminate ComputeDemand.
- Demand D_{i} at price X_{i} is the demand at X_{i-1} plus the volume V_{i}.

$$
D_{i}=D_{i-1}+V_{i}
$$

Assignment

Implement sortedsrirang.cpp

The second question

Siddhartha is Srirang's older brother. He gets

name	volume	price
srirang	50	5
gopal	10	4
vithal	10	3
narayan	15	6

- buy bids just as Srirang, but also
- sell bids.

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

The second question

Siddhartha is Srirang's older brother. He gets

- buy bids just as Srirang, but also
- sell bids.

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

name	volume	price
srirang	50	5
gopal	10	4
vithal	10	3
narayan	15	6

Siddhartha must announce

- a buying price Y at which he will buy milk.
- a selling price X at which he will sell milk.

Write a program to compute the best pair (Y, X) which maximizes his earnings.

The second question

Siddhartha is Srirang's older brother. He gets

- buy bids just as Srirang, but also
- sell bids.

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

name	volume	price
srirang	50	5
gopal	10	4
vithal	10	3
narayan	15	6

Siddhartha must announce

- a buying price Y at which he will buy milk.
- a selling price X at which he will sell milk.

Write a program to compute the best pair (Y, X) which maximizes his earnings.

Does this MARKET function any better?

The second question

Siddhartha is Srirang's older brother. He gets

- buy bids just as Srirang, but also
- sell bids.

name	volume	price
roshni	5	20
prema	15	8
radha	20	10
rukmi	10	5
gauri	10	3
neha	10	6

name	volume	price
srirang	50	5
gopal	10	4
vithal	10	3
narayan	15	6

Siddhartha must announce

- a buying price Y at which he will buy milk.
- a selling price X at which he will sell milk.

Write a program to compute the best pair (Y, X) which maximizes his earnings.

Does this MARKET function any better?

