
CS101 Computer Programming and Utilization

Milind Sohoni

May 10, 2006

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 1 / 33



1 The Basic Computer

2 Programming Language
READIN and assignments
The IF-ENDIF instruction
The DO-WHILE instruction

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 2 / 33



In Summary

Instructions

State

Mechanism Calculator

We started off with the basic calculator and the BUM who executed our
programs.

Next we introduced more memory in the calculator so that programs became
simpler.
Finally, we replace the BUM by a cleverer mechanism:

I who stored the program that we gave him.
I could execute the TEST nos instruction and re-use the program code.

Then we saw how to write some programs in for such a composite machine.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 3 / 33



The Basic Computer

Instructions

State

Mechanism Calculator

Program
Memory Memory

Data

The Computer

The basic computer is exactly this machine:

It is an enhanced calculating machine with a richer instruction set for specific
calculations.

It has enhanced data memory (registers) which can stored 109 items.

It has a mechanism which passes instructions to the calculator.

It has a program memory, wherein the program to be executed is stored.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 4 / 33



Programming Languages

Instructions

State

Mechanism Calculator

Program
Memory Memory

Data

The Computer

compiler
C++

C++
programs

Different programming languages such as C++, Java are front ends to the basic
computer. These languages

Allow the user to write programs in a more conceptual language.

Translate this into the calculator language that we know.

Store this translation into the progam memory.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 5 / 33



Programming Languages

Instructions

State

Mechanism Calculator

Program
Memory Memory

Data

The Computer

Java

Java

Compiler

Program

Different programming languages such as C++, Java are front ends to the basic
computer. These languages

Allow the user to write programs in a more conceptual language.

Translate this into the calculator language that we know.

Store this translation into the progam memory.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 6 / 33



A Simple Programming Language

A simple instruction:

M3=READIN 78

unfolds into

78 % put into display

STO 3 % put it into M1

the instruction:

M3=READIN

prompts the user to input a
number nos

STO 3 % put it into M1

This instructions puts user values
into memory locations.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 8 / 33



A Simple Programming Language

A simple instruction:

M3=READIN 78

unfolds into

78 % put into display

STO 3 % put it into M1

the instruction:

M3=READIN

prompts the user to input a
number nos

STO 3 % put it into M1

This instructions puts user values
into memory locations.

Another instruction: The
ASSIGNMENT:

M1= M1 + 5 * M3

unfolds into

RCL 1

+

5

*

RCL 3

=

STO 1

This instruction allows quick
programming of arithmetic
operations.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 8 / 33



A Simple Programming Language

A simple instruction:

M3=READIN 78

unfolds into

78 % put into display

STO 3 % put it into M1

the instruction:

M3=READIN

prompts the user to input a
number nos

STO 3 % put it into M1

This instructions puts user values
into memory locations.

Another instruction: The
ASSIGNMENT:

M1= M1 + 5 * M3

unfolds into

RCL 1

+

5

*

RCL 3

=

STO 1

This instruction allows quick
programming of arithmetic
operations.

In short, the new instructions saves us from writing long programs for
conceptually easy steps.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 8 / 33



The Quadratic Equation x
2 + 3x + 2 Revisited

M1=READIN 1 % A read in M1

M2=READIN 3 % B read in M2

M3=READIN 2 % C read in M3

This finishes the initialization. M6 and M7 contain the constants 2 and 4.

M4= M2*M2-4*M1*M3 % the discriminant

M4= M4 SQRT % completed

This computes the discriminant.

M5= M2 MINUS % M5=-B

M5= M5+M4 DIV 2 DIV M1 % root 1

Finally the root. Note that READIN statements are easy but ASSIGNMENT
statements need some care.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 10 / 33



Let us analyse the first two ASSIGNMENT statements:

M4= M2*M2-4*M1*M3 % the discriminant

M4= M4 SQRT % completed

The first statement expands to:

RCL 2

*

RCL 2

-

4

*

RCL 1

*

RCL 3

=

STO 4

Given the current values of the
registers, M4 contains B2 − 4AC .

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 12 / 33



Let us analyse the first two ASSIGNMENT statements:

M4= M2*M2-4*M1*M3 % the discriminant

M4= M4 SQRT % completed

The first statement expands to:

RCL 2

*

RCL 2

-

4

*

RCL 1

*

RCL 3

=

STO 4

Given the current values of the
registers, M4 contains B2 − 4AC .

The next assignment statement in
peculiar:

M4= M4 SQRT

This translates to:

RCL 4

SQRT

=

STO 4

The current value of M4 is used
to obtain the next value of M4
which is

√
B2 − 4AC .

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 12 / 33



The IF-ENDIF instructions

The IF instructions is used
as follows:

IF M4

unfolds into:

RCL 4

TEST nos

The argument nos is
captured by the ENDIF
instructions as follows:

ENDIF

This records the line
number of the next
instruction.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 14 / 33



The IF-ENDIF instructions

The IF instructions is used
as follows:

IF M4

unfolds into:

RCL 4

TEST nos

The argument nos is
captured by the ENDIF
instructions as follows:

ENDIF

This records the line
number of the next
instruction.

M1=READIN 1 % A read in M1

M2=READIN 3 % B read in M2

M3=READIN 2 % C read in M3

M4= M2*M2-4*M1*M3 % the discriminant

IF M4 %M4>0 then go to nos

STOP

ENDIF %this is nos

M4= M4 SQRT % completed

M5= M2 MINUS % M5=-B

M5= M5+M4 DIV 2 DIV M1 % root 1

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 14 / 33



In other words:

CODE BLOCK 1

IF M4

CODE BLOCK 2

ENDIF

CODE BLOCK 3

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 16 / 33



In other words:

CODE BLOCK 1

IF M4

CODE BLOCK 2

ENDIF

CODE BLOCK 3

causes the following two
possibilities:

if M4> 0 ⇒
CodeBlock1;CodeBlock3.

if M4<= 0 ⇒ Code-
Block1;CodeBlock2;CodeBlock3.

Warning

The ENDIF of the IF must follow the IF.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 16 / 33



In other words:

CODE BLOCK 1

IF M4

CODE BLOCK 2

ENDIF

CODE BLOCK 3

causes the following two
possibilities:

if M4> 0 ⇒
CodeBlock1;CodeBlock3.

if M4<= 0 ⇒ Code-
Block1;CodeBlock2;CodeBlock3.

Warning

The ENDIF of the IF must follow the IF.

Assignment

Write PL-code for computing the other root.

Expand the last two ASSIGNMENT statements into CAL-code.

Modify the quadratic programming code to take care of a 6= 0.

Write PL-code for computing 2n.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 16 / 33



The DO-WHILE instruction

Here is another useful instruction:

DO

merely records the line number of the next instruction say nos as it scans the
program.
The DO instruction must be coupled with the WHILE instruction:

WHILE M5

Let M10 be an unused register, The above instruction causes the following output:

M10=M5;

RCL 10

TEST nos

summary...

The DO records the line number of the next instruction. Thus, the presence of a
WHILE causes the execution to go to nos if M5> 0. Otherwise the next
statement is executed.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 18 / 33



Here is the log example again:

M1=READIN 178 % the value of n

M2=0 % this stores log

M3=1 % this stores 2^log

M4=M1-M3

DO * nos=5

M2=M2+1 % add 1

M3=M3*10 % multiply by 10

M4=M1-M3

M10=M4

WHILE M4 * RCL 10

TEST nos

STOP

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 20 / 33



Here is the log example again:

M1=READIN 178 % the value of n

M2=0 % this stores log

M3=1 % this stores 2^log

M4=M1-M3

DO * nos=5

M2=M2+1 % add 1

M3=M3*10 % multiply by 10

M4=M1-M3

M10=M4

WHILE M4 * RCL 10

TEST nos

STOP

Let us see what happens:

The first time the DO
instruction is encountered,
the line number is noted of
the next instruction, which is
5.

Next:

M1 M2 M3 M4
do 1 178 0 1 177

while 1 178 1 10 168
do 2 178 1 10 168

while 1 178 2 100 78
do 3 178 2 100 78

while 1 178 3 1000 -822
STOP

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 20 / 33



DO-WHILE abstracted

The following code

CODE BLOCK 1

DO

CODE BLOCK 2

WHILE M4

CODE BLOCK 3

causes the following execution:

CB1

CB2 first time (always)

CB2 M4 >0

CB2 M4 >0

CB2 M4 non-positive

CB3

Caution

The WHILE must always come after the DO.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 22 / 33



Compute π/4

M1=READIN 100

M2=1 DIV M1 % the delta

M3=0; % count

M11=1

do

M10=1

do

M4=M10*M10+M11*M11-1

IF M4

M3=M3+1

ENDIF

M10=M10-M2

while M10

M11=M11-M2

while M11

M3=M3 DIV M1 DIV M1

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 24 / 33



Compute π/4

M1=READIN 100

M2=1 DIV M1 % the delta

M3=0; % count

M11=1

do

M10=1

do

M4=M10*M10+M11*M11-1

IF M4

M3=M3+1

ENDIF

M10=M10-M2

while M10

M11=M11-M2

while M11

M3=M3 DIV M1 DIV M1

M11 changes only in the
green loop. Thus it is
constant in the blue loop
and the IF-ENDIF.

For this fixed value of M11,
M10 is initialized to 1. In the
blue loop, this value goes
from M10=1, 0.99,... upto
M10=0.01. Thus the
IF-ENDIF is executed exactly
100 times for each value of
M11.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 26 / 33



Compute π/4

M1=READIN 100

M2=1 DIV M1 % the delta

M3=0; % count

M11=1

do

M10=1

do

M4=M10*M10+M11*M11-1

IF M4

M3=M3+1

ENDIF

M10=M10-M2

while M10

M11=M11-M2

while M11

M3=M3 DIV M1 DIV M1

At M10=0.0, the blue loop
stops and a new value of
M11 is computed.

Thus there are 100× 100
iterations of the IF-ENDIF
which counts the number of
points in the circle. Finally,
the approximation to π/4 is
computed.

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 28 / 33



Nesting

Putting one DO-WHILE inside another is called Nesting. The language is
responsible for correctly identifying each WHILE with the corresponding DO. This
is done in the same way as brackets are matched.

Let { stand for DO and } for WHILE. Then the following sequence:

DO

DO

WHILE

WHILE

DO

WHILE

Stands for

{ { } } { }

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 30 / 33



Nesting

Putting one DO-WHILE inside another is called Nesting. The language is
responsible for correctly identifying each WHILE with the corresponding DO. This
is done in the same way as brackets are matched.

Let { stand for DO and } for WHILE. Then the following sequence:

DO

DO

WHILE

WHILE

DO

WHILE

Stands for

{ { } } { }

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 32 / 33



Problem

Given the following sequence of valid brackets, tell which open-brackets
match with which closed bracket.

1 2 3 4 5 6 7 8 9 10 11 12
{ { { } } { } } { { } }

Given a sequence a open and close brackets, how will you detect if it is a
valid sequence?

Milind Sohoni () CS101 Computer Programming and Utilization May 10, 2006 33 / 33


	Outline
	The Basic Computer
	Programming Language
	READIN and assignments
	The IF-ENDIF instruction
	The DO-WHILE instruction


