
CS101 Computer Programming and Utilization

Milind Sohoni

May 12, 2006

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 1 / 22

1 So far

2 Some Primitive Data-types

3 Representation of numbers

4 Arrays

5 Character

6 Pretty Printing

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 2 / 22

The story so far ...

We have written some non-trivial programs

We have seen various control flows, and

We have hopefully seen how everything really can be brought down to
PCAL-code.

Arrays and the char data-type

Our objective is to understand two simple extensions to the data types that we
know of as yet, viz., float and int.
Again www.cplusplus.com/doc/tutorial for reference.

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 3 / 22

Some Primitive Data-types

We have seen the following data-types so far:

int: integer.

float: floating point real number.

long: higher-precision integer.

double: higher precision real.

We have seen that each of the basic data-types have operators on them such as
comparisons, assignments, additions and others.
We now see a new data-type called arrays which is a systematic composition of
the primitive data types.

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 5 / 22

Representation of numbers

Internally, each register of the computer is a fixed width (say 32 or 64). Each
place in this register is called a bit. Each bit can store either a 0 or a 1.

m = b31 b30 . . . b3 b2 b1 b0

Whence all data such as integers, reals, and (later) characters are coded as
strings of 0’s and 1’s.

Integers are represnted either as int or long. The int means a 32-bit binary
representation, while long is 64-bit. Positive numbers must have b31 = 0 and
the value then equals ∑

i

bi2
i

Examples 00...01001 is 9, 000...0110 is 6 and so on.

Negative numbers have b31 = 1 but there are many options of coding.

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 6 / 22

Representation of numbers

Positive real numbers are stored as

r = m × 2e

where 0 ≤ m < 1 and e is an integer.

Thus a real is stored in two memory locations: the mantissa m and the
exponent e.

Negative reals are coded similar to negative integers.

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 7 / 22

Representation of numbers

Positive real numbers are stored as

r = m × 2e

where 0 ≤ m < 1 and e is an integer.

Thus a real is stored in two memory locations: the mantissa m and the
exponent e.

Negative reals are coded similar to negative integers.

Different Data types have different encodings.

Operations are designed around this encoding

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 7 / 22

Arrays

A Question

How many 0-1 sequences are
there of length 50 in which there
are no two consecutive zeros?

Let an be the sequences as
above, but ending in zero.

Let bn be the sequences as
above, but ending in one.

It is clear that:

an+1 = bn

bn+1 = an + bn

This recurrence coupled with:
a1 = b1 = 1 solves the problem.

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 9 / 22

Arrays

A Question

How many 0-1 sequences are
there of length 50 in which there
are no two consecutive zeros?

Let an be the sequences as
above, but ending in zero.

Let bn be the sequences as
above, but ending in one.

It is clear that:

an+1 = bn

bn+1 = an + bn

This recurrence coupled with:
a1 = b1 = 1 solves the problem.

seq.c

#include <iostream.h>

// computes number of 0-1 sequences

// without two consecutive 0’s

int main()

{

int N,i, a[50], b[50];

a[0]=1; b[0]=1;

for (i=1;i<50;i=i+1)

{

a[i]=b[i-1];

b[i]=a[i-1]+b[i-1];

}

cout << "N? \n";

cin >> N;

cout<< a[N-1]+b[N-1]<< "\n";

}

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 9 / 22

Arrays

What is happening?

The declaration int a[50]

declares a sequence of
variables
a[0],a[1],...,a[49].

Let the contents of the
variable i be, say r. Then
the variable a[i] accesses
the r -th location from this
sequence.

Thus, an array allows us to
access any particular element
of the collection.

Such a collection is called an
array.

seq.c

#include <iostream.h>

// computes number of 0-1 sequences

// without two consecutive 0’s

int main()

{

int N,i, a[50], b[50];

a[0]=1; b[0]=1;

for (i=1;i<50;i=i+1)

{

a[i]=b[i-1];

b[i]=a[i-1]+b[i-1];

}

cout << "N? \n";

cin >> N;

cout<< a[N-1]+b[N-1]<< "\n";

}

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 11 / 22

More Arrays

What we saw was a 1-dimensional array of integers.

float a[5] defines a 1-dimensional array of floating point numbers.

int a[10][10] is a 10 × 10 two-dimensional array of integers. An element
of this array is a[4][3].

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 12 / 22

More Arrays

What we saw was a 1-dimensional array of integers.

float a[5] defines a 1-dimensional array of floating point numbers.

int a[10][10] is a 10 × 10 two-dimensional array of integers. An element
of this array is a[4][3].

Naturally...

Arrays occur naturally.

Your computer screen is a 700× 1100 array of pixels. Each pixel holds a color.

Space is a 3-dimensional array with each element having attributes such as
mass, charge, spin, refractive index and so on.

Space-Time is a 4-dimensional array...

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 12 / 22

Matrix Multiplication

A matrix, after all, is a
2-dimensional array. Given an
a × b-matrix A, and a
b × c-matrix B, AB is a
a × c-matrix.
If C = AB , then

C [i][j] =
∑

k

A[i][k] ∗ B[k][j]

We first read in the matrices A
and B. Next, C is computed as
above. C[i][j] is outputted as soon
as it is ready.

Watch for indices and the
input/output.

File name matmult.c

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 14 / 22

Matrix Multiplication

A matrix, after all, is a
2-dimensional array. Given an
a × b-matrix A, and a
b × c-matrix B, AB is a
a × c-matrix.
If C = AB , then

C [i][j] =
∑

k

A[i][k] ∗ B[k][j]

We first read in the matrices A
and B. Next, C is computed as
above. C[i][j] is outputted as soon
as it is ready.

Watch for indices and the
input/output.

File name matmult.c

#include <iostream.h>

// performs matrix mult

int main()

{

int a,b,c,i,j,k;

int A[10][10], B[10][10], C[10][10];

cin >> a >> b;

for (i=0;i<a;i=i+1)

{

for (j=0;j<b; j=j+1)

{

cin >> A[i][j];

};

};

\\ read in B here skipped)

compute C=A*B

}

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 14 / 22

The Multiplication

for (i=0;i<a;i=i+1)

{

for (j=0;j<c; j=j+1)

{

C[i][j]=0;

for (k=0; k<b; k=k+1)

{

C[i][j]=C[i][j]+

A[i][k]*B[k][j];

};

cout << C[i][j] << " ";

};

cout << "\n";

};

Note the nested for loops.

Note the order in which the
elements are read, computed
and printed:

1 2 3
4 5 6

Note the location of the cout
C[i][j].

Note all the bounds in the
for loops.

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 16 / 22

Character

C++ also defines a primitive type
called char. Thus

char pm;

char name[20];

defines pm as a single character
and name as an array of length 20
of characters.

Reverse

Write a program to input a word
and output its reverse.

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 18 / 22

Character

C++ also defines a primitive type
called char. Thus

char pm;

char name[20];

defines pm as a single character
and name as an array of length 20
of characters.

Reverse

Write a program to input a word
and output its reverse.

File name reverse.c

#include <iostream.h>

int main()

{

int i,N;

char name[10];

cout << "N?\n";

cin >> N;

cout << "word?\n";

for (i=0;i<N;i=i+1)

{

cin >> name[i];

};

for (i=N;i>0;i=i-1)

{

cout << name[i-1];

};

cout << "\n";

}

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 18 / 22

Pretty Printing

cout output frequently looks bad.
For example an output of
matmult.c may well look like
this:

1 2

345 678

We would ideally like:

1 2

345 678

Help is around in the form of
printf. The general command
structure is as follows:

printf("%x1 %x2",var1,var2)

Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 20 / 22

Pretty Printing

cout output frequently looks bad.
For example an output of
matmult.c may well look like
this:

1 2

345 678

We would ideally like:

1 2

345 678

Help is around in the form of
printf. The general command
structure is as follows:

printf("%x1 %x2",var1,var2)

#include <iostream.h>

int main()

{

int a,b,c;

float p,q,r;

a=-1; b=10; c=100;

p=123.456; q=0.1234; r=-12.34;

printf("%5d \n",a);

printf("%5d \n",b);

printf("%5d \n",c);

printf("%2d \n",a);

printf("%2d \n",b);

printf("%2d \n",c);

printf("%8.4f \n",p);

printf("%8.4f \n",q);

printf("%8.4f \n",r);

printf("%4.2f \n",p);

printf("%4.2f \n",q);

printf("%4.2f \n",r);

}
Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 20 / 22

Pretty Printing

cout output frequently looks bad.
For example an output of
matmult.c may well look like
this:

-1

10

100

-1

10

100

123.4560

0.1234

-12.3400

123.46

0.12

-12.34

#include <iostream.h>

int main()

{

int a,b,c;

float p,q,r;

a=-1; b=10; c=100;

p=123.456; q=0.1234; r=-12.34;

printf("%5d \n",a);

printf("%5d \n",b);

printf("%5d \n",c);

printf("%2d \n",a);

printf("%2d \n",b);

printf("%2d \n",c);

printf("%8.4f \n",p);

printf("%8.4f \n",q);

printf("%8.4f \n",r);

printf("%4.2f \n",p);

printf("%4.2f \n",q);

printf("%4.2f \n",r);

}
Milind Sohoni () CS101 Computer Programming and Utilization May 12, 2006 22 / 22

	Outline
	So far
	Some Primitive Data-types
	Representation of numbers
	Arrays
	Character
	Pretty Printing

