
CS101 Computer Programming and Utilization

Milind Sohoni

May 15, 2006

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 1 / 31

1 So far

2 Functions-PCAL implementation

3 call by value

4 call by reference

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 2 / 31

The story so far ...

We have written some non-trivial programs

We have seen various control flows.

We have seen multi-dimensional arrays and the char data type.

We saw how to get formatted output.

We saw the use of functions

More Functions

We see in this talk (i) how functions are implemented, (ii) and certain calling
methods. Finally, we solve some more non-trivial problems. Again
www.cplusplus.com/doc/tutorial for reference.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 3 / 31

How are functions implemented?

Consider the following simple
C++ code:

#include <iostream.h>

int by2(int a)

{

return(a/2);

}

int main()

{

int N,x,y;

cout << "N?";

cin >> N;

x=by2(N);

y=by2(x);

xout << y;

}

What issues arise in the
translation of C++ intp PCAL?

What is the translation of a
function into PCAL?

How is the
argument/parameter to be
passed to the function?

How is the output to be
received?

How is the control flow to be
implemented?

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 5 / 31

How are functions implemented?

Consider the following simple
C++ code:

#include <iostream.h>

int by2(int a)

{

return(a/2);

}

int main()

{

int N,x,y;

cout << "N?";

cin >> N;

x=by2(N);

y=by2(x);

xout << y;

}

What issues arise in the
translation of C++ intp PCAL?

What is the translation of a
function into PCAL?

How is the
argument/parameter to be
passed to the function?

How is the output to be
received?

How is the control flow to be
implemented?

Allot different memory
segments for the function
and the amin program.

a output N x y
M10 M11 M1 M2 M3

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 5 / 31

How are functions implemented?

Consider the following simple
C++ code:

#include <iostream.h>

int by2(int a)

{

return(a/2);

}

int main()

{

int N,x,y;

cout << "N?";

cin >> N;

x=by2(N);

y=by2(x);

xout << y;

}

Allot different memory
segments for the function
and the amin program.

a output N x y
M10 M11 M1 M2 M3

Translate the function:

150 RCL M10;

M11=M10 DIV 2;

JUMP 25

And the main program

23 M10=M1 %copy N into input

24 JUMP 150

25 M2=M11 % copy output into x

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 7 / 31

Call by Value

Consider the following simple
C++ code:

#include <iostream.h>

int by2(int a)

{

return(a/2);

}

int main()

{

int N,x,y;

cout << "N?";

cin >> N;

x=by2(N);

y=by2(x);

xout << y;

}

In other words,

There is a separation of
memories.

The contents (values) of the
input arguments are copied
out into appropriate registers
of the function.

The function works out the
answer.

The output is copied back
into appropriate registers in
the calling program.

Execution resumes.

This procedure is called CALL BY
VALUE.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 9 / 31

Call by Reference

Consider the following simple
C++ code:

#include <iostream.h>

int by2(int a)

{

return(a/2);

}

int main()

{

int N,x,y;

cout << "N?";

cin >> N;

x=by2(N);

y=by2(x);

xout << y;

}

There is another possible
scenario:

Create the function body as
before.

RCL M10;

M11=M10 DIV 2

For every function call, insert
the function code in the
main program, suitably
modified:

RCL M1

M2=M1 DIV 2

Thus, the program code of the
function is copied out into the
main body and actually acts on
the variables of the main
program.
This is called Call by Reference.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 11 / 31

x

y

return(y)

y=f(x);

d=f(a);

nextline;

x

aa

a

x

d

nextline;

Call by Value Call by Ref.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 12 / 31

#include <iostream.h>

int by2ref(int& a)

{

b=a/2;

a=a-2;

return(b);

}

int by2value(int a)

{

b=a/2;

a=a-2;

return(b);

}

int main()

{

N=10;

o1=by2value(N);

o2=by2ref(N);

o3=by2value(N);

}

The observed outputs will be:

o1 o2 o3
5 5 4

This is because:

The first call by value by2val
copied out N into its own
space and returned the value
5.

The second call by reference
by2ref used the memory
location N in its working and
changed it to 8.

The third call will now
reflect N/2 = 4.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 14 / 31

#include <iostream.h>

int by2ref(int& a)

{

b=a/2;

a=a-2;

return(b);

}

int by2value(int a)

{

b=a/2;

a=a-2;

return(b);

}

int main()

{

N=10;

o1=by2value(N);

o2=by2ref(N);

o3=by2value(N);

}

How do I specify Call by
Reference?:

Put an ”&” after the type
declaration that you want
passed by reference. A
function may have some
arguments by value and
others by reference.

The calling syntax remains
the same. Everything else
remains the same.

The caller does not know,
without looking at the
function definition, if his
input parameters are going
to change!.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 16 / 31

Uses of Call by reference

Having more than one
outputs from a function.

The GCD problem

Recall that if g is the gcd of m

and n, then

g = αm + βn

Write a program to compute
g , α, β.

We use Euclid’s algorithm.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 18 / 31

Uses of Call by reference

Having more than one
outputs from a function.

The GCD problem

Recall that if g is the gcd of m

and n, then

g = αm + βn

Write a program to compute
g , α, β.

We use Euclid’s algorithm.

If m > n and m = n · q + r , then

gcd(m, n) = gcd(n, r)

This is used to reduce the two
arguments systematically.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 18 / 31

Uses of Call by reference

Having more than one
outputs from a function.

The GCD problem

Recall that if g is the gcd of m

and n, then

g = αm + βn

Write a program to compute
g , α, β.

We use Euclid’s algorithm.

If m > n and m = n · q + r , then

gcd(m, n) = gcd(n, r)

This is used to reduce the two
arguments systematically.

At each step if m′ and n′ are
such that

I gcd(m′
, n

′) = gcd(m, n).
I Each m

′
, n

′ is a linear
combination of m, n.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 18 / 31

Uses of Call by reference

Having more than one
outputs from a function.

The GCD problem

Recall that if g is the gcd of m

and n, then

g = αm + βn

Write a program to compute
g , α, β.

We use Euclid’s algorithm.

If m > n and m = n · q + r , then

gcd(m, n) = gcd(n, r)

This is used to reduce the two
arguments systematically.

At each step if m′ and n′ are
such that

I gcd(m′
, n

′) = gcd(m, n).
I Each m

′
, n

′ is a linear
combination of m, n.

The above two steps are used
recursively. If m′ = n′ · q′ + r ′,
then:

I gcd(n′
, r

′) = gcd(m′
, n

′) =
gcd(m, n).

I Each n
′
, r

′ is a linear
combination of m, n.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 18 / 31

Uses of Call by reference

Having more than one
outputs from a function.

#include <iostream.h>

#include <math.h>

void A(int a, int b,

int& q, int& r)

{

r=a%b;

q=(a-r)/b;

return;

}

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 20 / 31

Uses of Call by reference

Having more than one
outputs from a function.

#include <iostream.h>

#include <math.h>

void A(int a, int b,

int& q, int& r)

{

r=a%b;

q=(a-r)/b;

return;

}

We see here that A(a,b,q,r)
have four arguments.

The assumption is that
a > b.

a,b are the input arguments,
passed by value.

q,r are the output
arguments, passed by
reference.

The function implements:

a = b ∗ q + r

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 20 / 31

Uses of Call by reference

Lets look at the main program:

M,N are read in with
M > N .

m, n are the running
arguments with the following
invariants.

I m > n.
I

m = x [0] ∗ m + x [1] ∗ n

n = y [0] ∗ m + y [1] ∗ n

The next pair is
(m, n) → (n, r), where

r = m − q ∗ n

= (x [0] − q ∗ y [0]) ∗ m

+(x [1] − q ∗ y [1]) ∗ n

int main()

{

int ...,x[2],y[2],t[2];

x[0]=1; x[1]=0; y[0]=0; y[1]=1;

cout << "M>N?\n";

cin >> M >> N;

m=M; n=N;

A(m,n,q,r);

while (r!=0)

{

m=n; n=r;

t[0]=x[0]-q*y[0];

t[1]=x[1]-q*y[1];

for (int i=0;i<2;i=i+1)

{ x[i]=y[i];

y[i]=t[i];

}

A(m,n,q,r);

}

cout << ...

}

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 22 / 31

Uses of Call by reference

Having more than one
outputs from a function.

[sohoni@nsl-13 lectures]$./a.out

M>N?

99 87

gcd=3 alpha=-7 beta=8

[sohoni@nsl-13 lectures]$./a.out

M>N?

115 78

gcd=1 alpha=19 beta=-28

int main()

{

int ...,x[2],y[2],t[2];

x[0]=1; x[1]=0; y[0]=0; y[1]=1;

cout << "M>N?\n";

cin >> M >> N;

m=M; n=N;

A(m,n,q,r);

while (r!=0)

{

m=n; n=r;

t[0]=x[0]-q*y[0];

t[1]=x[1]-q*y[1];

for (int i=0;i<2;i=i+1)

{ x[i]=y[i];

y[i]=t[i];

}

A(m,n,q,r);

}

cout << ...

}

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 24 / 31

Uses of Call by reference

Having more than one
outputs from a function.

Processing a large
data-structure locally,
without making copies.

Layer Fill

Fill up an n × N array in layers.

1 1 1
1 2 1
1 1 1

1 1 1 1
1 2 2 1
1 2 2 1
1 1 1 1

Strategy:

Start with the outermost
layer.

Each call fills up the k-th
layer and calls recursively, for
the next layer.

s
ss

k

recursive call

Outer Call

Current call

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 26 / 31

void layer(int a[10][10],int k,

int N, int start)

{ int low,hi,i,j;

low=k; hi=N-k;

if (low+1==hi){

a[low][low]=start;

return;

}

for (i=low;i<hi;i=i+1)

{ for (j=low;j<hi;j=j+1)

{if ((i==low) || (i==hi-1)

|| (j==low) || (j==hi-1))

a[i][j]=start;

};

};

if (low+1==hi-1) return;

layer(a,k+1,N,start+1);

return;

}

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 28 / 31

void layer(int a[10][10],int k,

int N, int start)

{ int low,hi,i,j;

low=k; hi=N-k;

if (low+1==hi){

a[low][low]=start;

return;

}

for (i=low;i<hi;i=i+1)

{ for (j=low;j<hi;j=j+1)

{if ((i==low) || (i==hi-1)

|| (j==low) || (j==hi-1))

a[i][j]=start;

};

};

if (low+1==hi-1) return;

layer(a,k+1,N,start+1);

return;

}

Whats Happening

The red code is the meat of
the procedure.

The green code is to
terminate/continue the
recursion.

a is already filled correctly
for 1,2,...,k-1.

hi,low locate the boundaries.

a is modified at the boundary
and then a recursion.

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 28 / 31

void layer(int a[10][10],int k,

int N, int start)

{ int low,hi,i,j;

low=k; hi=N-k;

if (low+1==hi){

a[low][low]=start;

return;

}

for (i=low;i<hi;i=i+1)

{ for (j=low;j<hi;j=j+1)

{if ((i==low) || (i==hi-1)

|| (j==low) || (j==hi-1))

a[i][j]=start;

};

};

if (low+1==hi-1) return;

layer(a,k+1,N,start+1);

return;

}

layer.c

a: array always passed by
reference, no need to declare
it as such.

k: layer to start

N: array size

start: the entry for layer k

int main()

{

int a[10][10], N,i,j;

cout << "N?\n";

cin >> N;

layer(a,0,N,1);

}

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 30 / 31

Assignments

Write a program which on input N and k , outputs the
(

N

k

)

subsets of

{1, . . . , N} in an array of size k ×
(

N

k

)

. For example, for the input 4, 2 the
following output is expected (upto column re-ordering):
1 1 1 2 2 3
2 3 4 3 4 4

Let A be an N × N entries 0-1. Given p = (i0, j0) and p′ = (i1, j1), we must
check if there is a path in the matrix from p to p′ which moves
left/right/up/down, but does not visit any point (i , j) such that A[i][j]=0.
See example below:

1
11

1 1

1
1

1
1 1

1 1
1

11

1

0
0

0
0

0 0 0 0 0 0
0 0

0
00

0 0 0
00

(2,0) (2,4)

Milind Sohoni () CS101 Computer Programming and Utilization May 15, 2006 31 / 31

	Outline
	So far
	Functions-PCAL implementation
	call by value
	call by reference

