TD 608
 Project Management and Analysis

Part I
Project Conception and Execution

Milind Sohoni
Lecture 8

Operations Research Problems in Project Execution

Question 1: Suppose that we have a list of tasks $\left\{T_{1}, \ldots, T_{k}\right\}$, where each task T_{i} has a start-time s_{i}, and end-time e_{i} and a JCB requirement r_{i} which is a positive integer. We must arrange for JCBs for each of the tasks.

Once a JCB is assigned to a task, it cannot be moved till the task is complete.

Tasks	T1	T2	T3	T4	T5	T6	T7
Start	1	2	4	5	8	10	15
End	5	7	10	8	10	12	18
Req.	1	2	2	2	2	3	2

- What is the total number of JCBs required for the project?
- What is a valid assignment of the JCBs to the tasks?

Operations Research Problems in Project Execution

Question 2: Our project has locations $\left\{L_{1}, \ldots, L_{k}\right\}$ and each location L_{i} has demand d_{i} bags of cement per week. There are r vendors $\left\{V_{1}, \ldots, V_{r}\right\}$ of cement. Each vendor can supply no more than b_{i} bags per week. Furthermore, the cost of supply of a bag of cement from vendor V_{i} to location L_{j} is $r_{i j}$. What is an optimal purchase order for each vendor and for each location.

Question 1 again

Question 1: Suppose that we have a list of tasks $\left\{T_{1}, \ldots, T_{k}\right\}$, where each task T_{i} has a start-time s_{i}, and end-time e_{i} and a JCB requirement r_{i} which is a positive integer. We must arrange for JCBs for each of the tasks.

Once a JCB is assigned to a task, it cannot be moved till the task is complete.

Tasks	T1	T2	T3	T4	T5	T6	T7
Start	1	2	4	5	8	10	15
End	5	7	10	8	10	12	18
Req.	1	2	2	2	2	3	2

- What is the total number of JCBs required for the project?
- What is a valid assignment of the JCBs to the tasks?

An Observation

Lets look at the input carefully. Order the tasks in increasing order of start times.

Tasks	T1	T2	T3	T4	T5	T6	T7
Start	1	2	4	5	8	10	15
End	5	7	10	8	10	12	18
Req.	1	2	2	2	2	3	2

We make an activity chart:

Time	1.5	2.5	3.5	4.5	5.5	\ldots	17.5
Tasks	T 1	$\mathrm{~T} 1, \mathrm{~T} 2$	$\mathrm{~T} 1, \mathrm{~T} 2$	$\mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3$	$\mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4$	\ldots	T 7
JCBs	1	3	3	5	6	\ldots	2

From here, we see that at $t=5.5$ there must be 6 JCBs working. So clearly, a minimum of 6 JCBs are required.

The neat thing is that 6 are sufficient

The algorithm

Tasks	T1	T2	T3	T4	T5	T6	T7
Start	1	2	4	5	8	10	15
End	5	7	10	8	10	12	18
Req.	1	2	2	2	2	3	2

So let the JCBs be J_{1}, \ldots, J_{6}. Here are the basic steps:

- Prepare a combined list of start and end-times in sorted order. In case of conflict, keep the end-times before the start-times.

s 1	s 2	s 3	e 1	s 4	e 2	e 4	s 5	e 3	e 5	s 6	e 6	s 7	27
1	2	4	5	5	7	8	8	10	10	10	12	15	18

- Start with the full collection J_{1}, \ldots, J_{6} as the current set of available JCBs.
- For start-times, issue JCBs as per requirements from current set of available JCBs.
- At end-times receive JCBs already issued add to your current set of available JCBs.
- You will never run short!

A Typical Run

Tasks	T1	T2	T3	T4	T5	T6	T7
Start	1	2	4	5	8	10	15
End	5	7	10	8	10	12	18
Req.	1	2	2	2	2	3	2

	s1	s2	s3	e1	s4	e2	e4	s5	e3	e5	s6	e6	s7	e7
	1	2	4	5	5	7	8	8	10	10	10	12	15	18
	-1	-2	-2	+1	-2	+2	+2	-2	+2	+2	-3	+3	-2	+2
6	5	3	1	2	0	2	4	2	4	6	3	6	4	6

The Schedule

The schedule for each JCB is easily constructed:

	s1	s2	s3	e1	s4	e2	e4	s5	e3	e5	s6	e6	s7	e7
	1	2	4	5	5	7	8	8	10	10	10	12	15	18
	-1	-2	-2	+1	-2	+2	+2	-2	+2	+2	-3	+3	-2	+2
6	5	3	1	2	0	2	4	2	4	6	3	6	4	6
J1	T1	T1	T1	*	T4	T4	*	T5	T5	*	T6	*	T7	*
J2	*	T2	T2	T2	T2	*	*	T5	T5	*	T6	*	T7	*
J3	*	T2	T2	T2	T2	*	*	*	*	*	T6	*	*	*
J4	*	*	T3	T3	T3	T3	T3	T3	*	*	*	*	*	*
J5	*	*	T3	T3	T3	T3	T3	T3	*	*	*	*	*	*
J6	*	*	*	*	T4	T4	*	*	*	*	*	*	*	*

- Note that JCB6 is used only for the period 5-8 and never used after that.
- If T6 is delayed by 2 units to $7-10$, that will yield a saving of 1 JCB .
- Thus if the slack permits, this should be done.

Now to Question 2

Question 2: Our project has locations $\left\{L_{1}, \ldots, L_{k}\right\}$ and each location L_{i} has demand d_{i} bags of cement per week. There are r vendors $\left\{V_{1}, \ldots, V_{r}\right\}$ of cement. Each vendor can supply no more than b_{i} bags per week. Furthermore, the cost of supply of a bag of cement from vendor V_{i} to location L_{j} is $r_{i j}$. What is an optimal purchase order for each vendor and for each location.

Simpler Question 2

The Assignment Problem: Our project has locations $\left\{L_{1}, \ldots, L_{k}\right\}$ and each location L_{i} has demand 1 bag of cement per week. There are r vendors $\left\{V_{1}, \ldots, V_{r}\right\}$ of cement. Each vendor can supply exactly 1 bag per week. Furthermore, the cost of supply of a bag of cement from vendor V_{i} to location L_{j} is either 1 or ∞ (i.e., V_{i} cannot serve location L_{j}). Compute if the demand can be met at each location, and the vendor which will supply that location.

Solution

The Solution:Step I

Step I: Construct an initial allocation. This need not be optimal.

- Start with the locations L_{1}, \ldots, L_{k} in any order.
- For every location L_{i} if an unused vendor $V_{i j}$ can be found, the assign that vendor to location L_{i}.
- Stop after processing the location list.
- The matching so obtained is called your current matching M_{1}. This need not be optimal. Note L_{4} is un-matched.

Step II

Augmenting path in M_{1} :

- A path in the graph which starts from an unmatched location and goes to an unused vendor.
- It travels from location to vendor along an unmatched edge.
- It goes from vendor to location along a matched edge.

Step II: Look for an augmenting path

Step III

Step III: Update the matching to get M_{2}

- Make all unmatched edges in the augmenting path as matched.
- Make all matched edges as unmatched.
- This will produce a new matching M_{2} which is of a larger size!

Finally...

Step IV: Apply Step II and Step III till no augmenting path is found.

Declare the matching so obtained as the Optimal Matching M
Moot Question: How is one to find an augmenting path?

- Reverse all unmatched edges.
- Start from every unserved location L_{i}, one at a time.
- See if you can reach an unused vendor by travelling in the graph.

Note that there are many augmenting paths:

- $L_{4} \rightarrow V_{5} \rightarrow L_{3} \rightarrow V_{4}$
- $L_{4} \rightarrow V_{5} \rightarrow L_{3} \rightarrow V_{3}$
- $L_{4} \rightarrow V_{2} \rightarrow L_{2} \rightarrow V_{3}$

