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1 Sets and Mappings

1.1 Sets

We assume that we know what sets are, and we assume some familiarity with standard operations.
For a candidate x and a set X, we say x ∈ X if and only if x is an element of X. Otherwise, we say
x 6∈ X. For us, given a set X and an object a, we assume that there is a sub-routine or oracle which
will answer “Is a ∈ X, i.e., is a an element of X?.

For two sets Y,Z, we say that Y ⊆ Z, if every element x such that x ∈ Y implies that x ∈ Z.
For sets X,Y , X ∪ Y and X ∩ Y will denote, respectively, the union and the intersection. If
Z = X ∩ Y , then the oracle for Z is as follows. Given a, we have a ∈ Z iff a ∈ X and a ∈ Y . Thus
it is easy for us to program X ∩ Y . One can similarly write programs for other set functions. We
will use the notation A∪̇B as the usual union of A and B, but where we want to assert that A and
B are disjoint.

We say two sets X and Y are equal, i.e., X = Y iff for every a ∈ X we have a ∈ Y , and vice
versa. We can prove the familiar identity that X ⊆ Y and Y ⊆ X implies that X = Y 1

The symbol φ will usually denote the empty set. We assume we know when a set X has finite
cardinality, and we denote this by |X|.

There are some standard constructions which help in creating new sets from old. For example,
if X and Y are sets, then we define

X × Y = {(x, y)|x ∈ X, y ∈ Y }

This is called the product of the sets X and Y . If Z = X × X then Z × X and X × Z are, in
principle, two different sets.

Another construction is the power-set 2X which is the collection of all subsets of X:

2X = {Y |Y ⊆ X}

Example 1.1 Let X = {a, b, c}. Then Z = X ×X = {(a, a), . . . , (c, c)}, i.e., 9 elements. A typical
element of Z ×X is ((b, c), b) and that of X× is (b, (c, b)).

2X = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

When k is a positive integer, we may construct X-choose-k:

(

X
k

)

= {Z ⊆ X s.t. |Z| = k}

When X and Y have finite cardinality, we see that |X × Y | = |X||Y |, |2X | = 2|X|, and

∣

∣

∣

∣

(

X
k

)∣

∣

∣

∣

=
(

|X|
k

)

.

1This is rather delicate. We assume that elements x, x
′ can be compared, and that we can ask whether x = x

′?
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Definition 1.2 A partition π = {Xα}α∈I is a collection I of subsets Xα of X such that (i)
Xα ∩Xβ = φ, for distinct elements Xα, Xβ of I, and (ii) ∪α∈IXα = X. The number |I| is called
the number of parts of π.

Thus a partition of X is a decomposition of the elements of X into disjoint subsets.

Example 1.3 Again, let X = {a, b, c}. Then π1 = {{a}, {b}, {c}} and π2 = {{a, c}, {b}} are
partitions of X. How many partitions are there of X?

For a given set X, Π(X) will denote the collection of all partitions of X. For X = {a, b, c} the
partitions of X with two parts are {{a}, {b, c}}, {{b}, {a, c}} and {{c}, {a, b}}.

Example 1.4 Write programs to take an put X and list X ×X,

(

X
k

)

, 2X and all partitions of

X. How would you arrange the input and output? What recurrence relation would you use?

1.2 Recurrences

If the concerned sets are finite, it will be useful to write recurrence relations for the basic construc-
tions, in terms of the sie of the set. For example, suppose that S = {s1, . . . , sn}, i.e., set with n
elements. Let Si = {s1, . . . , si}, i.e., the subset of S consisting of the first i elements. Note that
Sn = S.

We may write 2Sn as follows:

2Sn = 2Sn−1 ∪̇ {X∪̇{sn}|X ∈ 2Sn−1}

This formidable notation is just to say that a ssubset of Sn either (i) does not contain sn, i.e.,
is a subset of Sn−1, which is the first part, or (ii) contains sn, and must be the disjoint union of a
subset of Sn−1 and {sn}. Numerically, this is the identity:

|2Sn | = 2n = |2Sn−1 |+ |2Sn−1 | = 2n−1 + 2n−1

The above does give us a clue on how to write a program to list out all elements of 2X for a given
set X.

Let us now consider k-subsets of Sn. The k subsets of Sn may be divided into two collections:
those which do not contain the last element sn and those which do. Thus we may write:

(

Sn

k

)

=

(

Sn−1

k

)

∪̇ {X∪̇{sn}|X ∈

(

Sn−1

k − 1

)

}

Thus, we use both k-subsets and k− 1-subsets of Sn−1 to construct k-subsets of Sn. Of course, this
is a more detailed version of the familiar identity on binomial numbers:

(

n
k

)

=

(

n− 1
k

)

+

(

n− 1
k − 1

)

Finally, lets consider the number of partitions of Sn. Suppose that π = {X1, . . . , Xk} is a partition
of Sn. Again, considering the element sn, either it appears as a single part, i.e., say X1 = {sn}, or
the part in which it appears has an element of Sn−1. Thus, we may take a partition π′ of Sn−1 and
do one of two steps; (i) construct a new partition π = π′∪̇{sn}, or (ii) add the element sn to one
of the parts of π′. Whence if π′ has k parts, then there are k new partitions of Sn that this will
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generate. Thus if π′ = {X1, . . . , Xk} is a partition of Sn−1, then let us denote π′
i as the partition

{X1, . . . , Xi−1, Xi∪̇{sn}, Xi+1, . . . , Xk} of Sn. Each π
′
1, . . . , π

′
k would be a partition of Sn.

Let us now construct the recurrence. Let Πk(Sm) denote the collection of partitions of Sm with
k parts. Then we have:

Πk(Sn) = {π′∪̇{sn}| π
′ ∈ Πk−1(Sn−1)} ∪̇

k
i=1{π

′
i| π

′ ∈ Πk(Sn−1)}

With this notation, the collection of all partitions of Sn is obviously the disjoint union ∪̇
n
i=1Πi(Sn).

The number Sn,k = |Πk(Sn)| is called the Stirling number of the second kind. The above
recurrence relation may be translated numerically as:

Sn,k = Sn−1,k−1 + kSn−1,k

Note that all the above recurrences that we have outlined give us a clear guide to programming the
construction of the above collections.

Example 1.5 Here is an applied problem. A highway section is n kilometers long. A number of
mobile towers have to installed on the highway, no more than one per segment. Also, since the
radiation from these towers may be harmful, there should not be towers in adjacent segments. Thus,
for example, if n = 5, then {1, 3, 5} is a safe installation of mobile towers, but {3, 4} is not. Write
a recurrence to list all safe installations of mobile towers in a highway segment of length n.

Example 1.6 Another applied problem. Let S = {s1, . . . , sn} be a collection of students. For each
student si, let ni denote the number of games she plays. We need to form a team X ⊆ S for a
competition such that the team X will collectively have k entries, i.e.,

∑

x∈X nx = k. Write a
recurrence relation to list out all possible teams.

1.3 Relations

A relation R is a subset of X ×X. When (x, y) ∈ R, we also alternately say that x is related to y
or that xRy. A relation R is called:

• reflexive if xRx for all x ∈ X. In other words, (x, x) ∈ R for all x ∈ X.

• transitive if xRy and yRz always imply xRz.

• symmetric if xRy always implies yRx.

• anti-symmetric if xRy and yRx always imply x = y.

Example 1.7 Examples of relations.

1. Let X be the cities of Goa. We define a relation C ⊆ X × X (called connectivity). For
x, y ∈ X, we say (x, y) ∈ C iff there is a direct bus from x to y.

2. Let N be the set of natural numbers. We define div ⊆ N × N as follows: (a, b) ∈ div iff a
divides b.

3. Let P be the set of students on our campus. We define a relation B and say that (p, q) ∈ B iff
they have the same birthday.

Estimate the size of the relations in each of the above cases. Are these symmetric, transitive and
reflexive?
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Definition 1.8 A relation R is called an equivalence if R is reflexive, transitive, and symmetric.

Let us fix an equivalence R on a set X. For an element x ∈ X, we have the equivalence class

[x]R (or simply [x]) as:
[x]R = {y|y ∈ X, and xRy}

Note that [x] is a subset of X. Here are the first few observations on equivalences:

Lemma 1.9 For an equivalence R on X, if x, y ∈ X, then either (i) [x] = [y], or (ii) [x] ∩ [y] = φ.

Proof: Suppose that we have z ∈ [x] ∩ [y]. Thus yRz and xRz. By symmetry, and then by
transitivity, we have xRy and yRx. Thus if w ∈ [y], whence yRw, then xRy implies that xRw, and
that w ∈ [x]. Thus [x] ⊇ [y], and the converse is also easily shown. ✷

Proposition 1.10 Let R be an equivalence relation on X, then there is an index set I and elements
{xα}α∈I such that the collection {[xα]}α∈I defines a partition on X. This collection of sets {[xα]|α ∈
I} is denoted by XR and is called the quotient of X by R.

Proof: Let S be an index set, and let {xs}s∈S be a family of subsets such that for any distinct
s, s′ ∈ S, we have [xs]∩ [xs′ ] = φ. Let XS = ∪s∈S [xs]. Clearly, one such index set is the set {1} and
x1 is any element of X.

If XS 6= X, then there must be an element y ∈ X such that y 6∈ XS . We create a new symbol s∗

and let S∗ = S ∪ s∗, and let xs∗ = y. By the lemma above, [y] does not intersect XS , and thus S∗

is an index set with the above properties. Now XS∗ is strictly bigger than XS . This process can be
continued to obtain an index set I so that XI = X. ✷

Example 1.11 Examples of equivalence relations.

1. The simplest two. Given any set X, then I = {(x, x)|x ∈ X}, i.e., the diagonal, is an
equivalence relation. We will call it the trivial relation where every element is related only to
itself. The other is U = {(x, y)| x, y ∈ X}, where every element is related to every other. This
will be called the universal relation.

2. Let n be a natural number and Z be the set of integers. For a, b ∈ Z, we say a ∼n b iff n
divides b− a. Show that ∼n is an equivalence relation.

3. The partition of Z induced by ∼n is Zn = {[0], . . . , [n−1]}, the modulo integers. As an example,
when n = 7, we have |Z7| = 7 and [0] = [−7] and [3] = [17].

4. Again, let P be the set of towns and villages in Goa. We say that p ∼ q iff there is an all-season
motorable road from a to b. Show that ∼ is an equivalence relation on P.

Definition 1.12 A set X with a relation R is called a partial order if R is reflexive, transitive and
anti-symmetric.

Example 1.13 Examples of partial orders.

1. Let us consider real numbers R with the usual operations. We define the relation LEQ on
R× R as (a, b) ∈ LEQ iff a ≤ b. Observe that LEQ is a partial order.

2. Let C be the set of complex numbers. We define (x, y) ∈ LEQ iff |x| ≤ |y|. Observe that LEQ
on C is NOT a partial order.
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3. Here is an interesting partial order. Suppose that we are running a hotel which has 10 rooms.
We accept reservations ri, where each reservation is a tuple (idi, ai, di), where idi is the ID of
the guest, ai is the arrival time and di is the departure time. Give reservations r = (id, a, d)
and r′ = (id′, a′, d′) we say that r ≤ r′ if either (i) r = r′ or (ii) d ≤ a′. Prove that this is a
partial order. What is it useful?

4. Let us look at 2X , i.e., all subsets of X. For Z,Z ′ ∈ 2X , we say Z ≤ Z ′ iff Z ⊆ Z ′. Then ≤
is a partial order on 2X . This partial order is called the Boolean poset.

Definition 1.14 A relation ≤ on X is called a total order iff (i) it is a partial order, and (ii) for
any x, y ∈ X, we have either x ≤ y or y ≤ x.

Example 1.15 Examples.

1. R or Z under ≤ is a total order.

2. Let [n] = {1, . . . , n} under ≤ is a finite total order. Show that if (X,≤) is a total order, then
it must be isomorphic to ([n],≤) with |X| = n. In other words, show that the elements of X
may be so ordered X = {x1, . . . , xn} such that xi ≤ xj iff i ≤ j.

Example 1.16 Constructing new relations from old.

Given relations R on X and S on Y , define an appropriate relation R × S on X × Y . If R,S are
equivalences or partial orders, does R× S enjoy a similar property?

1.4 Functions

Mappings or functions are a special family of subsets of X × Y .

Definition 1.17 For sets X,Y and f ⊆ X × Y , we say that f is a function if (i) (x, y) ∈ f and
(x, y′) ∈ f always imply that y = y′, and (ii) for all x ∈ X, there is always a y such that (x, y) ∈ f .
We say that f is a partial function if f ⊆ Z × Y , is a function for a suitable subset Z ⊆ X.

Generally, we denote a function f on X × Y as f : X → Y and we say that “f is a function
from X to Y ”. When f is a function, we denote (x)f or 2 f(x) to be that y such that (x, y) ∈ f .
For partial functions f , the set Z ⊆ X above is called the domain of f and is easily shown to be
well-defined.

The basic observation about functions is composition and its associativity. If f : X → Y ,
and g : Y → Z, then we can construct f ◦ g : X → Z, which is defined as (x)f ◦ g = ((x)f)g. If
h : Z → W was yet another function, then we have potentially two functions (f ◦ g) ◦ h : X → W
and f ◦ (g ◦ h) : X →W . However it turns out that:

(f ◦ g) ◦ h = f ◦ (g ◦ h)

A function f : X → Y is called

• injective if (x)f = (x′)f always implies x = x′.

• surjective if y ∈ Y implies the existence of an x ∈ X such that (x)f = y.

• bijective if f is both injective and surjective.

2The “postfix” notation can rather useful later.
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The function f is called an injection, surjection or bijection if it is, respectively, injective,
surjective, or bijective.

Definition 1.18 Let f : X → Y be a function and X ′ ⊆ X. We define f |X′ : X ′ → Y as f |X′(x) =
f(x), for all x ∈ X ′. The relationship f |X′ is indeed a function and is called the restriction of f
to X ′.

Example 1.19 Examples of functions.

1. Consider the function mod : C → R defined by mod(z) = |z|. Is this surjective or injective?
Is there a suitable restriction of the domain or the range for which f would be surjective? Or
injective?

2. Let C be the collection of students in our institute. Let S be the collection of states of India
and let h : C → R denote the height function, where, for a student s, h(s) is her height in
centimeters. Let us define the function state : C → S, where for a student s, state(s) is
the state from which the student comes from. Now use h and state to define a new function
T : C → C, where T (s) is the tallest student from the state of s. Assume that all student
heights are unique and the usual partial order ≤ on R.

3. How is a function f : X → Y to be represented? Consider possible options, e.g., (i) when X
and Y are finite and f has no discernible pattern, (ii) X is infinite.

For sets X,Y , the set (collection) of all functions from X to Y is denoted by Hom(X,Y ).
Important subsets of Hom(X,Y ) are (i) Inj(X,Y ), the collection of all injections (ii) Sur(X,Y ),
the collection of all surjections, and (iii) Bij(X,Y ), the collection of all bijections from X to Y . Of
special significance is Bij(X,X), which is simply denoted as Bij(X). When X,Y are finite sets
|Hom(X,Y )| = |Y ||X|, and |Bij(X)| = |X|!.

Example 1.20 Given X,Y such that |X| = m and |Y | = n, can we compute the number of injec-
tions, surjections and bijections from X to Y ? Can we write a program to enumerate these?

Example 1.21 Given an f : X → Y , show that there is function g : Y → X such that g◦f : Y → Y
is a bijection on Y . Show that if f above is an injection, there is a g : Y → X such that f ◦g : X → X
is a bijection on X.

Example 1.22 Given a set X, exhibit a natural bijections between (X×X)×X, X× (X×X) and
X ×X ×X.

When f, g ∈ Hom(X,X), we see that f ◦g ∈ Hom(X,X) as well. In particular, f ◦f and f ◦f ◦f
are both in Hom(X,X). We abbreviate f ◦ f as f2, and f ◦ f ◦ f as f3, and so on. f0 will stand
for the identity function 1X : X → X, where (x)1X = x, for all x.

Example 1.23 Writing a recurrence forHom(X,Y ). Given X = {x1, . . . , xm} and Y = {y1, . . . , yn},
here is how we set up a recurrence for Hom(X,Y ). For any function f , let Xn be the inverse image
of yn. In other words, Xn = {x|f(x) = yn}. For such an f , it must be that f |X−Xn

is a function
from X − Xn to Y . Thus X = (X − Xn)∪̇Xn and f may be reconsituted as f |X−Xn

and f |Xn
.

Indeed, if X ′ is any subset of X, and g : (X −X ′) → Yn−1 is an function, then we may construct a
new function gn : X → Y where gn matches g on X −X ′ and gn(x) = yn whenever x ∈ X ′.

This gives us the necessary recurrence:

Hom(X,Yn) = ∪̇X′⊆X{gn| g ∈ Hom(X −X ′, Yn−1)}

Example 1.24 Write down the numerical version of the above recurrence. Next, set up similar
recurrences for all surjections and injections from X to Y .
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1.5 Morphisms

Definition 1.25 Let X,Y be sets and R,S be relations on X,Y respectively. A function f : X → Y
is called a morphism iff for all x, x′ such that (x, x′) ∈ R, we have (f(x), f(x′)) ∈ S.

Example 1.26 Let n ∈ N be a positive integer. Recall ∼n on Z as a ∼n b iff b − a is divisible by
n. We may also extend ∼n to a relation on Z× Z. Now look at the functions + : Z× Z → Z, given
by +(a, b) = a + b, then + is a morphism. This makes addition and taking modulo n ”commute”.
Similarly, subtraction and multiplication are also morphisms.

Example 1.27 Practical examples of morphims.

1. A set of people X want to travel on a train. There is a relation R on X to denote a relationship
between two people. Similarly, for seats on a train Y , there is a relation S which tells us if two
seats are near each other in the railway carriage. We would like to allot seats f(x) to person
x so that if xRx′ then f(x)Sf(x′), i.e., related persons should be close by.

2. There are four skills a, b, c, and d which are considered important in an employee. There are
5 grades in the same company. Given any employee e, his/her grade g(e) must be such that if
skill(e) ⊆ skill(e′) then grade(e) ≤ grade(e′).

Proposition 1.28 Let X have an equivalence relation R and let XR be the quotient of X by R.
Let o : X × X → X be a morphsim. Then we have a morphism oR : XR × XR → XR defined as
o([xα], [xβ ]) = [o(x, x′)], where x ∈ [xα] and x

′ ∈ [xβ ] are picked arbitrarily.

Proof: The only fact we need to check is that oR is well-defined, i.e., does not depend on the
choices of x and x′. In other words, we need to check that if x, y ∈ [xα] and x′, y′ ∈ [xβ ], then
[o(x, x′)] = [o(y, y′)]. Now given the first condition, we have that ((x, x′), (y, y′)) ∈ o. Next, given
that o is a morphism from X ×X → X, if o(x, x′) = z and o(y, y′) = w, then (z, w) ∈ o on X. That
proves the claim. ✷

Example 1.29 Let n = 7 and consider ∼7 on Z. We check, for example, that + : Z × Z → Z is
a morphism. In other words, if 7 divides a′ − a and b′ − b, then it does divide (a′ + b′) − (a + b).
Thus, this helps us define + : Z7 × Z7 → Z7, i.e., a consistent modulo addition. Similarly, that
multiplication on integers is a morphism for ∼7 gives us a consistent modulo multiplication.

Example 1.30 Again, consider the function remn : Z → {0, 1, . . . , n − 1}, where remn(a) is the
remainder obtained by dividing a by n. Now let us put ∼m on Z and the trivial relation I on
{0, . . . , n − 1}, i.e., I = {(0, 0), . . . , (n − 1, n − 1)}. Then observe that remn is a morphism if and
only if n divides m.

Example 1.31 Recall the relation ≤ on C, where we say z ≤ z′ iff |z| ≤ |z′|. Similarly, we have
the standard ≤ relation on R. Consider the map ℓ : C → R, with ℓ(z) = |z|, then ℓ is a morphism.

Example 1.32 Let X be a finite set and consider the boolean poset (2X ,⊆), i.e., subsets of X
ordered by containment. On the other side, consider the (W,≤) the poset of whole numbers. Again,
let ℓ : 2X → W be given by ℓ(Z) = |Z|. Then ℓ is a morphism.

Example 1.33 Consider the sets [m],≤ and [n],≤ under the standard orderings. What is a mor-
phism f : [m] → [n]? It must be that for all i ≤ j, we must have f(i) ≤ f(j), in other words f as a
sequence should be monotonic. Now let M(m,n) be the collection of all morphisms from [m] to [n]
as above. Write a recurrence for M(m,n). What is the number of surjective morphisms from [m]
to [n].
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2 Analysis of a Single Injection

2.1 The Relation ∼

Let f : X → X be an injection, which we fix for the moment. We quickly check that if f is an
injection, then so are fk, for every k. We define the relation ∼f , or simply ∼, on X as follows: x ∼ y
iff there is a k ≥ 0 such that (x)fk = y or (y)fk = x. We then have the following lemma:

Lemma 2.1 The relation ∼ is an equivalence relation.

Proof: It is clear that ∼ is a symmetric and reflexive relation. The only non-trivial part is to show
that ∼ is transitive. So let x ∼ y and y ∼ z. In the case that (x)fm = y and (y)fn = z, we have
that (x)fm ◦ fn = (x)fm+n = z, and thus x ∼ z. This is the easy case. The harder case is when,
say, (x)fm = y and (z)fn = y, with m ≤ n. We claim that (z)fn−m = x. Suppose not; then
(z)fn−m = w is an element such that (w)fm = (z)fn−m ◦ fm = (z)fm = y. Thus, both w and x
are such that y = (x)fm = (w)fm. Now, f is an injection and therefore, so is fm, whence x = w,
which is a contradiction. ✷

We next analyse the nature of equivalence classes for ∼. We define the ‘successor’ function
succ: X → X, and the ‘predecessor’ partial function pred: X → X as follows: (x)succ= (x)f ,
while pred= {(x, y)|(y)f = x}. Thus (x)pred is defined if and only if there is a pre-image y to x
under f , and then it is defined to be this pre-image.

For an element x ∈ X, we carry out the following two procedures: define x0 = x, and (1) for
i > 0, define xi = (xi−1)succ, (2) for i ≤ 0, if (xi)pred exists, then define xi−1 = (xi)pred. Clearly,
the distinct elements in the list of elements (xi) above is exactly the equivalence class [x]. We
see now that the distinctness of the elements in the list (xi) is completely determined by the list
(xi)i≤0. Clearly, for this “left-half”, we have the following three mutually exclusive, and exhaustive
possibilities:

1. xi exist for all i ≤ 0 and are all distinct: If that is so, then, in fact, the larger list
(xi)−∞<i<∞ is composed of distinct elements. For is xN = xN+m, for some N ≥ 0,m > 0,
then we will have xN = (x−m)fN+m = (x0)f

N+m = xN+m. Whence, by the injectivity of
fN+m, we have x−m = x0, contradicting the hypothesis we have made in this case.

2. xi exist for all i ≤ 0, and x−(N+m) = x−N , for some N ≥ 0 and m > 0. We claim, in this
case, that xi+m = xi for all i, and the sequence (xi) is cyclic with period m, where m is the
smallest integer satisfying the hypothesis. To see this, if i < −(N +m), then apply f−i−N−m

to xi+m and xi. In the other case, apply f i+N+m to x−(N+m) and x−N .

3. There is an N ≥ 0 such that (x−N )pred does not exist. In which case, we claim that
(xi)i≥−N are all distinct. This is similar to either of the cases above.

We thus arrive at the classification of the equivalence classes:

Proposition 2.2 Let f : X → X be an injection, and let ∼f be as defined above. Then, for any x,
exactly one of the three cases hold:
(i) [x] = {x0, . . . , xm−1} is finite, and (xi)f = xi+1, for 0 ≤ i ≤ m− 2, and (xm−1)f = x0.
(ii) [x] = {. . . , x−2, x−1, x0, x1, . . .}, such that x0 = x, and (xi−1)f = xi, for all i.
(iii) There is an x0 ∈ [x] such that [x] = {x0, x1, . . . , }, where (x0)pred does not exist, and (xi−1)f =
xi, for all i ≥ 1.
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2.2 The (Finite) Cycle Representation

We next obtain a simple representation of f , when the domain X is a finite set. Clearly, in such
a case, f is a bijection, every [x] is finite, and therefore must be cyclic as in case (i) above. We
may thus partition X by equivalence classes: π∼ is X = [x1] ∪ . . . ∪ [xk], for special elements
x1, . . . , xk ∈ X. Each xi above is an element of the equivalence class [xi] = {xi0, x

i
1, . . . , x

i
mi−1},

where mi = |[xi]|, and the numbering of the elements are in in Proposition 2.2.
The function f is then represented as a list of cyclic sequences:

f ≡ (x10, . . . , x
1
m1−1), . . . , (x

k
0 , . . . , x

k
mk−1)

For any x ∈ X, to evaluate (x)f , we locate x in (exactly) one of the lists, say as xij . The element

(x)f is then the next element in the i-th cycle. In other words, if j < mi− 1, then (x)f = xij+1, and

equals xi0 in the case when j = mi − 1.
This is best demonstrated by an example: if X = {1, 2, . . . , 10}, and let f be represented as

follows:
f ≡ (1, 3, 5, 6)(4, 10)(9)(2, 7, 8)

We conclude, for example, that (1)f = 3, (6)f = 1, (9)f = 9 and (7)f = 8.

Example 2.3 Consider Z10 = {0, . . . , 9} and let f : Z10 → ZZ10 be given by f(x) = (3·x) mod 10.
Verify that f is an injection and compute the cycle decomposition of f .

Definition 2.4 Let f : X → X, and Y ⊆ X. We say that Y is an invariant subset for f , if for
all y ∈ Y , (y)f ∈ Y .

We abbreviate the above condition by saying (Y )f ⊆ Y . The following observation is then
immediate:

Lemma 2.5 If f : X → X is an injection on a finite set X, and Y ⊆ X is an invariant subset,
then Y there are elements {yi|i = 1, . . . , r} such that Y = ∪r

i=1[yi].

Proof: If that were not so, then in the cycle representation of f , there would be an y = xij ∈ Y

such that xij+1 6∈ Y . However, (xij)f = xij+1, and thus (y)f 6∈ Y , and Y is not invariant! ✷

3 Cardinality of Infinite Sets

In this section we will associate an entity |X| with every set X and arrive at some useful relations
between |X| and |Y |. For any set X, we say that the symbol |X| is a cardinality.

The first relation on cardinalities is ≃: if there is a bijection f : X → Y , then we say that
|X| ≃ |Y |. It is clear that ≃ is an equivalence on cardinalities. The next relation is �: if there is
an injection f : X → Y , then we say that |X| � |Y |. Note that ≃ and � simulate and extend the
familiar relations = and ≤, on cardinalities of finite sets.

Lemma 3.1 If there is a surjection f : X → Y , then |Y | � |X|.

Proof: We construct an injection g : Y → X. For any y ∈ Y , since f is surjective, there is an x
such that (x)f = y. We assign (y)g = x. Thus by making a choice3 of an element in the set (y)f−1,
we may construct the required injection. ✷

Definition 3.2 Let N be the set of natural numbers. We say that X is countable if either (i) X is
a finite set, or (ii) |X| = |N|.

3This step follows from the so-called Axiom of Choice, which we cant get into, here.
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3.1 The Schroeder-Bernstein Theorem

We now establish an important relationship between ≃ and �:

Theorem 3.3 (Schroeder-Bernstein) If |X| � |Y | and |Y | � |X|, then |X| ≃ |Y |.

Proof: By translating the definitions of � and ≃, we see that we need to prove the following: If
there are injections f : X → Y and g : Y → X, then there is a bijection h : X → Y . So let us
assume the above injections f and g. We also assume that X ∩ Y = φ. Let Z = X ∪ Y , and define
µ : Z → Z as:

(z)µ =

{

(z)f if z ∈ X ⊆ Z
(z)g if z ∈ Y ⊆ Z

We easily see that µ is an injection and that (X)µ ⊆ Y , and (Y )µ ⊆ X. Thus, for any z = z0, if
we form the sequence zi = (z)µi, then we see that the sequence (zi) alternates between elements of
X and elements of Y .

Thus, by Proposition 2.2, every equivalence class of ∼µ is one of three types, viz.,
(i) (zi)−∞<i<∞ with (zi)µ = zi+1.
(ii) (zi)i≥0, with (zi)µ = zi+1, for all i ≥ 0, and
(iii) (zi)0≤i≤m−1 with (zi)µ = zi+1, for i < m− 1, and (zm−1)µ = z0.

In all cases, we see that in the listing of any equivalence class, the elements of X and Y alternate.
Since Z = X ∪ Y and X ∩ Y = φ, every element of X ∪ Y appears exactly once, and is followed by
an element from the ‘opposite camp’. Thus the equivalence relation ∼µ ‘weaves’ the elements of X
and Y , which we will use to formally define the bijection h : X → Y . For x ∈ X, if [x] is of type
(i) or (iii) above, we define (x)h = (x)µ ∈ Y . When [x] = (zi)i≥0, we have two cases: (a) if z0 ∈ X,
then we define (x)h = (x)µ, and (b) if z0 ∈ Y , then we define (x)h = (x)pred, the predecessor of x.
It is clear that h : X → Y is a bijection. ✷

The theorem is extremely useful in proving the existence of a bijection between sets. For example,
let Z denote the set of integers. We show that |Z| ≃ |N|. The natural injection i : N → Z shows that
|N| � |Z|. Next, we construct f : Z → N as (i)f = 2i if i ≥ 0, and (i)f = 3i if i < 0. Clearly, f is
an injection, and thus by the Schroeder-Bernstein Theorem 3.3, |Z| ≃ |N|.

Similarly, we show that |N×N| ≃ |N|. The natural injection (i)f = (i, 1) shows that |N| � |N×N|.
In the other direction, define g : N× N → N as (i, j)g = 2i3j , which is an obvious injection. These
two injection tell us that |N× N| ≃ |N|.

Example 3.4 Consider the sets U = (0, 1) and V = [0, 1). We define f : U → V as the natural
injection, i.e., f(x) = x. We define g : V → U as g(x) = (1+ x)/2. Unfold the Schroeder-Bernstein
argument and list the chains in U ∪V as finite, single-way infinite, or double-way infinite. Can you
construct the bijection explicitly? Consider g′ : V → U given by g′(x) = (2x+1)/4 and rework your
answer.

3.2 The Diagonalization Argument

We know construct two sets such that |X| � |Y |, but |Y | 6� |X|, provably!
Consider the set N and Y = 2N, the power-set of N. Clearly, there is the natural injection

α : N → Y , defined as (n)α = {n}. Thus, the integer maps to the corresponding singleton set. We
claim that there is no bijection between N and Y .

Suppose there were such a bijection β : N → Y . We will arrive at a contradiction as follows.
Note that every element of Y may be regarded as a boolean sequence: for a subset S ⊆ N, we
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form the infinite sequence vS = (v[1], . . . , v[i], . . .), where v[i] = 1 iff i ∈ S, and v[i] = 0 otherwise.
Thus vS is ‘indicator’ for the set S. Conversely, any 0-1 vector (v[1], . . .) corresponds to a subset
of N. Thus the bijection β sets up a bijection between N and infinite 0-1 vectors. Thus for each i,
there is the sequence 4 β(i) = (β(i)[1], β(i)[2], . . .), and since β is a bijection, for any 0-1 sequence
v, there must be an i such that β(i) = v. Based on this bijection, we construct the special sequence
y = (y[1], y[2], . . .) defined as:

y[i] =

{

0 if β(i)[i] = 1
1 if β(i)[i] = 0

Since y is an infinite 0-1 sequence, there must be an n such that β(n) = y. However, that cannot
be because y disagrees with the n-th sequence in the n-th place! In other words, y[n] = 1 iff
β(n)[n] = 0 = y[n]!. This is is nonsensical, and thus β cannot exist.

To understand the sequence y better, imagine the matrix M such that M [i, j] = β(i)[j], i.e., the
[i, j]-th entry of M is the j-th entry of the i-th sequence. The sequence y is the complement of the
diagonal of the matrix M , and hence the so called diagonalization argument.

We generalize this result for arbitrary X:

Proposition 3.5 For any set X, there cannot be a bijection between X and 2X .

Proof: Suppose there were such a β : X → 2X . Form the set Y ⊆ X defined as:

x ∈ Y iff x 6∈ β(x)

We claim that there is no x′ ∈ X such that Y = β(x′). If indeed there were such an x′, then let us
investigate if x′ ∈ Y . To check this, we see that x′ ∈ Y iff x′ 6∈ β(x′) = Y . Thus x′ ∈ Y iff x′ 6∈ Y ,
which is clearly untenable! ✷

4 Groups

In this section, we generalize the notion of ∼f , that we defined for a single bijection, and then arrive
at the notion of a concrete group. We then give an alternate formulation of this notion, which is
the abstract group.

4.1 Concrete Groups

So let F = {f1, . . . , fr} be a collection of bijections on the set X. We define a relation ∼F , for this
family:

Definition 4.1 For elements x, y ∈ X, we say x ∼F y iff there is an f ∈ F such that (x)f = y.

We next examine if ∼F is an equivalence relation:

• reflexivity requires x ∼F x for all x ∈ X. This is certainly not guaranteed. However, if the
identity function 1X : X → X is in the family F , i.e., 1X(x) = x, then ∼F is reflexive.

• symmetry requires x ∼F y to imply y ∼F x. This is easily ensured if f ∈ F should imply
f−1 ∈ F . Whence, (x)f = y will imply (y)f−1 = x, and thus symmetry would follow.

4We use the prefix notation for functions in this subsection.
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• transitivity: supposing that x ∼F y and y ∼F z, and say further that (x)f = y and (y)g = z,
where f, g ∈ F , the if f ◦ g were also to be in F , then (x)f ◦ g = z, and thus x ∼F z would
follow.

Motivated by this, we make the following definition:

Definition 4.2 An concrete group F,X is a collection of bijections F ⊆ Bij(X), on the set X,
such that:
(i) 1X ∈ F . (presence of identity)
(ii) f ∈ F ⇒ f−1 ∈ F . (presence of inverses)
(iii) f, g ∈ F ⇒ f ◦ g ∈ F . (closure under composition)

This makes ∼F an equivalence relation on X. The equivalence class [x] is called the orbit of x,
and denoted by O(x).

We begin with an important example:

Example 4.3 Let S be a square cardboard piece with vertices 1, 2, 3, 4, in that order, going clockwise.
So let X = {1, 2, 3, 4}, and let D4 be the collection of symmetries of the square. We have identified
8 such symmetries: σ0, . . . , σ3, µ0, . . . , µ3. While σi is a rotation, µj is a reflection, and exposes the
back face of the cardboard piece. Each symmetry operation produces a bijection on the vertices of
the square, e.g., the symmetry σ1 takes the vertex 1 to the place of vertex 2, and 2 to the place of
3, and so on. These 8 symmetries and the induced bijections (in cycle notation) on the vertices are
shown in the figure 4.3 below. For example, µ2 corresponds to the reflection along the 2-4 diagonal,
and thus fixes those vertices, but interchanges 1 and 3.

One may check that D4 enjoys all the requirements of a concrete group: for example, (i) σ0 is
the identity, (ii) (iii) the inverse of σ1 is σ3 and that of µ0 is µ0 its elf, and (iii) σ1 ◦ σ1 = σ2, and
σ1 ◦ µ0 = µ3, and so on.

In fact, the elements σ1 = σ and µ0 = µ ‘generate’ the group D4 under succesive operations
of composition, for example, σ3 = σ3. The ‘defining relations’ are the identities which are easily
verified: (i) σ4 = 1X , (ii) µ2 = 1X , and (iii) µσµ = σ3.

There is only one equivalence class, viz., the whole of X. In other words, a vertex may be taken
to any other vertex by some symmetry.

4.2 Abstract Groups

Definition 4.4 The abstract group is a set G with an operation · : G × G → G called multi-

plication. Thus g, g′ ∈ G, then g · g′ = g′′ is another element of G. This multiplication has the
following properties:
(i) There is an e ∈ G such that e · g = g · e = g for all g ∈ G (existence of identity).
(ii) For every g ∈ G, there is a g′ such that g · g′ = g′ · g = e (existence of inverse).
(iii) Given any three elements g, g′ and g′′, we have (g · g′) · g′′ = g · (g′ · g′′) (associativity).

We begin with some examples:

Example 4.5 1. The set of integers ((Z),+) under addition. The identity is 0, and the inverse
of a is −a.

2. The set of reals (R,+) under addition.
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Figure 1: The Group D4

3. Let n be a fixed positive integer. The set of integers modulo n, i.e., Zn = {0, 1, . . . , n − 1}
under addition also form a group. Recall that a+ b in Zn is obtained by treating the numbers
a and b as integers, performing the addition as integers, and then taking the remainder after
dividing by n. Note that associativity of the addition in Zn requires proof.

Example 4.6 1. The set of non-zero reals R∗ under multiplication is a group. The identity is 1.

2. Let GLn(R) denote all real valued, invertible n×n matrices. These form a group under matrix
multiplication with the identity matrix In as the identity.

3. Let SLn(R) denote that subset of GLn(R) with determinant 1. Since det(AB) = det(A)det(B),
we see that SLn(R) is a group.

4. Let X be a set, and Bij(X), the collection of all bijections on X. Then Bij(X) is a group
under composition. If X = {1, 2, . . . , n}, then |Bij(X)| = n! and it is called the symmetric

group Sn.

Definition 4.7 A group G is called abelian is for all g, g′ we have gg′ = g′g.

Note that (R,+) is abelian while SLn(R) or D4 are not.
Our next suite of example come from concrete groups, and because of its importance, we state

it as a proposition.

Proposition 4.8 Let (F,X) be a concrete group of bijections on a set X. Then F is an abstract
group under composition, with 1X as the identity.

Proof: We first note that by the definition of a concrete group, F is closed under composition. Thus
composition does indeed define a multiplication on F . Next, by its vary nature, this multiplication
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is associative. The existence of the identity and inverses are implied by the other requirements of a
concrete group. ✷

Thus all concrete groups, and specifically D4, are abstract groups. It is also true that abstract
groups may be realized as concrete groups, but we will not need that here.

An important property of groups are the cancellation laws:

Proposition 4.9 If G is a group, and g, g′, h are elements such that gh = g′h then g = g′. Similarly,
if hg = hg′ then g = g′.

Proof: If gh = g′h then right multiplying by h−1 gives us g = ge = g′e = g′. ✷
Thus is we were to construct the multiplication table M of the finite group G = {g1, . . . , gn},

with M(i, j) = gigj , then all rows and columns have unique entries.

Example 4.10 Multiplication tables.

1. Let us construct the multiplication table of D4.

∗ σ0 σ1 σ2 σ3 µ0 µ1 µ2 µ3

σ0 σ0 σ1 σ2 σ3 µ0 µ1 µ2 µ3

σ1 σ1 σ2 σ3 σ0 µ3 µ0 µ1 µ2

σ2 σ2 σ3 σ0 σ1 µ2 µ3 µ0 µ1

σ3 σ3 σ0 σ1 σ2 µ1 µ2 µ3 µ0

µ0 µ0 µ1 µ2 µ3 σ0 σ1 σ2 σ3
µ1 µ1 µ2 µ3 µ4 σ3 σ0 σ1 σ2
µ2 µ2 µ3 µ0 µ1 σ2 σ3 σ0 σ1
µ3 µ3 µ0 µ1 µ2 σ1 σ2 σ3 σ0

2. Given a multiplication table, how will you check if it comes from a group?

5 Subgroups and Cosets

5.1 Subgroups

Definition 5.1 Let G be a group. A subset H ⊆ G is a subgroup if H is closed under multiplication
(that from the overlying set G) and is an abstract group under this multiplication.

Examples of subgroups abound:

Example 5.2 1. For a fixed integer n, let nZ = {na|a ∈ Z}. We see that 0 ∈ nZ, and that it is
indeed closed under addition and taking inverses.

2. Let m,n be integers such that m divides n and let5 mZn = {ma|a ∈ Zn}.i This is a subgroup.

3. SLN (R) is a subgroup of GLn(R).

4. Non-zero rational Q∗ is a subgroup of R∗.

5. Every concrete group (F,X) is a subgroup of Bij(X).

5Here, and in the previous example, ma will mean the addition of the element a succesively, m times.
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6. Let Sn−1 = {σ ∈ Sn|(n)σ = n} be all bijection on {1, . . . , n}, which fix n. Then Sn−1 is a
subgroup of Sn.

7. {σi|i = 0, 1, 2, 3} is a subgroup of D4.

An important way of constructing subgroups is to select a subset S ⊆ G and then close it
under multiplications and taking inverses. Let us consider the simplest case when S = {g}, a single
element. Let g′ denote the inverse of g, whence gg′ = g′g = e. Thus various multiplications of g and
g′ are essentially gk or g′k for k ≥ 0, or simply gk with k ∈ Z. If the group is finite then gk = gl for
some l > k, whence by cancellation law, gl−k = e.

Definition 5.3 For any element g ∈ G, the order of g is the positive integer k such that gk = e. If
such a k does not exist, then the order of g is termed as infinite.

Thus, for finite groups, all elements g have finite order. Moroever, if a is the order, then Ga =
{e, g1, . . . , ga−1} is a subgroup of G.

Example 5.4 Subgroups of Zm.

1. Consider G = Z12 and the elements x = 3, y = 9 and z = 5. What are the subgroups Gx, Gy

and Gz?

2. In general, for an element n ∈ Zm, what is the subgroup generated by n?

An important class of subgroups arise from concrete groups:

Lemma 5.5 Let (F,X) be a concrete group and let x ∈ X be a fixed element of X. Let Fx = {f ∈
F |(x)f = x} be the collection of all bijections in x which fix x. Then Fx is a subgroup of F .

We leave the proof of this easy lemma to the reader. The subgroup Fx is called the stabilizer

of x ∈ X. In our example of D4, we see that the stabilizer of vertex 1 is {σ0, µ3}.
Any subgroup H ⊆ G defines two equivalences LH and RH (or simply L and R) on the elements

of G.

Definition 5.6 Let H ⊆ G be a subgroup. We say:
(i) gLg′ iff there is an h ∈ H such that hg = g′.
(ii) gRg′ iff there is an h ∈ H such that gh = g′.

Proposition 5.7 • Both L and R are equivalences.

• For either of the relations, say L, the equivalence class [g]L of the element g ∈ G equals
Hg = {hg|h ∈ H}. In particular,[e]L = H.

• Furthermore, for any element g ∈ G, the map φ : H → Hg, given by φ(g) = hg is a bijection.

Proof: We prove the assertion for the relation L. Clearly, since e ∈ H, hLh and L is reflexive.
Furthermore, hg = g′ ⇒ h−1g′ = g, and since h−1 ∈ H as well, L is symmetric. Finally, hg = g′

and h′g′ = g′′ implies h′hg = g′′, and since h′h ∈ H, transitivity of L follows.
Clearly, every element of the form g′ = hg certainly belongs to [g]L. On the other hand, if g′ = hg

then g′ ∈ Hg, and thus [g]L = Hg. Next we consider the map φ : H → Hg. The surjectivity of φ is
obvious. If h′g = hg, then h′gg−1 = hgg−1 and thus h = h′ and φ is injective. ✷

The set Hg (respectively gH) is called the right coset (respectively left coset) of g with respect
to H.
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5.2 Coset Representatives

Let us fix a subgroup H ⊆ G, and the relation LH . We see that since L is an equivalence class, G
may be expresses as the disjoint union of equivalence classes, or cosets. Thus there is an index set
I and elements {gα|α ∈ I} such that

G = ∪α∈IHgα

This simple observation, and the 5.7(3) has the following simple consequence:

Theorem 5.8 (Lagrange) If G is a finite group and H ⊆ G is a subgroup, then |H| divides |G| and
|G|/|H| equals the number of distinct cosets of H in G.

Proof: We see that |G| =
∑

α∈I |Hgα|, and since there is a bijection between H and Hgα, we see
that |Hgα| = |H|. The result follows. ✷

These special elements {gα|α ∈ I} are called coset representatives. They are certainly not
unique in having the above property. We must also warn that if (gα) serve for the relation L, it
may not be a family of coset representatives for R. In other words, for some g1, g2 ∈ (gα), there
may be no element of H such that g1 = hg2, while it may be that g1 = g2h for some h ∈ H.

As examples of coset representatives, we have H = 5Z ⊆ Z. The cosets of H in Z are the 5
subsets H0, . . . , H4, where

Hi = {5n+ i|n ∈ Z}

Typical coset representatives are {0, 1, 2, 3, 4}, where, e.g.,

H3 = H + 3 = {5n+ 3|n ∈ Z}

Another possibility for the coset representaives is {5, 11, 13,−2, 104}. Note that H + 3 = H + 13.
A nice set of coset representatives for the subgroup {σ0, µ3} are {σ0, σ1, σ2, σ3}.

5.3 Stabilizers and Orbits

Recall, that for a concrete group (F,X), the orbit O(x) = {y ∈ X|∃f ∈ Fs.t.(x)f = y} is the
equivalence class [x] under ∼F . There is a direct relationship between cosets and orbits which
exhibits the difference between the relations R and L.:

Theorem 5.9 Let (F,X) be a concrete group. Let x ∈ X be a fixed element, and let O(x) be its
orbit. Consider the maps ψL, ψR : F → O(x) defined as ψL(f) = (x)f ∈ O(x), and ψR(f) =
(x)f−1 ∈ O(x). We have:
(i) The inverse image H = (x)ψ−1

L is the stabilizer of x. The inverse image Hy = (y)ψ−1
L is the

coset Hf , where f is any element of F such that (x)f = y.
(ii) The inverse image H = K = (x)ψ−1

R is the stabilizer of x. The inverse image Ky = (y)ψ−1
R is

the coset fK, where f is any element of F such that (y)f = x.
(iii) If F is finite, then |F | = |H||O(x)|.

Proof: We shall prove (i). Part (ii) is identically proved, while (iii) follows from Lagrange’s theorem
5.8. Firstly, it is clear that H = Fx, the stabilizer of x. Next, if f ∈ F is any element such that
(x)f = y, then ψL(f) = y. Further, if h ∈ Fx then (x)h ◦ f = y as well, and thus Hf ⊆ Hy.
Conversely, if g ∈ Hy, then (x)g ◦ f−1 = (y)f−1 = x, and thus g ◦ f−1 = h ∈ H, and thus g ∈ Hf .
✷

Thus, for concrete groups, coset representatives for stabilizers may be constructed from the orbit
elements by using either relation L or R. For example, with R, one may choose coset representatives
f for each element y ∈ O(x) such that (y)f = x.
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For the example D4, we have O(1) = {1, 2, 3, 4}, and F1 = {σ0, µ3}. Thus |O(1)||F1| = 4 · 2 =
8 = |D4|. The listing 1, 2, 3, 4 of the orbit leads us to elements σ0, σ3, µ1, σ1 for R, and µ3, σ1, µ1, σ3
for L, as possible coset representatives.

In gneral, it is clear that, there may exist f, g ∈ F such that (x)f 6= (x)g while (y)f = (y)g = x
for some x, y ∈ X. In which case, f, g may be chosen as elements of a system of coset representatives
for one relation (here L) but not for the other.

6 Symmetries

We consider the ambient space to be R2 and R3, the real euclidean 2-dimensional or 3-dimensional
space, familiar to all of us. An affine transformation on R3 is a re-coordinatization of the space by
substituting in place of x, y and z, linear forms of the type ax+by+cz+d such that the transformation
should be a bijection on R3. It is easy to show that affine transformations compose and lead to affine
transformations, and that their inverses are also affine. Thus they form an important subgroup of
all bijections on R3.

A symmetry of S ⊆ R3 is an affine linear tranformation φ : R3 → R3, such that φ(S) = S. It
is clear that, planes go to planes, and thus faces of S go to faces of S, and edges to edges, vertices
to vertices. Thus each symmetry of S induces a separate permutation on the collection of vertices,
and then on the edges, and similarly on the faces. Furthermore, usually the affine transformation
is completely determined by the permutation it induces on the finite sets above. It is clear that
Symm(S) = {φ affine |φ(S) = S} is actually a subgroup.

We have already seen an exmaple of a group of symmetry, viz., D4, the symmetries of a flat
square. We shall next compute symmetries of a few more rigid bodies:

6.1 The Cube

We consider first the unit cube C, which is shown in the figure below. The coordinate axes are
as marked, and the basic symmetries are σX , σY and σZ ∈ Sym(C) as shown in the figure, which
correspond to rotations of the cube along the appropriate axis.

Note that these basic symmetries induce a permutation on the vertices V = {1, 2, . . . , 8}. These
permuations are also reported in the figure, in their cycle notation. In general, too, every symmetry
will induce an action on the set V , and thus we may say that Sym(C) is a concrete group acting on
V . The converse is also true: any symmetry is completely determined by its action on the vertices
V .

The first objective is to work out |Sym(C)|, the number of possible symmetries of C. This is
easily calculated by applying Theorem 5.9 suitably. Since Sym(C) is a concrete group acting on
V , lets fix a vertex, say 1, and compute the stabilizer Stab(1) ⊆ Sym(C). This is easily seen to be
obtained by rotations of the cube around the body-diagonal 1-7. Thus, if µ is a single rotation with
its action on V as µ = (1)(7)(245)(386), then we see that

Stab(1) = {µ0, µ1, µ2}

Thus µ3 is the identity, and |Stab(1)| = 3. Now, it is clear that there are symmetries which will
take the vertex 1 to any of the eight vertices, and thus the orbit O(1) equals V . Thus, by Theorem
5.9, |Sym(C)| = |Stab(1)||O(1)| = 8 · 3 = 24. Indeed, one may check that the permutations σX , σY
and σZ generate, under compositions, a subgroup of size 24, of the ambient group Bij(V ), of all
bijections on V . In effect, we thus ‘know’ the group Sym(C) concretely, in terms of its action on V .
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Figure 2: The Cube

The action of Sym(C) on V induces an action on X =
(

V
2

)

as well: given a φ ∈ Sym(C), and a
{i, j}, we say that {i, j}φ = {iφ, jφ}. Thus Sym(C) will also act on all ‘edges’ which connect two
vertices. Under this action, we see that X splits into 3 orbits: O({1, 4}) the collection of 12 ‘true’
edges, O({1, 3}) the collection of 12 face diagonals, and O({1, 7}), the collection of 4 body diagonals,
adding up to the total 28 = |X|. One may apply Theorem 5.9 backwards and conclude that there
are 2 symmetries which will stabilize a ‘true’ edge, 2 again which will stabilize a face diagonal, and
6 for a body diagonal.

6.2 The Dihedral Groups Dn

Our next rigid body is the regular n-sided polygon Pn in the plane R2. The regular 9-gon is shown
in the figure below. Note that the vertices are labelled as V = {1, 2, . . . , 9}, and along with that
are shown two obvious symmetries: (i) σ, the rotation, by 2π

n
, and in this case 2π

9 . and (ii) µ,
the reflection about the axis defined by the vertex and the centre. The cycle notation for these
symmetries as acting upon the vertices, is also shown below.

The group Sym(Pn) is tarditionally denoted as Dn, and is called the dihedral group. As before,
if we fix the vertex 1, we see that σ0 and µ are the only permutations which will fix the vertex 1,
and preserve adjacencies. Since the orbit must be the whole of V , we see that |Dn| = 2 · |V | = 2n.

It will turn out that σ and µ ‘generate’ the group Dn. A couple of simple observations about
these special elements:
(i) σn = 1 = µ2. In other words, n consecutive rotations or 2 reflections result in the identity map
on Pn. Thus µ

−1 = µ and σ−1 = σn−1.
(ii) µσµ = σn−1 = σ−1. This is also expressible as µsigma = σn−1µ. This is an important
commutation property, as we shall see below.

Next, note that if we have two symmetries, then their composition is also a symmetry. Thus
interpreting σ and µ to be elements of the group Bij(V ), of bijections on V , and doing succesive
compositions on σ and µ, we see that the smallest subgroup of Bij(V ) containing σ and µ must

18
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Figure 3: The regular nonagon

contain all elements of the form σiµjσk . . . µrσs. Now the commutation rule comes in handy: we
illustrate this by an example: say n = 9, as in our case, and we wish to ‘simplify’ the element
σ3µ3σ2µ2. Rule (i) above tells us that µ3 = µ and µ2 = 1, and thus σ3µ3σ2µ2 = σ3µσ2. Tne next
rule tells us that µσ = σ8µ and thus: sigma3µ3σ2µ2 = σ3µσ2 = σ3σ8σ8µ = σ19µ = σµ (since
σ8 = 1). Thus, in general, every element in the group which contains σ and µ may be written as
µiσj with 0 ≤ i ≤ 1 and 0 ≤ j ≤ n − 1. We leave it to the reader to check that each of these 2n
elements are actually distinct, and that they result in different actions on the set V .

Thus, we have identified 2n symmetries which arise just from composing σ and µ. Since 2n is
precisely the cardinality of Dn, these elements must constitute the whole of Dn. Thus

Dn = {µiσj |0 ≤ i ≤ 1, 0 ≤ j ≤ n− 1}

7 Polya Theory

In this section, we will investigate a problem, which is now traditionally known as the Polya’s
Counting Problem.

7.1 The Necklace Problem

A simple example is that of counting coloured necklaces. Consider, for example, the three necklaces
in Figure 7.1 below. Each necklace has 9 beads, with 5 coloured white, 2 each, grey and black. In
some sense, these pictures may well be pictures of the same necklace, albeit in different positions.
For example, the necklace (a) and (c) may well be pictures taken from the front and back of the
same necklace, while those in (a) and (b) differ by a ‘rotation’.

Thus, to explain the equivalence of the three necklaces, we may model this necklace as a regular
nonagon with coloured vertices corresponding to the colorings of the bead. Thus, for example, the
necklace in Figure 7.1(a) corresponds to the colouring function f : V → {Black,Grey,White} as

19
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Figure 5: Colourings and Functions

shown in Figure 7.1. Let us fix C as the set of colours. Let f, g : V → C denote the functions for
necklaces (b) and (c) respectively. The assertion that the necklaces (a) and (b) are equivalent is
the same as saying that (i) there is a φ which is a symmetry of the regular nonagon, and thus acts
as a bijection (also) φ : V → V , and (ii) the function g is obtained by composing φ with f . Thus
g = φ ◦ f . In this case, φ is actually given by the reflection µ, see Figure 6.2.

We may thus say that colourings correspond to functions h, h′ : V → C. Given such functions
h, h′, we say that h is ‘equivalent’ to h′ if there is a symmetry φ : V → V such that h = φ ◦ h′. The
Necklace Counting question is:

Question: What is the number of distinct un-equivalent necklaces?
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7.2 The Question and Orbit-Counting

Thus, let G be a concrete group acting on a set X. Let C be a set of colours and let F be the
collection of all functions f : X → C. Thus, when X = V , the set of vertices of the nonagon, or
alternately the beads of our necklace, and C = {Black,Grey,White}, the set F is the collection of
all coloured necklaces.

We put a relation ∼ on F thus: h, h′ ∈ F , then we say h ∼ h′ if there is an element φ ∈ G,
the group, such that h = φ ◦ h′. We check easily. using the group axioms on G, that ∼ is an
equivalence relation. Let [h] denote the equivalence class of h under ∼. Our question is then
just counting the number of equivalence classes into which ∼ divides F . Thus, there must be
H = {h1, . . . , hk} ⊆ F such that F = ⊎k

i=1[hi] is a disjoint union. This sub-collection H is a
maximal collection of inequivalent ‘necklaces’.

In fact, we can easily show that the set F is acted upon by the group G ‘from the left’. Given
any φ ∈ G, we define the map: φF : F → F , as φ(h) = φ ◦ h. Thus, the action of G is by ‘left
composition’. One can easily see that if 1X ∈ G, is the identity element, then 1X(h) = 1X ◦h = h for
all h ∈ F . Furthermore, if φ, φ′ ∈ G, then φ(φ′(h)) = φ◦φ′◦h = (φ′◦φ)◦h, and thus (φφ′)F = φFφ

′
F .

Thus, we have a concrete group G acting on a set F . We see that h ∼ h′ iff h is in the orbit
O(h′) of h′, for the above action. In other words, the determination of the number of inequivalent
necklaces, is identical to computing the number of orbits for the action of G on F .

We now have a proposition for arbitrary group actions:

Proposition 7.1 Let G be a concrete group acting on a set F . Let F = O1∪. . .∪Ok be the expression
of F as a disjoint union of k orbits. For any element φ ∈ G, let Fixed(φ,F) = {h ∈ F|φ ◦ h = h},
be the elements in F fixed by φ ∈ G. Then

k =
1

|G|

∑

φ∈G

|Fixed(φ,F)|

Proof: Let h be a typical element of F and let O(h) be the orbit of h under the action of G. It is
easy to see that

k =
∑

h∈F

1

|O(h)|

In other words, every element of an orbit O contributes exactly 1
|O| to the sum. We now simplify

the right hand side. Since |G| = |O(h)||Stab(h)|, we have:

k =
∑

h∈F

1

|O(h)|

=
∑

h∈F

|Stab(h)|

|G|

=
1

|G|

∑

h∈F

∑

φ∈G s.t. φ◦h=h

1

=
1

|G|

∑

φ∈G

∑

h∈F s.t. φ◦h=h

1

=
1

|G|

∑

φ∈G

|Fixed(φ,F)|
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This proves the proposition. ✷
We will now specialize to the case when F is the collection of all functions h : X → C, and G

acts on X.
Thus let G act on X, and let φ be a typical element of G. We will now compute Fixed(φ,F).

In order for φ ◦ h = h, we see that if (x)h = blue, and (x)φ = y, then φ ◦ h = h implies that
(y)h = (x)φ ◦ h = (x)h = blue, as well. Recall the equivalence relation ∼φ on X (see Section 2.1),
and the definition of a φ-invariant subset (see Definition 2.4). In this notation, we see that for every
colour c ∈ C, h−1(c) must be a φ-invariant subset of X. Now, lemma 2.5 tells us that h−1(c) must
be a union of the cycles of φ. Thus, functions h such that φ ◦ h = h, must colour each cycle of X
under φ identically. If X splits into k cycles, and |C| = r, then |Fixed(φ,F)| = rk.

7.3 The 9-necklace.

We will use this fact to compute the number of non-equivalent 2-coloured necklaces with 9-beads.
As we know, D9 has 18 elements. There are 9 ‘reflections’ and 9 rotations. Each reflection is similar
to µ, in that, it reflects the necklace about an axis passing through a vertex and the centre. Thus,
since µ = (1)(29)(38)(47)(56), which has 5 cycles, we have |Fixed(µ,F)| = 25. On the other hand
σ0 = 1X has 9 cycles. σ1 = (123456789) has 1 cycle. So do σ2, σ4, σ5, σ7, σ8. The element σ3 =
(147)(258)(369) has 3 cycles, and so does σ6. We may thus evaluate the sum: 1

|G|

∑

φ∈G |Fixed(φ,F)|
as :

k =
1

18
(9× 25 + 1× 29 + 6× 21 + 2× 23)

=
288 + 512 + 12 + 16

18
=

828

18
= 46

One may actually check this answer by a routine but tedious enumeration.

7.4 A Refined Inventory

Our next objective is to have a more refined inventory of the in-equivalent necklaces. Towards
that, let say C = {black, white, grey}, which we shorten to the symbols {b, w, g}. For a function
h : X → C, we define the monomial m(h) to be

∏

x∈X(x)h. For example, the monomial of the
colouring in Figure 7.1 is b2g2w5 indicating that the necklace has 2 black, 2 grey and 5 white beads.
Next, for an element φ ∈ G, we define m(Fixed(φ,F)) to be

∑

h∈Fixed(φ,F m(h), i.e., the sum of the

monomials of all functions h fixed by φ. Note that if h′ = φ◦h, thenm(h) = m(h′), since the number
of beads of a particular colour cant change after a bijection on the beads. Thus, if {h1, . . . , hk} is a
maximal collection of inequivalent functions, we may define I(G,F)) as

I(G,F) = m(h1) + . . .+m(hk)

Thus I(G,F) lists the inequivalent necklaces by their monomials, and thus refines the count.
The next bit of notation: let {c1, c2, . . . , ck, . . .} be a sequence of variable symbols. For a φ ∈ G,

we now define the symbol c(φ,X). Recall that, since φ is a bijection on X, it splits X into a bunch
of cycles, say, n1 cycles of length 1, n2 cycles of length 2, and so on. We define c(φ,X) as

∏

k c
nk

k .
The cycle polynomial Z(G,X)(c1, c2, . . .) of the action of G on X is:

1

|G|

∑

φ∈G

c(φ,X)
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As an example, c(σ,X) = c9, while c(µ,X) = c1c
4
2. Further:

Z(D9, X) =
9c1c4 + c91 + 2c33 + 6c9

18

Finally, let s1 = b+g+w, and s2 = b2+g2+w2, and so on with si = bi+gi+wi. For an element
φinG, we denote by s(φ) as the polynomial in the variables {b, g, w} obtained by substituting
si in place of ci for every i, in the polynomial c(φ). Thus s(σ) = (b9 + g9 + w9) and s(µ) =
(b+ g + w)(b2 + g2 + w2)4.

The first lemma:

Lemma 7.2 The polynomial m(Fixed(φ,F)) equals s(φ).

Proof: Let Y1Y2 ⊆ X be φ-invariant subsets such that X = Y1 ∪ Y2, while Y1 ∩ Y2 is empty. Let Fi

be the collection of all functions hi : Yi → C. Since each Yi is an invariant subset, we easily see that
φ restricted to Yi yields us a bijection φi. It is then easily seen that s(φ) = s(φ1)s(φ2). We now
claim that

m(Fixed(φ,F)) = m(Fixed(φ1,F1))m(Fixed(φ2,F2)) (1)

To see this, note that if h ∈ Fixed(φ,F), then the restriction of h to Yi gives us functions hi
which are in Fixed(φi,Fi). Conversely, given a pair of functions h1, h2 with hi ∈ Fixed(φi,Fi), we
get the function h : X → C by ‘merging’ the domains of h1, h2. This function h is fixed by φ. Thus
there is a bijection:

η : Fixed(φ,F) → Fixed(φ1,F1)× Fixed(φ2,F2)

This implies the earlier result (1) above.
Thus, since both sides of the main assertion are multiplicative, it suffices to prove the lemma

when X cannot be decomposed into two invariant subsets. This is only possible when φ acts on X
cyclically. Thus if |X| = r, then s(φ) = br+gr+wr. On the other hand, the only invariant functions
on X are the constant functions hb, hg and hw, where, for example, hb(x) = b for all x ∈ X. Thus
m(Fixed(φ,F)) = br + gr + wr. This proves the lemma. ✷

Our final result is what is tradionally called the Polya Theorem.

Theorem 7.3 The inventory polynomial I(G,F) equals the substitution of ci = si in the cycle
polynomial Z(G,X). In other words:

I(G,F) = Z(G,X)(s1, s2, . . .)

Proof: The proof of this theorem follows easily from that of Proposition 7.1, and the above lemma.
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To be precise, we see that:

I(G,F) =
∑

h∈F

1

|O(h)|
m(h)

=
∑

h∈F

|Stab(h)|

|G|
m(h)

=
1

|G|

∑

h∈F

∑

φ∈G s.t. φ◦h=h

m(h)

=
1

|G|

∑

φ∈G

∑

h∈F s.t. φ◦h=h

m(h)

=
1

|G|

∑

φ∈G

m(Fixed(φ,F))

=
1

|G|

∑

φ∈G

s(φ) (By lemma 7.2)

= Z(G,X)(s1, s2, . . .)

This proves the theorem. ✷

8 Homomorphisms

In this section, we develop the notion of homomorphisms, which are maps which ‘preserve’ the group
structure. After a few basic results, we see two important example homomorphisms, viz., the sign
and the det.

8.1 Kernels and Images

Let G and H be groups. A function f : G → H is called a homomorphism if for every g, g′ ∈ G,
we have (i) f(gg′) = f(g)f(g′), and (ii) f(eG) = eH , i.e., the identity element eG is mapped to
the identity element eH of H. Note that, in (i) above, on the left, the multiplication gg′ happens
in the group G, while on the right, the multiplication f(g)f(g′) happens in H. Thus, f must be
concommitant with the multiplications of both the groups.

Example 8.1 1. Let (Z,+) and (R,+) be the additive groups of integers and reals, respectively.
Let φ1 : Z → R be the natural inclusion. Then φ1 is a homomorphism. Clearly 0Z = 0R and
thus the identity elements match. Also, for integers m,n, whether the addition happens in Z

or in R is immaterial to the result.

2. Let G = (Z,+) be the group of integers, and H = (Zn,+) be the group of integers modulo n.
The map φ2 : Z → Zn is defined as φ2(m) = mmodulo n. It is easily verified that this is a
group homomorphism.

3. Let G = D4 = {µiσj |0 ≤ i ≤ 1, 0 ≤ j ≤ 3}, and H = {+1,−1} under multiplication. Let
φ3 : D4 → H be given by φ3(µ

iσj) = (−1)i. Clearly, the identity element of D4 is µ0σ0, and
thus φ3(1D4

) = 1. For the other condition, note that µi1σj1 · µi2σj2 = µi1+i2σj for some j.
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4. Let G = GLn(R) be the group of invertible n × n real matrices under matrix multiplication.
Let H = (R∗, ·) be the group of non-zero reals under multiplication. Let det : GLn(R) → R∗ be
defined as A → det(A), the determinant of A. Note that the identity matrix has determinant
1, and that (which we will prove later) det(AB) = det(A)det(B).

Definition 8.2 For a homomorphism φ : G → H, the kernel of φ is the set ker(φ) = {g ∈
G|φ(g) = eH}, and the image of φ is Im(φ) = {h ∈ H|∃g ∈ G s.t. φ(g) = h}.

Thus the kernel of φ are those elements of G which go to the identity element of H, and the
image of φ is the usual image of φ as a function.

Lemma 8.3 The image of φ is a subgroup of H. The kernel K = ker(φ) is a subgroup of G.

Proof: Clearly eH ∈ Im(φ). Next, if h, h′ ∈ Im(φ), then there are g, g′ ∈ G such that φ(g) = h and
φ(g′) = h′. Whence hh′ = φ(g)φ(g′) = φ(gg′) lies in the image of φ. Finally, if φ(g) = h ∈ Im(φ)
then

eH = φ(eG) = φ(gg−1) = φ(g−1)φ(g) = φ(g−1)h

Thus the inverse of h is precisely φ(g−1) and thus lies in Im(φ).
For the second part, note that if g, g′ ∈ K, then φ(gg′) = φ(g)φ(g′) = eH · eH = eH , and thus

gg′ ∈ K. The existence of inverses within K is staright-forward. ✷
The kernels of homomorphisms are rather special subgroups of a group. We recall Example 8.1

above, and note that in (1) above, the kernel ker(φ1) was trivial (i.e., just the identity element),
while ker(φ2) = nZ = {ni|i ∈ Z}. The kernel of φ3 were all rotations, which we easily see, is a
subgroup. The kernel of the determinant are all matrices of determinant 1.

Recall that with every subgroup K ⊆ G, we have two equivalence relations LK and RK on G.
The relation LK is defined as gLKg

′ iff there is a k ∈ K such that g = kg′. The relation is RK is
similarly defined: gRKg

′ iff there is a k ∈ K such that g = g′k.

Definition 8.4 A subgroup K ⊆ G is called a normal subgroup if gkg−1 ∈ K for all k ∈ K and
g ∈ G.

Proposition 8.5 (i) If K is a normal subgroup of G, then RK and LK coincide.
(ii) If φ : G→ H is a homomorphism, and K = ker(φ), then K is normal.

Proof: Let gRKg
′, or in other words, let g = g′k. Post-multiplying both sides by (g′)−1, we see

that g(g′)−1 = g′k(g′)−1. By the normality of K, we see that g(g′)−1 = k′ for some k′ ∈ K, whence
g = k′g′. Thus gLKg

′. The other direction is similarly proved.
For the second part, note that if g ∈ G and k ∈ ker(φ), then φ(gkg−1 = φ(g)eHφ(g

−1) =
φ(gg−1) = eH . Thus gkg−1 ∈ ker(φ) for all g ∈ G and k ∈ ker(φ). ✷

The following two propositions explain the centrality of normal subgroups and homomorphisms.

Proposition 8.6 (i) Let φ : G→ H be a homomorphism, and K be the kernel. Then, if φ(g) = h,
then φ−1(h) = Kg = gK.
(ii) If G is finite and φ is surjective, then |G| = |K||H|.

Proof: First note that since K is normal, left cosets equal right cosets, i.e., gK = Kg. Next,
examine the element gk, with k ∈ K. We see that φ(gk) = φ(g)φ(k) = φ(g)eH = φ(g), and thus
gK ⊆ φ−1(h). Next, if φ(g′) = φ(g) = h, then φ(g′g−1) = φ(g′)φ(g−1) = hh−1 = eH , and thus
g′g−1 = k for some k in the kernel. Thus g′ ∈ Kg. This proves that Kg ⊆ φ−1(h).
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For the second part, note that for every h ∈ H, there is a g such that φ(g) = h. Thus, every
inverse image exist for every h ∈ H, and by part (i), φ−1(h) is a coset of K. Since for every coset
gK, we have |gK| = |K|, we see that every inverse image has the same cardinality, viz., |K|. The
result follows. ✷

Let K ⊆ G be a normal subgroup, and denote by G/K = {gαK}α∈I to be the collection of cosets
of K in G. We define a ‘multiplication’ structure on G/L. Given two cosets gαK and gβK, we define
gαK ◦ gβK to be gαgβK. Thus, the multiplication is defined by taking two coset representatives
gα and gβ , multiplying them in G to get gαgβ , and then taking the coset of this element. Next, we
define the ‘identity’ in G/K to be the coset eGK = K.

Proposition 8.7 If K is a normal subgroup of G, then ◦ is well-defined and the structure (G/L.◦)
is a group.

Proof: Proving the well-defined-ness of ◦ is equivalent to showing that the multiplication defined on
the cosets does not depend on the choice of the coset representatives. In other words, if g1RKg

′
1 and

g2RKg
′
2, then we have g1g2RKg

′
1g

′
2. To see this, let g1 = g′1k1 and g2 = g′2k2. Then g1g2 = g′1k1g

′
2k2.

But by the normality of K, we have k1g
′
2 = g′2k

′ for some k′ ∈ K. Thus g1g2 = g′1g
′
2k

′k2, and thus
g1g2RKg

′
1g

′
2.

It is now easy to show that ◦ is associative which directly follows from the associativity of the
multiplication in G. The identity coset K has eG as a representative. Thus eG◦KgK = eGgK = gK
and thus K is indeed the identity for ◦. The inverse of gK is clearly g−1K, the coset containg the
inverse of any coset representative of gK. This proves the second part. ✷

Finally, we have the so-called first isomorphism theorem:

Theorem 8.8 Let φ : G → H be a surjective homomorphism with kernel K. Then, as groups,
(G/K, circ) and H are isomorphic.

Proof: We construct the isomorphism φ : G/K → H as φ(gK) = φ(g). It is easy to verify that this
is indeed a group isomorphism. ✷

9 The Sign and the Determinant

In this section, we construct two important homomorphisms sign : Bij(X) → {+1,−1} and the
determinant det : GLn(R) → R∗. Both these are fundamental in the theory of groups.

9.1 The Sign

Let X be a set of cardinality n, for simplicity, let X = {1, 2, . . . , n}. Let Sn = Bij(X) be the group
of all bijections on X, under compositions. Let H = {+1,−1} be the multiplicative group with two
elements. We will devise a homomorphism sign : Sn → H.

We first observe a simple lemma: for any non-zero real number r, let sign(r) be −1 if the number
is negative, and +1 otherwise. We see easily that sign : R∗ → H is actually a homomorphism. Thus,
for non-zero reals r1r2, we have sign(r1r2) = sign(r1)sign(r2).

A central concept in the definition of the homomorphism is that of inversion. For a permutation
µ : X → X, we say that {i, j} is an inversion if ((i)µ − (j)µ)(i − j) is negative. In other words
{i, j} is an inversion, when i < j but (i)µ > (j)µ, or vice-versa. Thus µ inverts the order of i and
j. A pictorial way of observing an inversion is to ‘draw’ the diagram of µ, and see that the arrows
coming out of i and j cross each other. See figure 9.1 below.

26



1

3

4

2

1

3

4

2

σ

σ =(1423)

I( )={{1,2},{1,3},{1,4}}σ

sign(   )=-1σ

Figure 6: Inversions

Let
(

X
2

)

stand for all 2-subsets of X, and thus a ground set for possible inversions. For a
permutation µ, we define:

I(µ) = {{i, j} ∈

(

X

2

)

|{i, j} is an inversion for µ}

Thus I(µ) ⊆
(

X
2

)

is the collection of all inversions for the permutation µ. Clearly, the identity
permutation 1X has no inversions, while the ‘opposite’ permutation η defined as (i)η = n − i has
I(η) =

(

X
2

)

. Let i(µ) denote the number |I(µ)|. We are now ready to define the sign:

sign(µ) = (−1)i(µ)

The the sign of a permutation is −1 if it has odd number of inversions, and is +1 otherwise. The
sign of 1X is (−1)0 = +1, while the sign of σ of figure 9.1 is −1.

Note that, when µ is a permutation, ((i)µ − (j)µ)(i − j) is a non-zero number. The sign of a
permutation may then be also defined as follows:

Lemma 9.1 For a permutation µ, we have:

sign(µ) =
∏

{i,j}∈(X2 )

sign(((i)µ− (j)µ)(i− j))

The proof is straight-forward. The main theorem of this section is:

Theorem 9.2 If α and β are two permutations, then sign(α ◦ β) = sign(α)sign(β). Thus sign :
Sn → H is a group homomorphism.

Proof: Let us construct two row vectors (of length N =
(

n
2

)

) R1 and R2 wherein we list all the

elements of
(

X
2

)

in a particular order. The row R1 lists the elements of
(

X
2

)

in an arbitrary order, for
convenience, say in the ‘natural order’, i.e., {1, 2}, {1, 3}, . . . , {1, n}, {2, 3}, {2, 4}, . . . , {n− 1, n}. In
the row R2, the k-th element of R2 follows from the k-th element of R1 as follows: if R1[k] = {i, j},
then R2[k] = {(i)α, (j)α}. Thus the k-th entry of R2 is obtained by applying α to the k-th entry
of R1. Note that since α is a permutation, R2 has no duplications, and each 2-subset appears
somewhere in R2.
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Next, we say that sign(R1[k]) is −1 if R1[k] is a inversion for α. Otherwise, we say that
sign(R1[k]) is +1. Similarly, sign(R2[k]) depends on whether R2[k] is an inversion for β. Note
that

sign(α) =
∏N

k=1 sign(R1[k]) sign(β) =
∏N

k=1 sign(R2[k])

Now, let us examine when {i, j} is an inversion for α ◦ β. In other words, we analyse the sign of
((i)α ◦ β − (j)α ◦ β)(i − j). Multiplying this by ((i)α − (j)α)2, which is a positive number, we see
that:

sign((i)α ◦ β − (j)α ◦ β)(i− j) =
sign((i)α− (j)α)(i− j)sign((i)α ◦ β − (j)α ◦ β)((i)α− (j)α)

In other words, if R1[k] = {i, j}, then

sign((i)α ◦ β − (j)α ◦ β)(i− j) = sign(R1[k])sign(R2[k])

Now applying lemma 9.1, we see that:

sign(α ◦ β) =
∏

{i,j} sign((i)α ◦ β − (j)α ◦ β)(i− j)

=
∏N

k=1 sign(R1[k])sign(R2[k])

=
∏N

k=1 sign(R1[k])
∏N

k=1 sign(R2[k])
= sign(α)sign(β)

This proves the theorem. ✷
There is yet another way of defining the sign of a permutation, which is based on the number of

‘flips’ needed to ‘sort’ the permutation. We say that a permutation is a transposition if in cycle
notation, it is of the form (r, s). In other words, a transposition τ fixes all elements except two
elements r, s, which it flips. We have a small lemma which essentially says that an array can be
sorted.

Lemma 9.3 Every permutation µ may be expressed as a composition τ1 ◦ τ2 ◦ . . . ◦ τk.

Proof: We prove this by induction on |X|. Given a permutation µ, let (n)µ = k. If k = n, then µ
is effectively a bijection on {1, 2, . . . , n − 1} and thus is expressible as a product of transpositions.
If n 6= k, then let τ = (n.k), and examine σ = µ ◦ τ . We see that (n)σ = (n)µ ◦ τ = (k)τ = n,
and thus σ fixes n. Thus σ is effectively a bijection on {1, 2, . . . , n − 1} and therefore a product a
transpositions, say:

µ ◦ τ = σ = τ1 . . . τk−1

Observing that τ−1 = τ , we see that µ = τ1 . . . τk−1τ . ✷

Lemma 9.4 If the permutation µ =
∏k

i=1 τi be expressible as a product of k transpositions, then
sign(µ) = (−1)k.

The proof just follows from the observation that sign(τ) = −1 for every transposition.

9.2 The Determinant

In this section, we will develop the determinant as first, a multi-linear map, and then as a group
homomorphism.
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Let us first begin with matrices. For a fixed n, letMn(R) refer to n×n-matrices with real entries.
For a matrix X = (xij) ∈Mn(R), we define:

det(X) =
∑

σ∈Sn

sign(σ)

n
∏

i=1

xi,(i)σ

Thus det(X) is a signed sum of n! monomials, each of degree n, such that each monomial contains
exactly one entry from each row and column. For n = 3, this expression equals:

det(X) =
x11x22x33 − x11x23x32 + x12x23x31 − x12x21x33 + x13x21x32 − x13x22x31

Noting that sign(σ) = sign(σ−1), and that (i)σ = j is the same as saying (j)σ−1 = i, we have:

det(X) =
∑

σ∈Sn
sign(σ−1)

∏n
j=1 x(j)σ−1,j

=
∑

µ∈Sn
sign(µ)

∏n
j=1 x(j)µ,j

Thus, the expression of the determinant by ‘rows’ equals that by ‘columns’, and we have det(X) =
det(XT ), i.e., the determinant of the transpose of a matrix equals that of the original.

From the definition of the determinant, we easily see that det(I) = 1, where I is the identity
matrix. Also, for any permutation σ ∈ Sn, we may define a matrix Pσ, where Pσ(i, j) = 1 iff (i)σ = j,
and is zero otherwise. Again, the definition of the determinant tells us that det(Pσ) = sign(σ).
Further note that PσPµ = Pσµ, whence we have:

det(PσPµ) = det(Pσµ) = sign(σµ) = sign(σ)sign(µ) = det(Pσ)det(Pµ)

One simple observation is that the determinant may be ‘expanded’ by the first row, or for that
matter, any row or column. Thus for example, we have:

det(X) =
n
∑

i=1

x1,i





∑

σ∈SN s.t. (1)σ=i

sign(σ)
n
∏

k=2

xk,(k)σ





Thus, in effect, we have det(X) = x11M11 + x12M12 + . . . + x1nM1n, where each M1i does not
involve any variable from the first row.

Here is another useful lemma, which we will need later. Let τ be a transposition, say (r, s), and
let us examine the matrix product Y = PτX. Note that Y is obtained from X by intercahnging the
rows r and s of X. The lemma:

Lemma 9.5 For τ as above, we have:

det(PτX) = det(Pτ )det(X) = −det(X)

Proof: Let Y = PτX as before. Note that (i)τ = i unless i = r or i = s, in which case, τ transposes
them. Thus Yi,(i)σ = X(i)τ,(i)σ. Thus

n
∏

i=1

Yi,(i)σ =

n
∏

i=1

X(i)τ,(i)σ =

n
∏

k=1

Xk,(k)τ−1σ =

n
∏

k=1

Xk,(k)τσ

The last equality followed from the fact that τ−1 = τ . Further, note that as σ ranges over Sn,
so will τσ. Thus, we have:
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det(Y ) =
∑

σ∈Sn
sign(σ)

∏n
i=1 yi,(i)σ

=
∑

σ∈Sn
sign(σ)

∏n
i=1 xi,(i)τσ

= sign(τ)
∑

σ∈Sn
sign(τσ)

∏n
i=1 xi,(i)τσ

= sign(τ)
∑

σ∈Sn
sign(τσ)

∏n
i=1 xi,(i)τσ

= sign(τ)
∑

τσ∈Sn
sign(τσ)

∏n
i=1 xi,(i)τσ

= −det(X)

This completes the proof. ✷
Our next objective will be to show that det(AB) = det(A)det(B) for general matrices. The route

to this fact will require us to uncover some more fundamental properties of the determinant. For
this, we will consider the determinant as a function of n row vectors, each of size n.

More generally, let g : Rn × . . .× Rn → R, be a function from n copies of Rn to R.
We say that g is multi-linear if
(L1) g(r1, . . . , ri−1, ri + si, ri+1, . . . , rn) =

g(r1, . . . , ri−1, ri, ri+1, . . . , rn) + g(r1, . . . , ri−1, si, ri+1, . . . , rn),
where r1, . . . , rn and si are any elements of Rn(i.e., are row vectors of size n).
(L2) g(r1, . . . , ri−1, αri, ri+1, . . . , rn) = αg(r1, . . . , ri−1, ri, ri+1, . . . , rn),
again for arbitrary elements of Rn, and for arbitrary α ∈ R.
Thus, the multi-linearity of g merely asserts that g is linear in each argument.

Next, we say that g is alternating if
(A1) g(r1, . . . , ri−1, ri, ri+1, . . . , rj−1, rj , rj+1, . . . , rn) =
−g(r1, . . . , ri−1, rj , ri+1, . . . , rj−1, ri, rj+1, . . . , rn).
Thus, whenever two arguments of g are interchanged, the function g changes sign.

Some immediate properties of multi-linear and alternating functions:

Proposition 9.6 Let g : Rn × . . .× Rn → R be multi-linear and alternating, then:
(i) g(r1, . . . , ri−1, ri, ri+1, . . . , rj−1, ri, rj+1, . . . , rn) = 0
(ii) g(r1, . . . , ri−1, ri + αrj , ri+1, . . . , rj−1, rj , rj+1, . . . , rn) =

g(r1, . . . , ri−1, ri, ri+1, . . . , rj−1, rj , rj+1, . . . , rn).
(iii) Let g1 and g2 be multi-linear and alternating. We define g1 + g2 as

(g1 + g2)(r1, . . . , rn) = g1(r1, . . . , rn) + g2(r1, . . . , rn)

Then g1+g2 is also multilinear and alternating. In other words, (i) g vanishes if any two arguments
of g are equal, (ii) g is invariant under the addition of a multiple of one row to another, and (iii) a
linear combination of two multi-linear and alternating forms has the same property.

Proof: By applying (A1) to g(r1, . . . , ri−1, ri, ri+1, . . . , rj−1, ri, rj+1, . . . , rn), we see that
g(r1, . . . , ri−1, ri, ri+1, . . . , rj−1, ri, rj+1, . . . , rn) =

−g(r1, . . . , ri−1, ri, ri+1, . . . , rj−1, ri, rj+1, . . . , rn).
Thus the number equals its negative, whence it must be zero.

To prove (ii), we use (L1) and (L2) to get:
g(r1, . . . , ri−1, ri + αrj , ri+1, . . . , rj−1, rj , rj+1, . . . , rn) =

g(r1, . . . , ri−1, ri, ri+1, . . . , rj−1, rj , rj+1, . . . , rn)+
αg(r1, . . . , ri−1, rj , ri+1, . . . , rj−1, rj , rj+1, . . . , rn)

Since the second term equals zero, we have the required result.

Part (iii) is easy and left to the reader. This proves the proposition. ✷

An important corollary:
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Corollary 9.7 If g is multi-linear and alternating such that g(r1, . . . , rn) 6= 0, then (i) r1, . . . , rn
are linearly independent, (ii) g(r(1)σ, r(2)σ, . . . , r(n)σ) 6= 0 where σ is any permutation on the set
{1, 2, . . . , n}.

Proof: Suppose, say r1 =
∑n

i=2 αiri, then we have

g(r1, r2, . . . , rn) =
n
∑

i=2

αig(ri, r2, . . . , rn)

Since each summand on the right has a repeated argument, we see that the RHS reduces to zero.
This contradicts the hypothesis that g(r1, r2, . . . , rn) 6= 0. As regards part (ii), we know that σ may
be expressed as the product of transpositions. Applying these transpositions one after another, we
see that g(r(1)σ, r(2)σ, . . . , r(n)σ) = sign(σ)g(r1, . . . , rn) 6= 0. ✷

Our next step is to convert the determinant into a multi-linear form: Firstly, given n row vectors
r1, . . . , rn, let matrix(r1, . . . , rn) denote the n× n-matrix with rows r1, . . . , rn, in that order. Next,
we define mdet : Rn × . . . × Rn → R, as mdet(r1, . . . , rn) = det(matrix(r1, . . . , rn)). Thus, mdet
takes in n rows, forms a matrix and evaluates the determinant.

Lemma 9.8 The form mdet : Rn × . . . × Rn → R is multi-linear and alternating. Furthermore,
if ei is the i-th unit row vector (i.e., it is 1 in the i-th place, and zero everywhere else), then
mdet(e1, e2, . . . , en) = 1.

Proof: We will prove linearity in the first arguments, the others being similar. Recall that det(X) =
∑

i x1iM1i, where M1i does not involve anything from the first row. So assuming the other rows as
fixed, we see that mdet is a linear form in the entries of the first row. This proves its linearity in
the first argument. That mdet is alternating follows easily from lemma 9.5. Next, det(I) = 1 proves
the remaining assertion. ✷

We see that Proposition 9.6 already proves some important and well-known properties of the
determinant. We now show that, multi-linearity and alternation in fact, define the determinant.

Theorem 9.9 Let f be multi-linear and alternating such that f(e1, . . . , en) = α. Then f(r1, . . . , rn) =
α ·mdet(r1, . . . , rn) for all r1, . . . , rn ∈ Rn. In other words, the determinant and its multiples are
the unique multi-linear and alternating forms.

Proof: Consider the form g = f − αmdet, which is also multi-linear and alternating (prop. 9.6).
Further, it also has the property that g(e1, . . . , en) = 0. We show that, in fact, g(r1, . . . , rn) = 0 for
any choice of the arguments.

Suppose that were not, then we can choose some rows s1, . . . , sn such that g(s1, . . . , sn) 6= 0.
We call such an ordered collection (s1, . . . , sn) a witness to the fact that g is not identically zero.
Clearly then, by the corollary 9.7, we have that s1, . . . , sn are linearly independent. Thus, by re-
ordering the arguments, we can construct another witness (again, corollary 9.7) such that the first
entry of the first vector, viz., s1[1] 6= 0 (if it were that si[1] = 0 for all i, then the set would be
linearly dependent). Now we use Proposition 9.6 (ii). By choosing, si − αis1, instead of si for
i = 2, . . . , n, we may further assume that there is a witness (s1, . . . , sn) such that s1[1] 6= 0, and
si[1] = 0 for all i > 1. Going on like this, we may actually assume that (s1, . . . , sn) is a witness such
that si[i] 6= 0, and si[j] = 0 whenever j < i. The reader may notice that is the ‘forward’ step in the
‘Gauss Elimination’ on the witnessing rows.
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We now do the ‘backward’ elimination: Starting with sn, we see that sn[n] 6= 0, and thus, we
may eliminate the last entry from s1, . . . , sn−1. Carrying on thus, we may assume that (s1, . . . , sn)
is such that si[i] = βi 6= 0, and si[j] = 0 whenever j 6= i. Thus we have:

g(β1e1, . . . , βnen) = (

n
∏

i=1

βi)g(e1, . . . , en0) 6= 0

This contradicts the construction that g(e1, . . . , en) = 0. ✷
We now present the final result that the determinant is actually a homomorphism from GLn(R)

to R∗.

Corollary 9.10 For n× n matrices A,B we have det(AB) = det(A)det(B).

Proof: Let us fix A and let B have variable rows (r1, . . . , rn). Define the form f as

f(r1, . . . , rn) = mdet(Ar1, . . . , Arn)

Note that if ri is a row vector, then so is Ari. Since A(ri + si) = Ari + Asi, and α(Ari) = A(αri)
for any α ∈ R, we see easily that f is multi-linear. Considering alternation, we see that:

f(r2, r1, r3, r4, . . . , rn) = mdet(Ar2, Ar1, Ar3, Ar4, . . . , Arn)
= −mdet(Ar1, Ar2, Ar3, Ar4, . . . , Arn)
= −f(r1, r2, r3, r4, . . . , rn)

Thus f is indeed alternating. Thus, by the theorem above, we have

det(AB) = f(r1, . . . , rn) = f(e1, . . . , en) ·mdet(r1, . . . , rn) = det(A)det(B)

This proves the corollary. ✷

10 Graphs

In this section, we begin with a new combinatorial structure, viz., graphs. These structures useful
in defining various entities and their dependencies.

Definition 10.1 1. An undirected graph G(V,E) is given by the data V , which is a finite set
of vertices, and E ⊂

(

V
2

)

, a collection of 2-subsets of V , called edges.

2. A directed graph G(V,E) is given by the data V , which is a finite set of vertices, and
E ⊂ V × V , a collection of 2-tuples of V , called edges.

A graph is frequently represented as a picture. See figure 10.
For a large part of our analysis, we shall only be considering undirected graphs. Henceforth,

unless specified, we shall look at only undirected graphs. However, for convenience of notation,
(i, j) will also refer to {i, j}. Thus (i, j) is an edge in an undirected graph will mean that in fact
{i, j} ∈ E.

Definition 10.2 1. A trail in a graph G(V,E) is a sequence of vertices (v1, . . . , vk) such that
(vi, vi+1) ∈ E for i = 1, . . . , k − 1. The number k − 1 is called the length of the trail.
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A directed graph
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Figure 7: Two Graphs

2. A path in a graph G(V,E) is a sequence of vertices (v1, . . . , vk) such that it is (i) a trail, and
(ii) the vertices v1, . . . , vk are all distinct.

3. A loop in a graph G(V,E) is a sequence of vertices (v1, . . . , vk, v1) such that (i) (vi, vi+1) ∈ E
for i = 1, . . . , k − 1 , and (ii) (vk, v1) ∈ E as well. The number k is called the length of the
loop.

4. A cycle in a graph G(V,E) is a sequence of vertices (v1, . . . , vk, v1) such that (i) it is a loop,
and (ii) v1, . . . , vk are all distinct.

10.1 Connectedness

For two vertices i, j ∈ V , we define the relation i ∼ j (and say that i is connected to j), if there is
a path π = (v1, . . . , vk) such that v1 = i and vk = j. We also say that, there is a path from i to j.

Lemma 10.3 The relation ∼ on the vertices is an equivalence relation.

Proof: It is clear that i ∼ i, since (i) is a path. Next, if i ∼ j, then surely j ∼ i: for if π = (v1, . . . , vk)
is a path from i to j, then πR = (vk, vk−1, . . . , v2, v1) is a path from j to i. Thus the only part
which remains is to prove the transitivity of ∼. So, let π = (v1, . . . , vk) be a path from i to j,
and µ = (w1, . . . , wr) be a path from j to k. Let us concatenate these two paths to get a trail
β = (v1, . . . , vk, w2, . . . , wr). Note that vk = w1 = j. If this trail is actually a path, then we are
done: i ∼ k. Whence, if this is not a trail, then there is a s < k and a t > 1 such that vs = wt. Let
us look at the smallest such s such that vs = wt with s < k and t > 1. having located this s, t, we
construct α = (v1, . . . , vs, wt+1, . . . , wr).

We claim that this α is a path from i to k. It is already clear that α is a trail (since we have just
‘shortened’ a loop from the trail β). Further v1 = i and wr = k. Now, if α were not a path then
there are two vertices which appear twice on the trail. But these two vertices cannot lie purely in
the v-part or the w-part. Whence, there must be a vm with m < s such that vm = wn with n > t.
This is impossible, by the choice of s. ✷

Thus ∼ is an equivalence relation on V . Whence, given a graph G(V,E), ∼ on V partitions V
into disjoint sets V = ∪i=1Vi, such that each Vi = [vi]∼ is an equivalence class. Each equivalence
class is called a connected component of the graph. The graph is called connected if V is itself
an (unique) equivalence class. A lemma that we will need later, and whose proof is easy from the
above observation:
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0 0 0 0 0 0
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Adjacency Matrix

Figure 8: A graph and its adjacency matrix

Lemma 10.4 Let G(V,E) be a graph, then V may be expresses as a disjoint union V = V1∪ . . .∪Vk
and E as a disjoint union E = E1 ∪ . . .∪Ek, where Ei ⊆

(

Vi

2

)

, such that G(Vi, Ei) is connected, for
all i. The quantity k is called the number of components of G.

We shall now outline a representation of graphs on a computer, and see how to compute the
relation ∼ for this representation. For a graph G(V,E) with vertex set V = {1, 2, . . . , n} we for an
n× n-matrix A such that A[i, j] = 1 iff (i, j) is an edge, and is zero otherwise. This matrix is called
the adjacency matrix of the graph G. An example of a graph and its adjacency matrix appears
in figure 10.1. Notice that for an undirected graph, its adjacency matrix must be symmetric.

Proposition 10.5 Let G(V,E) be an undirected graph and A be its adjacency matrix. Let |V | = n
and I be the n×n identity matrix. Let C = (A+ I)n−1 be the (n− 1)-th power of the matrix A+ I.
Then C[i, j] 6= 0 iff i ∼ j.

Proof: Notice that for any matrix D = (dij), we have

Dn−1[i, j] =
∑

s1,...,sn−2

D[i, s1]D[s1, s2] . . . D[sn−3, sn−2]D[sn−2, j]

Applying this to when D = A + I, we see that (i) all entries of A and I are non-negative. Thus
C[i, j] is non-zero iff there is a sequence (i, s1, s2, . . . , sn−2, j) such that D[i, s1], . . . , D[sn−2, j] are
all non-zero.

Let us consider such a sequence α = (i = s0, s1, . . . , sn−2, sn−1 = j). We see that D[si, si+1]
is non-zero iff either si = si+1 or A[si, si+1] 6= 0, i.e., (si, si+1) ∈ E. Thus we see that s0 ∼
s1, . . . , si ∼ si+1, . . . , sn−2 ∼ sn−1. By the transivity of ∼, we have s0 ∼ sn−1, i.e., i ∼ j. Thus
C[i, j] 6= 0 implies that i ∼ j. On the other hand, if i ∼ j, then there is a path (i = s0, . . . , sk = j)
connecting i to j. Since the length of the path is at most n− 1, we may extend this to the sequence
(s0, . . . , sk, sk, . . . , sk) of length n+1. This sequence will contribute a non-zero number to Dn−1[i, j]
and thus C[i, j] 6= 0. ✷

Now we move to another important equivalence relation, but this time, on the edges of a graph.

Definition 10.6 Given a graph G(V,E) and two edges e = (i, j) and f = (k, l), we say that e ≈ f
if either e = f or there is a cycle (v1, . . . , vk, vk+1 = v1) such that both edges e and f appear in that
cycle. In other words, if there is an r and an s such that (vr, vr+1) = e and (vs, vs+1) = f .

Thus two edges are related if they appear in the same cycle.
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Figure 9: Examples of Trees

Proposition 10.7 For any graph G(V,E), ≈ is an equivalence relation on E.

Proof: It is clear that ≈ is reflexive and symmetric. What remains is the transitivity of ≈. So let
e, f, g be three distinct edges such that π = (v1, . . . , va, va+1 = v1) is a cycle containing e and f , and
µ = (w1, . . . , wb, wb+1 = w1) is a cycle containing f and g. We may as well assume that (v1, va) = e
and (w1, wb) = g. Let r ≥ 1 be the smallest r such that vr appears somewhere on cycle µ, and say
vr = wu. Similarly, let s ≤ a be the largest such s such that vs again appears on µ, and say vs = wv.
Since there is an edge f on π which appears in µ, it must be that r < s and u 6= v.

There are now two cases:
(i) Case u < v: Consider

α = (vr, vr−1, . . . , v1, va, va−1, . . . , vs, wv+1, wv+2, . . . , wb, w1, w2, . . . , wu−1, wu = vr)

We claim that all the vertices appearing in α are distinct. Clearly those coming from π and and
those coming from µ are separately distinct. What remains is the possibility that vi = wj when both
appear in α. Such an offending i must either be less than r or greater than s, but both possibilities
are precluded by the choice of r and s. Thus α is indeed a cycle. It is clear that e = (va, v1) and
g = (wb, w1) are on this cycle.

(i) Case u > v: Consider

β = (vr, vr−1, . . . , v1, va, va−1, . . . , vs, wv−1, wv−2, . . . , w1, wb, wb−1, . . . , wu+1, wu = vr)

It is similarly shown that β is a cycle containing both e and g. ✷

11 Trees and Spanning Trees

Trees are some of the most simple families of graphs.

Definition 11.1 A graph G(V,E) is a tree if it is (i) connected, and (ii) acyclic, i.e., contains no
cycles.

See figure 11 for examples of trees.
We will need an auxiallary definition. Given a graph G(V,E), we define the degree d(v) of a

vertex v ∈ V to be the number of edges incident on it. In other words d(v) = |{e|e = (v, w) ∈ E}|.

Lemma 11.2 If G(V,E) is a tree, then it has at least two vertices of degree 1.
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Proof: We choose v1 as the solitary vertex of degree 1, if there is only one such vertex, or an
arbitrary vertex, if there is no vertex of degree 1. Next, we choose v2 to be adjacent to v1. We
proceed thus, choosing vi+1 to be adjacent to vi but distinct from vi−1. This can always be done
since every vi with i ≥ 2 has degree at least 2. Since this sequence is potentially infinite, there must
be a first r such that vr = vs, with s < r. Let us look at the sequence µ = (vs, vs+1, . . . , vr−1, vr).
By the choice of r, there are no duplications in µ. Furthermore, every pair of adjacent vertices in
the list actually make an edge. Thus µ is a cycle, which contradicts the hypothesis that G is acyclic.
✷

Proposition 11.3 (i) If G(V,E) is a tree then |E| = |V | − 1.
(ii) If G(V,E) is a connected graph with |V | − 1 edges, then it must be acyclic, and hence a tree.
(iii) If G(V,E) is an acyclic graph with |E| = |V | − 1 edges, then it must be connected, and hence a
tree.

Proof: We prove this by induction on |V |. We know, by lemma 11.2, that there is a vertex v
with only one edge e = (v, w) incident at v. Consider the graph G′(V ′, E′) with V ′ = V − v, and
E′ = E − e. We claim that G′ is a tree. It is clearly acyclic, since E′ ⊂ E and E allowed no cycles.
What remains is to show that G′ is connected. For that, note that if x, y ∈ V ′, then x, y ∈ V as well.
Since, G was connected, there was a path from π from x to y. We next argue that this path does
not use the edge e, and thus lies completely in E′. For if it did, then the path would terminate at
v, since there is no ‘exit’ from v. However, v 6∈ V ′, and there v 6= x, y. Thus π lies completely in E′

proving that x is connected to y in G′. Thus G′ is a tree, and we have, inductively, |E′| = |V ′| − 1,
which proves the same for G as well.

Now we prove part (ii). First note that if α is a cycle in the graph G, and e ∈ α is an edge on the
cycle, then G′(V,E′) with E′ = E − e is also connected. This is because any path using the edge e
may now use the cycle α and go the ‘other way’. Whence, beginning with a connected graph G, we
may sequentially delete edges from cycles, thus maintaining connectivity but reducing the number
of edges. At some point this must stop and we will have a connected acyclic graph G′′(V,E′′). Since
G′′ is then a tree, we have |E′′| = |V | − 1 = |E|. this means that G was acyclic to begin with.

Finally, we prove (iii). Suppose G is not connected, we have, by lemma 10.4, a decomposition
of G into its connected components. Whence, the identity E| = |V | − 1, tells us that G has a
component G(Vi, Ei) such that |Ei| ≥ |Ei|. Consequently, it is clear from part (i) that it cannot be
a tree, and thus must contain a cycle. Thus G itself must contain a cycle, which contradicts the
hypothesis. ✷

Proposition 11.4 Let G(V,E) be a connected graph with n vertices. If |E| ≥ n then G has a cycle.
If |E| = n then G has a unique cycle.

Proof: Proposition 11.3 tells us that G cannot be acyclic, which proves the first assertion. Now,
suppose E| = n, and there are two cycles α and β. Since these are distinct cycles, the subsets of
edges on these cycles must also be distinct (this needs some thought). Thus there must be an edge
e ∈ α but not in β. Upon deleting e from the graph G, we have a connected graph with n− 1 edges
which also contains the cycle β. This contradicts proposition 11.3, (ii). ✷

Now, we come across an important application relating trees and general graphs.

Definition 11.5 Let G(V,E) be a connected graph. A subset T ⊆ E of the edges is called a span-

ning tree if G(V, T ) is a tree.

Thus a spanning tree T is a subset of the edges of the orginal graph so that T is acyclic and
connects the vertex set of the original graph. An exmaple of a graph and some spanning trees of
the graph, is shown in figure 11.
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Figure 10: Spanning Trees

It is clear that, when |V | = n, not every collection T of n − 1 edges make a spanning tree. It
must either be connected or (equivalently) be acyclic. One representation of graphs is particularly
revealing in this matter.

Let G be a graph G(V,E) with n vertices V = {1, 2, . . . , n} and m edges E = {e1, . . . , em}.
We form the edge-adjacency matrix B(V,E) = B, which is n ×m, such that (i) B[v, j] = 1 if
ej = (v, w) and v < w, (ii) B[v, j] = −1 if ej = (v, w) and v > w, and (iii) B[v, j] = 0 if ej is not
incident at vertex v. The reduced edge-adjacency matrix B′(V,E) is obtained by deleting the
last row of B.

The matrices B and B′ for the graph of figure 11 (a) is shown below (where E = {a, b, c, d, e, f, g}
are listed in that order):

B =













1 1 0 0 0 0 0
−1 0 1 1 1 0 0
0 −1 −1 0 0 1 0
0 0 0 0 −1 0 1
0 0 0 −1 0 −1 −1













B′ =









1 1 0 0 0 0 0
−1 0 1 1 1 0 0
0 −1 −1 0 0 1 0
0 0 0 0 −1 0 1









First note that, though B has n rows, the last row depends on the first n−1 rows by the relation
:r1+ . . .+rn = 0. Thus no information is ‘lost’ by deleting the last row to get B′. Next, For E′ ⊆ E,
let B′[][E′] denote B′ restricted to the columns E′.

Lemma 11.6 Let T ⊆ E be a subset of the edges such that |T | = n − 1. Let B′[][T ] be the
(n−1)×(n−1) sub-matrix corresponding to the edges T . If T contains a cycle then det(B′[][T ]) = 0.

Proof: Let π = (v1, . . . , vk, vk+1 = v1) be a cycle such that (vi, vi+1) ∈ T doe all i. We show that
the corresponding columns of B′[][T ] are linearly dependent. Let col(e) denote such a column, for
e ∈ T . If ei = (vi, vi+1) and vi < vi+1, then we put θi = 1, with θi = −1 otherwise.

We show that
∑k

i=1 θicol(ei) = 0. Looking at the entry for a vertex i, we see that either the
cycle misses the vertex v, in which case, every entry col(e)[i] = 0, or else it is or appears in two
consecutive edges, say ei and ei+1, where ei = (u, v) and ei+1 = (v, w), where the vertices are listed
in the order that they appear in the cycle. Now we consider various cases such as u < v < w, in
which case (i) B′[v, ei] = −1 and B′[v, ei+1] = +1, and (ii) θi = θi+1 = 1. Thus

∑

θjcol(ej)[v] = θicol(ei)[v] + θi+1col(ei+1)[v] = 0
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Thus
∑

θjcol(ej) is a linear dependence on the columns of B′[][T ]. This proves the lemma. ✷
One may check that for our example, col(a) + col(c) − col(b) = 0 corresponds to the cycle

(1, 2, 3, 1), and col(e) + col(g)− col(f)− col(c) = 0 corresponds to the cycle (2, 4, 5, 3, 2).
An important result is that the converse is also true: every acyclic subset T ⊆ E such that

|T | = n− 1 is ‘non-singular’.

Proposition 11.7 For a subset T ⊆ E, with |T | = n− 1, we have T is a spanning tree if and only
if B′[][T ] is non-singular.

Proof: Firstly, if B′[][T ] is non-singular then T cannot contain a cycle, by lemma 11.6. Next, by
proposition 11.3, every subset T of cardinality n− 1 must be a spanning tree.

Conversely, Let T be a spanning tree. Note that B′[][T ] is also the reduced edge-adjacency
matrix W ′ = B′(G(V, T )) for the graph G(V, T ). Thus we may as well ignore the larger graph
G(V,E) while proving the property at hand. Further, by lemma 11.2, we know that T has at least
two vertices of degree 1 in the graph G(V, T ). Thus, there is at least one vertex, say i, in the
set {1, 2, . . . , n − 1} of degree 1. Whence, in row i of matrix W ′, there is exactly one non-zero
entry, ±1, corresponding to the edge e incident at the vertex i. Thus det(W ′) = ±det(W ′′), where
W ′′ is the matrix W with row i and column col(e) deleted. But W ′′ is then the reduced edge-
adjacency matrix of the graph G(V ′′, T ′′), where V ′′ = V − i and T ′′ = T − e, which is also a tree.
Since T ′′ is smaller than T , we can assume the inductive hypothesis that det(W ′′) 6= 0. Whence
det(B′[][T ] = det(W ′) = ±det(W ′′) 6= 0, and we are done. ✷

An important corollary of the proof of the above proposition is that det(B′[][T ] is actually ±1.
This results in a surprising formula for the total number of spanning trees in a connected graph,
viz., det(B′(B′)T ). We leave it to the reader to prove this assertion, while hinting at the classical
Laplace expansion of the determinant.

12 Minimum Cost Spanning Trees

In this section, we look at an optimization problem related to spanning trees. Let G(V,E) be a
connected graph, and let c : E → R be a cost function on the edges. For a sub-collection E′ ⊆ E,
we define c(E′) as c(E′) =

∑

e∈E′ c(e). thus the cost c(E′) of the collection is the sum of the costs
of the edges in the collection.

Our objective is to find a spanning tree T in the graph such that c(T ) is minimized. This problem
occurs in many practical situations, e.g., the cost c(e) may denote the length of the cable between
two destinations, and the spanning tree T then computes the cost of a skeletal network connecting
all destinations.

We will fix a connected graph G(V,E) with a cost function c : E → R. Let T be a spanning
tree and let e 6∈ T be a non-tree edge. Let us look at E′ = T + e, which is a connected graph with
n = |V | edges. By proposition 11.4, E′ will have a unique cycle, which we will refer to as the circuit
Ckt(T, e). If f is any edge in Ckt(T, e), then T ′ = T + e − f is another tree. We say that T ′ has
been obtained by an exchange from T .

Since T and T ′ differ only in two edges, we have c(T ′) = c(T ) + c(e)− c(f). thus if c(e) < c(f),
then c(T ′) < c(T ). This motivates the following definition:

Definition 12.1 We say that a spanning tree T is locally optimal if for every non-tree edge e 6∈ T ,
and every f ∈ Ckt(T, e), we have c(e) ≥ c(f).

Thus, for a locally optimal tree, there is no such convenient exchange which will actually reduce
the cost of the spanning tree. We now prove that locally optimal trees are actually globally optimal.
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Theorem 12.2 Let G(V,E) be a connected graph with cost function c : E → R+ and let T be a
locally optimal spanning tree. if Q is any other spanning tree, then c(Q) ≥ c(T ). In other words, Q
is globally optimal.

Proof: Suppose there is a Q such that c(Q) < c(T ). Out of this collection of cheaper spanning
trees, we select P such that c(P ) < c(T ), and |P ∩T | is the maximum possible, among cheaper trees.
Let ∆T = T −P and ∆P = P − T be the collection of edges in T but not in P , and respectively, P
but not in T . Let ∆ = ∆P ∪∆T ; we will argue that ∆ is in fact, empty.

Suppose then that ∆ is non-empty, and e ∈ ∆ is an edge of minimum cost among all edges in ∆.
If e ∈ ∆T , then e is a non-tree edge for P . Next we look at Ckt(P, e), the cycle formed by introducing
e into P . For any edge f ∈ Ckt(P, e) we must have c(e) ≥ c(f), for otherwise P ′ = P + e− f would
be a cheaper tree, contradicting the global optimality of P . Next, examing Ckt(P, e) ∩∆P , we see
that if f ∈ Ckt(P, e) ∩∆P , then c(f) ≥ c(e), simply because e was chosen as a minimum cost edge
in ∆ ⊇ ∆P . This must mean that c(f) = c(e) for all f ∈ Ckt(P, e) ∩ ∆P . Now, if there were
such an f , then P ′ = P + e− f is also a globally optimal tree, but T ∩ P ′ = T ∩ P ∪ {e} and thus
|P ′ ∩ T | > |P ∩ T | contradicting the choice of P . Thus there are no edges in Ckt(P, e) ∩∆P . Thus
Ckt(P, e) lies completely within {e}∪ (P ∩T ). But {e}∪ (P ∩T ) ⊆ T , and thus Ckt(P, e) is a cycle
contained in a tree T , which is a contradiction. Thus we are forced to conclude that e 6∈ ∆T . In
fact, we are forced the stronger assertion that every minimum cost edge from ∆ actually lies in ∆P .

So then, let e ∈ ∆P be of minimum cost among all edges in ∆. We know that if f ∈ ∆T , then
c(f) > c(e), for no minimum cost edge can be in ∆T . We now show that T is not locally optimal.
Since e is a non-tree edge for T , we consider Ckt(T, e). By a similar argument, it is clear that
Ckt(T, e) cannot completely lie in {e} ∪ (T ∩ P ). Whence, there is an edge f ∈ Ckt(T, e) ∩ ∆T .
Since c(f) > c(e), we see that there is a non-tree edge e, with an f ∈ Ckt(T, e) such that c(f) > c(e).
This contradicts the local optimality of T . ✷

next, we consider a ‘greedy’ approach to building minimum cost spanning trees. We show that
such trees are actually locally optimal, and hence globally optimal.

Recall first, that a maximal acyclic subset of edges T ⊂ E is actaully a spanning tree. Let
E = {e1, . . . , em} be so ordered such that c(ei) ≤ c(ei+1).

We define the sets Ei, i = 0, 1, . . . ,m recursively as follows: E0 = φ, the empty set.

Ei =

{

Ei−1 if Ei−1 ∪ {ei} contains a cycle
Ei−1 ∪ {ei} otherwise

Let T = Em.

Lemma 12.3 The set T is a maximal acyclic subset of E, and thus is a tree.

Proof: Since Ei grows only when Ei−1 + ei is acyclic, it is clear that the final set Em = T is also
acyclic. Next suppose that Em is not maximal acyclic, i.e., there is an e = ej 6∈ Em but Em + ej is
also acyclic. Looking at Ej , we see that since ej 6∈ Em, it must be that ej 6∈ Ej as well. Whence,
it must be that ej + Ej−1 contained a cycle. This cycle persists in Em + ej , a contradiction. Thus
such an ej cannot exixt, and Em = T must be acyclic. ✷

Theorem 12.4 The set Em = T is a locally optimal spanning tree (and thus, by Theorem 12.2,
globally optimal as well).

Proof: Suppose that T is not locally optimal. Whence, there is an edge e 6∈ T , and an edge
f ∈ Ckt(T, e) such that c(e) < c(f). Let e + ej and f = ek, and conclude that, since the edges
are ordered by increasing cost, it must be that j < k. Looking at T + ej , we know that there is a
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unique cycle, which is broken by excluding the edge f . Thus T ′ = T + e−f is also a tree, and hence
acyclic. If we now look at Ej−1 and Ej−1 + ej , we note that both these sets are subsets of T ′ and
hence acyclic. Thus, it must be that Ej = Ej−1 + ej , and e = ej ∈ Em as well, a contradiction. ✷

A similar construction of minimum cost spanning trees exist by considering spanning trees as
minimally connected subsets. We may thus order the edges of E = {f1, . . . , fm} by decreasing cost.
Define F0 = E, and Fi recursively as:

Fi =

{

Fi−1 if Fi−1 − ei is disconnected
Fi−1 − ei otherwise

A similarly proved theorem asserts that Fm is locally and therefore globally optimal.

13 Matchings

Let G(V,E) be an undirected graph. We say that a graph is bipartite, if V = U ∩W is a partition
of the vertex set into two parts such that if e = (i, j) ∈ E, then i ∈ U and j ∈ W , or vice-versa.
Thus edges run only across the two components of the partition. We also denote such a bipartite
graph as G(U ∪W,E).

A matchingM ⊆ E is a collection of edges so that no two edges from the matching are incident at
the same vertex. In other words, (i) if (u,w1), (u,w2) ∈M , then w1 = w2, and (ii) if (u1, w), (u2, w) ∈
M , then u1 = u2. For a matching M , we say that a vertex x ∈ V is unmatched in M if there is
no y ∈ V such that (x, y) ∈M . Thus an unmatched vertex has no matching edge incident at it.

Definition 13.1 Let M be a fixed matching.

• A path π = (v1, . . . , vk) is called an alternating path if
(i) (v1, v2),(v3, v4), . . . , (vodd, vodd+1) 6∈M ,
(ii) (v2, v3),(v4, v5), . . . , (veven, veven+1) ∈M , and (iii) v1 is unmatched, and if k is even, then
so is vk. The length of the path is k − 1.

• A cycle π = (v1, . . . , vk, vk+1 = v1) is called an alternating cycle if
(i) k is even, and (v1, v2),(v3, v4), . . . , (vodd, vodd+1) 6∈M ,
(ii) (v2, v3),(v4, v5), . . . , (veven, veven+1), . . . , (vk, v1) ∈M .

Alternating paths of odd length will be very important, and are also called as augmenting

paths. Note that for odd-length alternating paths, both its end vertices must be un-matched. Let
π be an alternating path/cycle. Let e(π) be the edges on the path/cycle, i.e., if π = (v1, v2, . . . , vk),
then e(π) = {(vi, vi+1)|i = 1, . . . , k − 1}. Thus both e(π) and M are subsets of E.

For two sets S, T , we define S ⊕ T = S ∪ T − (S ∩ T ). Thus S ⊕ T consists of those elements
which belong to S but not T , or vice-versa.

Proposition 13.2 Let M be a matching and π be an alternating path or cycle. Let N =M ⊕ e(π).
Then N is a matching. If π is an augmenting path, then |N | = |M |+ 1.

Proof: Let e = (x, y) and f = (x, z) be two edges in N which meet at the same vertex x. Since
e, f ∈ N , it must be that one of the following must hold: (i) both e, f ∈ M but not on π, but
that is untenable because M is a matching, or (ii) both e, f ∈ e(π) but not in M , but this is too
is untenable, since in an alternating path/cycle, if two edges share a vertex then one of them must
belong to the matching M . Thus we are left with (iii) e ∈M − e(π) and f ∈ e(π)−M . Looking at
the edge f = (x, z) ∈ e(π), we see that x is either a terminal vertex of the path and is unmatched,
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or there must be a w such that (w, x) ∈M ∩ e(π). The existence of e = (x, y) ∈M − e(π) precludes
both possibilities. Thus there are no two edges e, f ∈ N meeting at the same vertex.

This proves that N is a matching. Now, if π were an augmenting path, then |e(π) − M | =
|e(π) ∩M |+ 1, and thus |N | = |M |+ 1. ✷

We will need an auxiallary lemma, which we state without proof:

Lemma 13.3 Let G(V,E′) be a graph such that every vertex has degree atmost 2. Then every
connected component of G is either a path or a cycle.

Theorem 13.4 Let M be a matching in a bipartite graph. If M is not the maximum cardinality
matching in G, then there is an augmenting path π with respect to M .

Proof: Suppose N is a maximum cardinality matching in G. Consider P =M ⊕N . First note that
if we consider the graph G′ = G(V, P ) defined by the edges in P , then every vertex in G′ has degree
atmost 2. This is beacuse a vertex v can have atmost one edge from the matching M , and atmost
one from the matching N . Thus, by the above lemma, each component of G′ is either a path or a
cycle. Since, every vertex v may contain at most one edge from M , and atmost one from M , we
see that each component is either an alternating path or an alternating cycle for the matching M .
Since |M | < |N |, and every cycle will have equal number of edges from M and N , there must be a
path with more from N than from N . Whence, this path is an augmenting path. ✷

Theorem 13.5 Let G(U ∩W,E) be a bipartite graph with |U | = |W | = n. If there is no complete
matching (i.e., a matching of cardinality n), then there is a set X ⊆ U such that |Γ(X)| < |X|,
where Γ(X) = {w|∃u ∈ U, (u,w) ∈ E}.

Proof: Let M be a maximum cardinality matching in G. Suppose that |M | < n, and u ∈ U is an
unmatched vertex. Let

X = {x ∈ U |there is an alternating path from u to x}

We claim that Γ(X) contains no un-matched vertices, or those matched to some vertex outside X.
Suppose for example, that w ∈ Γ(X), were unmatched. Since w ∈ Γ(X), there is an alternating path
π = (u = v1, . . . , vk = x) and (x,w) ∈ E. However, then we have the path µ = (v1, . . . , vk, vk+1 = w)
which is an odd-length alternating path, and therefore an augmenting path. By proposition 13.2,
we would have a matching better than M , a contradiction. On the other hand, if w were matched
to a vertex outside X, say (u′, w) ∈ M then η = (v1, . . . , vk = x,w, u′) is an alternating path from
u to u′, whence u′ should have been in X. This shows that all vertices w ∈ Γ(X) must be matched
to some vertex in X. Since u ∈ X is unmatched, we have |Γ(X)| < |X|. ✷

14 Network Flows

A network N(V,E) is a directed graph, with special vertices s, t ∈ V called respectively, the source,
and the sink. Furthermore, there is a capacity function c : E → R+, where for e = (i, j), we denote
c(e) by cij .

A flow in a netwrok N is a function f : E → R+ such that (i) 0 ≤ fij ≤ cij for all e = (i, j) ∈ E,
and (ii)

∑

j∈V fij −
∑

k∈V fki = 0, for all i ∈ V − {s, t}. The first requirement is called feasibility,
while the second is called conservation.

If we denote δi =
∑

j∈V fij −
∑

k∈V fki, then the requirement δi say that ‘the fow coming in
equals the flow going out’ at i. The value of a flow v(f) is the quantity δs, i.e., the net flow going
out of s.
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Lemma 14.1 Let N be a network and f a flow in the network. Then δs = −δt. In other words,
the net outflow at s equals the net inflow at t.

Proof: We investigate the sum δ =
∑

v∈V δv. For any quantity fij , we see that it appears with a
positive sign in δi and with a negative sign in δj . Since this accounts for every term in δ, we have
that δ = 0. Since conservation implies that δv = 0 for all v 6∈ {s, t}, we have δs + δt = 0. ✷

Let X ⊆ V be such that s ∈ X while t 6∈ X. Such a set is called a cut. The set Γ(X) is defined
as:

Γ(X) = {(i, j) ∈ E|i ∈ X, j 6∈ X}

The capacity of a cut c(X) is defined as c(X) =
∑

e∈Γ(X) c(e). Thus the cut-capacity is the sum of
the capacities of the edges going from X to outside X.

Lemma 14.2 Let N be a network and f a flow in the network. If X is any cut, then v(f) ≤ c(X).

Proof: Let us examine δX =
∑

v∈X δv. This quantity, by conservation, equals the number δs =
(v(f). On the other hand, it is easy to see that the only quantities that contribute to δX are those
flows with one end-point in X and the other outside. Thus:

δX = (
∑

i∈X,j 6∈X

fij)− (
∑

p∈X,q 6∈X

fqp)

Since the first term is clearly upper-bounded by C(X) and the second term is lower-bounded by 0,
we have

v(f) = δX ≤ c(X)

That proves the lemma. ✷
An important theorem is the Maxflow-Mincut theorem, which we state without proof:

Theorem 14.3 Let N be a network and f a flow in the network. If µ is the minimum among all
cut capacities, then there is a flow of value µ.
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