
CS101 Computer Programming and Utilization

Milind Sohoni

May 13, 2006

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 1 / 28

1 So far

2 Functions-Preliminary

3 Avoid Duplications

4 Conceptual Separation

5 Recursion

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 2 / 28

The story so far ...

We have written some non-trivial programs

We have seen various control flows.

We have seen multi-dimensional arrays and the char data type.

Finally, we saw how to get formatted output.

Functions

We come now to an important conceptual step called functions. Again
www.cplusplus.com/doc/tutorial for reference.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 3 / 28

Motivation for Functions

In programming, functions usually
arise from three basic conceptual
requirements.

As a piece of code which
appears to be repeated.

As a utility which should be
viewed as an independent
task.

As a conceptual
understanding leading to a
solution to the problem.

We will see examples of all three.

Problem 1

Write a program to solve the
equation Ax = b, when A is an
invertible 2 × 2-matrix.

#include <iostream.h>

float det(float a,float b,

float c,float d)

{

return (a*d-b*c);

}

int main()

{

float a11,a12,a21,a22,b1,b2,d1,d,d2;

cin >> a11 >> a12 >> a21 >> a22;

cin >> b1 >> b2;

d=det(a11,a12,a21,a22);

if (d==0)

cout<< "error";

d1=det(b1,a12,b2,a22);

d2=det(a11,b1,a21,b2);

cout << d1/d << " " << d2/d << "\n";

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 5 / 28

Motivation for Functions

We use Kramer’s rule:

x1 =

det

([

b1 a12
b2 a22

])

det

([

a11 a12
a12 a22

])

x2 =

det

([

a11 b1
a12 b2

])

det

([

a11 a12
a12 a22

])

Input/Output

Input

1 2 1 3

3 4

Output

1 1

#include <iostream.h>

float det(float a,float b,

float c,float d)

{

return (a*d-b*c);

}

int main()

{

float a11,a12,a21,a22,b1,b2,d1,d,d2;

cin >> a11 >> a12 >> a21 >> a22;

cin >> b1 >> b2;

d=det(a11,a12,a21,a22);

if (d==0)

cout<< "error";

d1=det(b1,a12,b2,a22);

d2=det(a11,b1,a21,b2);

cout << d1/d << " " << d2/d << "\n";

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 7 / 28

AxB.c Execution Flow

float det(float a,....)

{
body

}

nextline;

d=det(a11,a12,a21,a22)

prevline;

The variables are copied in order
and the output copied back.

#include <iostream.h>

float det(float a,float b,

float c,float d)

{

return (a*d-b*c);

}

int main()

{

float a11,a12,a21,a22,b1,b2,d1,d,d2;

cin >> a11 >> a12 >> a21 >> a22;

cin >> b1 >> b2;

d=det(a11,a12,a21,a22);

if (d==0)

cout<< "error";

d1=det(b1,a12,b2,a22);

d2=det(a11,b1,a21,b2);

cout << d1/d << " " << d2/d << "\n";

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 9 / 28

#include <iostream.h>

float det(float a,float b,

float c,float d)

{

return (a*d-b*c);

}

int main()

{

float ...

cin >> ...

cin >> b1 >> b2;

d=det(a11,a12,a21,a22);

if (d==0)

cout<< "error";

d1=det(b1,a12,b2,a22);

d2=det(a11,b1,a21,b2);

cout << ...

}

Note that the function is
specified before the main and
used after its specification.

The function det has four
inputs and one output. Each
input has a given data-type
and so does the output.
When called, the correct
order and type must be used.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 11 / 28

#include <iostream.h>

float det(float a,float b,

float c,float d)

{

return (a*d-b*c);

}

int main()

{

float ...

cin >> ...

cin >> b1 >> b2;

d=det(a11,a12,a21,a22);

if (d==0)

cout<< "error";

d1=det(b1,a12,b2,a22);

d2=det(a11,b1,a21,b2);

cout << ...

}

Note that the function is
specified before the main and
used after its specification.

The function det has four
inputs and one output. Each
input has a given data-type
and so does the output.
When called, the correct
order and type must be used.

Control temporarily goes to
the function. Upon the
return statement, control
returns to the line after the
calling statement. Thus, for
each call,

I The point of return, is

stored.
I The input arguments are

copied out, and
I upon, return, the output

argument copied into the

calling variable.
Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 11 / 28

Rootfinding again

rootfinding.c

We modify the earlier
cubicroot.c to find the roots of
sin(x) or for that matter any
function.

#include <iostream.h>

#include <math.h>

float f(float x)

{ // ANY FUNCTION HERE

return(sin(x));

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 13 / 28

Rootfinding again

rootfinding.c

We modify the earlier
cubicroot.c to find the roots of
sin(x) or for that matter any
function.

#include <iostream.h>

#include <math.h>

float f(float x)

{ // ANY FUNCTION HERE

return(sin(x));

}

lo

mid

hi

f(x)

desired
root

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 13 / 28

Rootfinding again

rootfinding.c

We modify the earlier
cubicroot.c to find the roots of
sin(x) or for that matter any
function.

#include <iostream.h>

#include <math.h>

float f(float x)

{ // ANY FUNCTION HERE

return(sin(x));

}

INPUT
3 4 0.00001
OUTPUT
3.1416

int main()

{

float lo,hi,mid,fhi,fmid, flo,tol;

cout << "low high tolerance" << "\n";

cin >> lo >> hi >> tol;

mid=(lo+hi)/2;

flo=f(lo);fhi=f(hi);fmid=f(mid);

while (fabs(fmid)>tol)

{

if (flo*fmid >0)

{

lo=mid; flo=fmid;

}

else

{

hi=mid; fhi=fmid;

};

mid=(lo+hi)/2;fmid=f(mid);

}; // end of while

cout << mid << "\n";

return 0;

}
Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 15 / 28

Recursion

The function achieved a
separation of the evaluation of
the function from its root finding.
Thus the two activities can be
separately implemented.
We have seen the use of function
to

Avoid duplication of code.

AxB.c

Separate two concepts.

rootfinding.c

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 17 / 28

Recursion

The function achieved a
separation of the evaluation of
the function from its root finding.
Thus the two activities can be
separately implemented.
We have seen the use of function
to

Avoid duplication of code.

AxB.c

Separate two concepts.

rootfinding.c

AND NOW

think differently!

Compute N!

factorial.c

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 17 / 28

Recursion

The function achieved a
separation of the evaluation of
the function from its root finding.
Thus the two activities can be
separately implemented.
We have seen the use of function
to

Avoid duplication of code.

AxB.c

Separate two concepts.

rootfinding.c

AND NOW

think differently!

Compute N!

factorial.c

#include <iostream.h>

#include <math.h>

int fact(int x)

{

if (x==1) return(1);

else return(x*fact(x-1));

}

int main()

{

int N;

cout << "N?";

cin >> N;

cout << fact(N);

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 17 / 28

The function fact calls itself, but with
a smaller argument.

It is clear that N! = N ∗ ((N − 1)!) and
the code imitates that.

Note that fact has one part which
stops the recursion, i.e, when x==1.
The other calls fact(x-1).

The calling sequence is the order in
which factorial are executed and the
input arguments.

The values are returned in the reverse
order. Thus the call to fact(5) is
complete only after fact(4) has
returned a value.

fact(4) fact(3) fact(2) fact(1)

calling sequence

values returned

#include <iostream.h>

#include <math.h>

int fact(int x)

{

if (x==1) return(1);

else return(x*fact(x-1));

}

int main()

{

int N;

cout << "N?";

cin >> N;

cout << fact(N);

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 19 / 28

Old Problem

Count the number of sequences
of length n over 0-1 with NO
consecutive zeros.

an = strings as above but ending in 0
bn = strings as above but ensing in 1

Our interest is in an + bn. We
have:

an = bn−1

bn = an−1 + bn−1

Old Solution

Using Arrays int A[10],

B[10].

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 21 / 28

Old Problem

Count the number of sequences
of length n over 0-1 with NO
consecutive zeros.

an = strings as above but ending in 0
bn = strings as above but ensing in 1

Our interest is in an + bn. We
have:

an = bn−1

bn = an−1 + bn−1

Old Solution

Using Arrays int A[10],

B[10].

AnBn.c

#include <iostream.h>

#include <math.h>

int B(int x);

int A(int x)

{

if (x==1) return(1);

else return(B(x-1));

}

int B(int x)

{

if (x==1) return(1);

else return(A(x-1)+B(x-1));

}

int main()

{

int N;

cin >> N;

cout << A(N)+B(N);

}
Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 21 / 28

AnBn.c

#include <iostream.h>

#include <math.h>

int B(int x);

int A(int x)

{

if (x==1) return(1);

else return(B(x-1));

}

int B(int x)

{

if (x==1) return(1);

else return(A(x-1)+B(x-1));

}

int main()

{

int N;

cin >> N;

cout << A(N)+B(N);

}

Many things to note here:

The programs for A and B
mimic their mathematical
definitions.

There are two functions
calling each other recursively.

Note the peculiar single line
header of B . If this were
absent, the program would
not compile.

AnBn.c: In function ‘int A(int)’:

AnBn.c:6: error: ‘B’ undeclared

(first use this function)

AnBn.c: In function ‘int B(int)’:

AnBn.c:9: error: ‘int B(int)’ used

prior to declaration

This just means that B
occurs in A but its identity is
not declared beforehand.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 23 / 28

WARNING: Recursion is simpler
to implement but

Harder to debug.

Generally Inefficient.

In this case:

A4 calls B3 which will call
A2, B2 and so on.

B4 will call A3,B3. However,
the A4 call of B3 is forgotten
and cannot be re-used.

AnBn.c

#include <iostream.h>

#include <math.h>

int B(int x);

int A(int x)

{

if (x==1) return(1);

else return(B(x-1));

}

int B(int x)

{

if (x==1) return(1);

else return(A(x-1)+B(x-1));

}

int main()

{

int N;

cin >> N;

cout << A(N)+B(N);

}
Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 25 / 28

In Total

A1

B1

B4

A4

A3

B3

B2

B2

A2 B1

A1

B1

B3 A2

B2

B1

A1

B1

We see that there are:

5 calls to B1, 3 calls to A1.

3 calls to B2 and 2 calls to A2.

2 calls to B3 and 1 call to A3.

Thus, there is a lot of duplication in
effort. The array code is much much
more efficient.

AnBn.c

#include <iostream.h>

#include <math.h>

int B(int x);

int A(int x)

{

if (x==1) return(1);

else return(B(x-1));

}

int B(int x)

{

if (x==1) return(1);

else return(A(x-1)+B(x-1));

}

int main()

{

int N;

cin >> N;

cout << A(N)+B(N);

}
Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 27 / 28

Summary

Functions have three typical uses:
I save code repetition.
I separate distinct parts of the code
I conceptualize mathematical definitions

The function must be specified before the main program. It must have input
arguments and an output value.

The calling program must respect these attributes.

Control temporarily passes to the function and returns to the next statement.

Problems

Let R1 and R2 be two rectangles in a plane. Show that there is a line which
will cut both rectangles into equal halves. Write a program to input two sets
of four points. Then (i) check that each set marks a rectangle, and (ii)
compute the cut above.

Write a program which takes in a positive integer and prints one factorization
of it into primes.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 28 / 28

	Outline
	So far
	Functions-Preliminary
	Avoid Duplications
	Conceptual Separation
	Recursion

