CS101 Computer Programming and Utilization

Milind Sohoni

May 4, 2006
(1) Memory in CAL-Programs

- The Quadratic polynomial
- Computing Slope
(2) The TEST instruction
- Motivation: The Fibonacci Problem
- Solution: The Fibonacci Problem
- The log function

In Summary

The Programmer

- Writes a CAL-program by assuming a typical input.
- Writes where typical inputs are to be replaced by user inputs.
- Stores/writes and transmits.

10 \% substitute input here *
8
DIV
5
$+$
32
= \% see output in display

The Bum

- Receives the program.
- Substitutes his inputs.
- Runs the program on his calculator line-by-line in that order.

Another Problem

Quadratic

Write a CAL-program to solve the quadratic $A x^{2}+B x+C=0$.

We solve a particular case and annotate the program in the right places. We consider $x^{2}+3 x+2$, thus $A=1, B=3, C=2$.

- Compute $\Delta=\sqrt{B^{2}-4 A C}$.
- Now calculate the two roots using the expressionss

$$
\text { roots }=\frac{-B+\Delta}{2 A} \text { and } \frac{B+\Delta}{2 A}
$$

3% substitute B here
STO
RCL
*
RCL
-
4
*
1 \% substitute A here
*
2 \% substitute C here
=
SQRT
STO \% discriminant stored

We solve a particular case and annotate the program in the right places. We consider $x^{2}+3 x+2$, thus $A=1, B=3, C=2$.

- Compute $\sqrt{B^{2}-4 A C}$.
- Now calculate the two roots: RCL

3 \% substitute B here
=
DIV
2
DIV
1 \% substitute A here
= $\%$ read root 1 here

Clunky

- We see that there are repeated insertions of A, B, C. This is clumsy.
- We allow our calculator to have more than 1 memory register.
- STO 5 will mean store contents of visible register in memory location 5.
- RCL 5 will mean move contents of memory location 5 to the visible register.

Thus the set of instructions will now be:

- +,-,=,*,DIV
- AC
- numbers
- STO 1, STO 2 ,...,STO 10
- RCL 1, RCL 2 ,..., RCL 10

Programs in this language will be called MCAL-programs.

Final Code

1 \% subs. A here	RCL 4		
STO 1 \% A is in M1	-		
3 \% subs B here	RCL 2		
STO 2 \% B in M2	=		
2 \% C	DIV		
STO 3 \% in M3	2		
RCL 2	DIV		
*	RCL 1		
RCL 2	$=$		
-	STO	\% f	rst root
4			
*	KEY		
RCL 1		M1	A
*		M2	B
RCL 3		M3	C
=		M5	root 1
SQRT		M6	root 2

STO 4 \% disc in M4

Another example: Computing Slope

We are given a point (x, y). We wish to compute $\sin \alpha$ where α is the angle between the X-axis and the line joining the origin.

$$
\sin \alpha=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

- first compute $\sqrt{x^{2}+y^{2}}$.
- next compute $\frac{y}{\sqrt{x^{2}+y^{2}}}$.

We pick typical x, y say $(3,4)$.

We pick typical x, y say $(3,4)$.

```
3 % this is x
STO 1 %
4 % this is y
STO 2 %
```

*

RCL 2
$+$
RCL 1
*
RCL 1
=
SQRT
STO 4 \% the denominator
RCL 2
DIV
RCL 4
=
STO 3 \% answer stored in M3

We pick typical x, y say $(3,4)$.

```
3 % this is x
STO 1 %
4 % this is y
STO 2 %
```

*

RCL 2
$+$
RCL 1
*
RCL 1
=
SQRT
STO 4 \% the denominator
RCL 2
DIV
RCL 4
=
STO 3 \% answer stored in M3

Here:

M1	x	input
M2	y	input
M3	sin alpha	output

Summary

- Enhance calculator with more memory.
- Use STO 5, RCL 5 as additional instructions.
- Groups registers as Input, Output and temporary.

The Fibonacci numbers

Let $a_{0}=1$ and $a_{1}=1$, and a_{n} be given by the following recursive definition:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Write an MCAL-program to compute a_{n}.

Thus:

a_{0}	1
a_{1}	1
a_{2}	2
a_{3}	3
a_{4}	5
a_{5}	8
$:$	\vdots

The Fibonacci numbers

Let $a_{0}=1$ and $a_{1}=1$, and a_{n} be given by the following recursive definition:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Write an MCAL-program to compute a_{n}.

4 \%value of n

STO 1% will store $a(n-1)$
STO 2% will store a(n-2)
RCL 1 \% beginning of loop
Our variable storage is as follows:
$+$
RCL 2
=
STO 3 \% temporary
RCL 1
STO 2
RCL 3
STO 1% end of loop

The Fibonacci numbers

Let $a_{0}=1$ and $a_{1}=1$, and a_{n} be given by the following recursive definition:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Write an MCAL-program to compute a_{n}.

```
% value of n
1
STO 1 % will store a(n-1)
STO 2 % will store a(n-2)
RCL }1\mathrm{ % beginning of loop
+
RCL 2
=
STO 3 % temporary
RCL 1
STO 2
RCL 3
STO 1% end of loop
```


The Fibonacci numbers

4% value of n

1
STO 1% will store a(n-1)
STO 2% will store a(n-2)

RCL 1 \% beginning of loop
$+$
RCL 2
=
STO 3 \% temporary
RCL 1
STO 2
RCL 3
STO 1% end of loop

Let us analyse the loop. Assume that M1 has stored a_{n-1} and M2 has stored a_{n-2}. We plot M1,M2,M3,D, the display register.

The Fibonacci numbers

```
%value of n
1
STO 1 % will store a(n-1)
STO 2 % will store a(n-2)
RCL }1\mathrm{ % beginning of loop
+
RCL 2
=
STO 3 % temporary
RCL 1
STO 2
RCL 3
STO 1 % end of loop
```

Let us analyse the loop. Assume that M1 has stored a_{n-1} and M2 has stored a_{n-2}. We plot M1,M2,M3,D, the display register.

	M 1	M 2	M 3	D
RCL 1	a_{n-1}	a_{n-2}	x	a_{n-1}
+	a_{n-1}	a_{n-2}	x	a_{n-1}
RCL 2	a_{n-1}	a_{n-2}	x	a_{n-2}
$=$	a_{n-1}	a_{n-2}	x	a_{n}
STO 3	a_{n-1}	a_{n-2}	a_{n}	a_{n}
RCL 1	a_{n-1}	a_{n-2}	a_{n}	a_{n-1}
STO 2	a_{n-1}	a_{n-1}	a_{n}	a_{n-1}
RCL 3	a_{n-1}	a_{n-1}	a_{n}	a_{n}
STO 1	a_{n}	a_{n-1}	a_{n}	a_{n}

The Solution and ...

We see that the code consists of a preamble and a loop. The preamble sets up the recurrence relation and the loop executes it. The loop may be repeated as many times as required. Thus if $n=5$, then a_{0}, a_{1} are inputed raw, and the first loop calculates a_{2}. Thus the loop needs to be executed $n-1$ times to compute a_{n}.

Preamble

Loop	a2
Loop	a3
Loop	a4
Loop	a5

The Solution and ...

We see that the code consists of a preamble and a loop. The preamble sets up the recurrence relation and the loop executes it. The loop may be repeated as many times as required. Thus if $n=5$, then a_{0}, a_{1} are inputed raw, and the first loop calculates a_{2}. Thus the loop needs to be executed $n-1$ times to compute a_{n}.

Preamble

Loop	a2
Loop	a3
Loop	a4
Loop	a5

The Problem

But this NOT what we want.
The code changes with the input n, while we want it to be fixed!

What do we need?

Let us recall the BUM model of running programs. which goes through the following steps:

- We write a program and give it to BUM.
- BUM executes the first each instruction on the page sequentially. Thus, in other words, the BUM may as well eat up each line since he will never use it again. From our earlier loop program, we see that there are some set of instructions which need to be executed again and again. This is the key observation.

What do we need?

Let us recall the BUM model of running programs. which goes through the following steps:

- We write a program and give it to BUM.
- BUM executes the first each instruction on the page sequentially. Thus, in other words, the BUM may as well eat up each line since he will never use it again. From our earlier loop program, we see that there are some set of instructions which need to be executed again and again. This is the key observation.
- Let us devise a slightly cleverer DUMMY who retains the paper on which the program is written.

What do we need?

Let us recall the BUM model of running programs. which goes through the following steps:

- We write a program and give it to BUM.
- BUM executes the first each instruction on the page sequentially. Thus, in other words, the BUM may as well eat up each line since he will never use it again. From our earlier loop program, we see that there are some set of instructions which need to be executed again and again. This is the key observation.
- Let us devise a slightly cleverer DUMMY who retains the paper on which the program is written.
- Let us add an instruction which alerts the DUMMY.

The new format

Our program will now have a line number. Thus each line has a number and a CALC-instruction. For example:

1	10	\% substitute input here
2	$*$	
3	8	
4	DIV	
5	5	
6	+	
7	32	
8	$=$	\% see output in display

The new format

Our program will now have a line number. Thus each line has a number and a CALC-instruction. For example:

1	10	\% substitute input here
2	$*$	
3	8	
4	DIV	
5	5	
6	+	
7	32	
8	$=$	\% see output in display

We add a new instruction:

TEST nos

This is executed by the DUMMY as follows.

- On encountering the TEST instruction, the DUMMY scans the DISPLAY.
- If the Display holds a negative or zero value, the DUMMY moves to the next instruction.
- If, however, the Display value is positive, the DUMMY moves to line number nos.

The Fibonacci Program

		initialization
1	5	this is n
	STO5	
	-	
	1	
	$=$	
	STO4	the counter
	1	a_{n-1} and a_{n-2}
$9 T O 1$		

This completes the initialization.
At the end of this phase, we have:

M1	1
M2	1
M4	$4=(n-1)$
M5	$5=(n)$

The Fibonacci Program

		initialization
1	5	this is n
	STO5	
	-	
	1	
	$=$	
	STO4	the counter
	1	a_{n-1} and a_{n-2}
	STO1	
9	STO2	

This completes the initialization.
At the end of this phase, we have:

M1	1
M2	1
M4	$4=(n-1)$
M5	$5=(n)$

10	$\begin{aligned} & \text { RCL1 } \\ & + \\ & R C L 2 \\ & = \\ & S T O 3 \\ & \text { RCL1 } \\ & \text { STO2 } \\ & \text { RCL3 } \end{aligned}$	the loop temporary
19	RCL4	the termination
		termation
	1	
	$=$	
	STO4	counter -1
24	TEST 10	
25	STOP	

The Fibonacci Program

10	$R C L 1$	the loop
	+	
	$R C L 2$	
	$=$	
	STO3	
	$R C L 1$	
	STO2	
	$R C L 3$	
19	STO1	
	-	
	1	
	$=$	
24	STO4	
25	TEST 10	

We observe the values of each register at various times:

line	10	18	24
M 1	1	2	2
M 2	1	1	1
M 4	4	4	3

The Fibonacci Program

10	$R C L 1$	the loop
	+	
	$R C L 2$	
	$=$	
	STO3	
	$R C L 1$	temporary
	STO2	
	RCL3	
19	STO1	
	-	
	1	
	$=$	
24	STO4	
25	TEST 10	

We observe the values of each register at various times:

line	10	18	24
M 1	1	2	2
M 2	1	1	1
M 4	4	4	3

display is positive, so next instruction is 10.

The Fibonacci Program

10	$R C L 1$	the loop
	+	
	$R C L 2$	
	$=$	
	STO3	
	$R C L 1$	
	STO2	
	$R C L 3$	
19	STO1	
	-	
	1	
	$=$	
	STO4	
24	TEST 10	
25	STOP	

We observe the values of each register at various times:

line	10	18	24
M 1	1	2	2
M 2	1	1	1
M 4	4	4	3

display is positive, so next instruction is 10.

line	10	18	24
M 1	2	3	3
M 2	1	2	2
M 4	3	3	2

The Fibonacci Program

10	$R C L 1$	the loop
	+	
	$R C L 2$	
	$=$	
	STO3	
	$R C L 1$	
	STO2	
	$R C L 3$	
19	STO1	
	-	
	1	
	$=$	
	STO4	
24	TEST 10	
25	STOP	

We observe the values of each register at various times:

line	10	18	24
M 1	1	2	2
M 2	1	1	1
M 4	4	4	3

display is positive, so next instruction is 10.

line	10	18	24
M 1	2	3	3
M 2	1	2	2
M 4	3	3	2

display is positive, so next instruction is 10 .

The Fibonacci Program

10	$R C L 1$	the loop
	+	
	$R C L 2$	
	$=$	
	STO3	
	$R C L 1$	temporary
	STO2	
	RCL3	
19	STO1	
	-	
	1	
	$=$	
24	STO4	
25	TEST 10	

line	10	18	24
M1	3	5	5
M 2	2	3	3
M 4	2	2	1

The Fibonacci Program

10	$R C L 1$	the loop
	+	
	$R C L 2$	
	$=$	
	STO3	
	$R C L 1$	temporary
	STO2	
	RCL3	
19	STO1	
	-	
	1	
	$=$	
24	STO4	
25	TEST 10	

line	10	18	24
M 1	3	5	5
M 2	2	3	3
M 4	2	2	1

display is positive, so next instruction is 10 .

The Fibonacci Program

10	RCL1	the loop
	+	
	RCL2	
	$=$	
	STO3	temporary
	RCL1	
	STO2	
	RCL3	
18	STO1	
19	RCL4	the termination
	-	
	1	
	$=$	
24	STO4	counter -1
25	STOP 10	

line	10	18	24
M1	3	5	5
M2	2	3	3
M4	2	2	1

display is positive, so next instruction is 10 .

line	10	18	24
M1	5	8	8
M2	3	5	5
M4	1	1	0

The Fibonacci Program

10	RCL1	the loop
	+	
	RCL2	
	$=$	
	STO3	temporary
	RCL1	
	STO2	
	RCL3	
18	STO1	
19	RCL4	the termination
	-	
	1	
	$=$	
24	STO4	counter -1
25	STOP 10	

line	10	18	24
M1	3	5	5
M2	2	3	3
M4	2	2	1

display is positive, so next instruction is 10 .

line	10	18	24
M1	5	8	8
M2	3	5	5
M4	1	1	0

display is zero, so next instruction is 26 .

The Fibonacci Program

10	RCL1	the loop
	+	
	RCL2	
	$=$	
	STO3	temporary
	RCL1	
	STO2	
	RCL3	
18	STO1	
19	RCL4	the termination
	-	
	1	
	$=$	
24	STO4	counter -1
25	STOP 10	

line	10	18	24
M1	3	5	5
M2	2	3	3
M4	2	2	1

display is positive, so next instruction is 10 .

line	10	18	24
M1	5	8	8
M2	3	5	5
M4	1	1	0

display is zero, so next instruction is 26 .
computation stops.

Another Problem

The Log problem

Given a positive integer n, the largest k so that $10^{k} \leq n$.

What is the strategy?

- Maintain the input n in one register.
- Maintain k and 2^{k} in separate registers.
- Compute $n+1-2^{k}$. If positive, loop back.

M1	$n+1$
M2	k
M3	2^{k}

Another Problem

The Log problem

Given a positive integer n, the largest k so that $10^{k} \leq n$.

1	155	n here
	+	
	1	
	$=$	
	STO1	stored $156!$
	0	
	STO2	stores k
	1	
	STO3	stores 2^{k}

nos	$\begin{array}{ll} \hline \text { RCL2 } & \\ + & \\ 1 & \\ = & \\ \text { STO2 } & \text { incremented } k \\ \hline \end{array}$
	$\begin{array}{ll} \hline \text { RCL3 } & \\ * & \\ 10 & \\ = & \\ \text { STO3 } & \text { incremented } 2^{k} \end{array}$
	$\begin{aligned} & \text { RCL1 } \\ & - \\ & R C L 3 \\ & = \\ & \text { TEST nos } \end{aligned} \quad \text { This is } n+1-2^{k}$
	STOP

