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Groups and Action

G a group and V a vector space over C.

GL(V ): the group of linear transformations on V .

Representation : ρ : G → GL(V ).

Action : G × V → V
I (i) 1G · v = v (ii) (g · g ′) · v = g · (g ′ · v)
I (iii) α(g · v) = (g · αv), g · (v + v ′) = g · v + g · v ′

Example 1 : G is the finite group of isometries of the cube. V is
the space generated by the formal linear combinations of the edges of
the cube.

|G | = 24 dim(V ) = 12

Example 2 : G = GLm and V = Cm, the standard action, i.e., given
v ∈ Cm and A ∈ G , A · v = Av .
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Example 3 : G = GLm and V = Mm, square matrices of size m.
Given A ∈ G ,X ∈ Mm we have A · X = AXA−1, the adjoint
representation.

Example 4 : G = GLm and V = Symd(Cm), collection of
homogenous polynomials of degree d in the variables
X = X1, . . . ,Xm. Given A ∈ GLm and f (X ) ∈ V , we have
(A · f )(X ) = f (A−1X ).

Orbit : v ∈ V then

O(v) = {v ′|∃g ∈ G s.t. v ′ = g · v}

Enduring Question

Given ρ, v , v ′ Is v ′ ∈ Orbit(v)?
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Is there a Tractable answer to the question

Given ρ, v , v ′ Is v ′ ∈ Orbit(v)?

G finite and ρ perumation representation: Polya Theory.

When G is Galilean Group × Time: Classical Mechanics.

In fact, many more examples. Hilbert’s 3rd : Can the
tetrahedron be cut and pasted to a cube?

Approach I : Inspection or explicit solution.

When G is finite, try all.

Otherwise, try and get g ∈ G by solving a set of equations. E.g.,
given P = Ax2 + Bxy + C and P ′ = A′x2 + B ′xy + C ′y 2, is there

x ← aX + bY
y ← cX + dY

such that P(x , y) = P ′(X ,Y )?
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continued

Expanding P and comparing with P ′ gives us the equations:

a2A + acB + c2C = A′

2abA + (ad + bc)B + 2cdC = B ′

b2A + bdB + d2C = C ′

This is hard to solve. In general, the orbit problem is highly
non-linear in the group variables and usually intractable.
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Approach II

Canonical Forms : -without loss of generality

Locate a special element in each orbit.

Move both v and v ′ to this canonical form and then compare.

Very popular

A ∈ GLm: X → AXA−1: Jordan canonical form.

For quadratic, cubic and quartic polynomials.

LU, SVD and polar decomposition.

Will give g such that g · v = v ′.

Very few actions have canonical forms!
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Invariants

A function f : V → C is called an invariant if f (v) = f (g−1 · v) for
all g ∈ G and for all v ∈ V .

More generally, there is a character χ : G → C so that
f (g−1 · v) = χ(g−1)f (v)

Most interesting groups have very few characters, e.g., SLm has
just the identity.

The action of GLm is a simple extension of the action of SLm.

Clear then that f (v) 6= f (v ′) =⇒ v ′ 6∈ O(v).

Question 1 : How are such invariants to be constructed?
Question 2 : Are there enough of them?
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Example 1 : GLm acting on Cm×m by conjugation: A · X = AXA−1.
C[X ] = C[X11, . . . ,Xmm] is the ring of functions. Invariants are
trace(X k), and these are the only ones.

Example 2 : GLm acting on Cm×n by left multiplication; A ·X = AX .
Invariants are the m ×m-minors of X , and these are the only ones.

Example 3 : GL2 acting on Sym2(C2), i.e., aX 2
1 + bX1X2 + cX 2

2 . In
C[a, b, c], the discriminant b2 − 4ac is an invariant and it is the only
one.

Example 4 : GLm acting on (X1, . . . ,Xk) by simultaneous
conjugation:

(X1,X2, . . . ,Xk)→ (AX1A−1, . . . ,AXkA−1)

The invariants are Tr(Xi1 . . .Xid) for all tuples (i1, . . . , id).
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The invariants and orbit space

Hilbert (1898), Mumford, Nagata and others: For rational
actions of reductive groups the ring of polynomial invariants is a
finitely generated C-algebra.

If C[V ] is the ring of functions on V , and C [V ]G is denoted as the
ring of invariants, then there are f1, . . . , fr ∈ C[V ], homogeneous,
such that C[V ]G = C[f1, . . . , fr ].

Also note that if C[V ]G = C[f1, . . . , fr ], then in general the fi are not
algebraically independent.

This explains the limitation of the canonical form approach.

() July 8, 2010 10 / 38



Invariants

The Reynolds Operator: : R : C[V ]→ C[V ]G .

Cayley process, symbolic method, restitution

This answered the construction of invariants question.

But are there enough of them?

That is, if v ′ 6∈ O(v) then is there an f ∈ C[V ]G such that
f (v) 6= f (v ′)?

If C[V ]G = C[f1, . . . , fr ] then consider the map V → Cr :

v → (f1(v), . . . , fr (v))

So, if v 6∈ O(v ′) then is f (v) 6= f (v ′)?
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Rings and Spaces

Variety X and C[X ], ring of functions on X .

maximal ideals of C[X ]⇔ points of X

Lets apply this to C[V ]G :

maximal ideals of C[V ]G
?⇔ orbits in V

Example 2 : GLm acting on Cm×n by left multiplication; A ·X = AX .
Invariants are the m ×m-minors of X , and these are the only ones.

NO

m-dimensional subspaces of Cn ?⇔ all subspaces of dimension ≤ m
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Separation
Let C[V ]G = C[f1, . . . , fr ].

The closure
[v ] = {v ′|fi(v) = fi(v ′) for all fi}

Clear that:

[v ] is a closed set and that O(v) ⊆ [v ].

If O(v) is not closed, invariants do not separate.

Example : Consider X → AXA−1. Let A(t) = diag(t, t−1) and X be
as follows:

A(t)XA(t)−1 =

[
t 0
0 t−1

] [
1 1
0 1

] [
t−1 0
0 t

]
=

[
1 t2

0 1

]

X cannot be separated from I by any invariant.
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Stability

Nagata, Mumford

v ∈ V is called stable is O(v) is closed.

[v ] has a unique stable orbit.

Part of the proof:

Suppose [v ] has two closed disjoint G -invariant sets C1 and C2.

There is an f ∈ C[V ] such that f (C1) = 0 and f (C2) = 1.

(rationality of action) There are a finite number of translates
f1 = g1 · f , . . . , fk = gk · f such that all translates g · f are linear
combinations of the above. In other words

M = Cf1 ⊕ . . .⊕ Cfk

is a G -module.
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Finally, let p ∈ C2 and define:

evalp : M → C

given by h→ h(p). This is equivariant (with the trivial action of
G on C).

Thus the kernel of evalp is a G -module.

(reductivity) There is an invariant h ∈ M such that h(p) = 1.

Thus h(C1) = 0 and h(C2) = 1 and h separates C1 from C2.

Thus V /[·] is the collection of orbits separable by invariants.

Question : So, how big is [v ] for a v ∈ V ?
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The biggest and most complicated [v ] is [0], the Null Cone, an
important feature of every group action. The 0-Orbit is the
unique closed orbit in [0].

For the X → AXA−1, [0] is precisely the collection of Nilpotent
Matrices N . For all N ∈ N ,Tr(Nk) = 0.

Most points are stable, but few tests to prove stability .

diagonal matrices are stable.

permn(X ), detn(X ) as elements of Symn(X ) (on n × n-matrices)
are stable!

This is through the use of theory of one-parameter subgroups of G
for taking limits, initiated by Hilbert, and then by Mumford and
refined by Kempf.

λ : C∗ → G
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When G = SLm or GLm, λ is conjugate to:

λ(t) =


tn1 0 0 0
0 tn2 0 0

0 0
... 0

0 0 0 tnm



Hilbert: v ∈ [0] iff there is a λ so that limt→0 λ(t) · v = 0.

For example, when X =

[
0 1
0 0

]
for the action X → AXA−1:

[
t 0
0 t−1

] [
0 1
0 0

] [
t−1 0
0 t

]
=

[
0 t2

0 0

]
Thus limt→0 λ(t) · X = 0 =⇒ X ∈ [0].
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Hilbert and 1-PS

v ∈ [0] =⇒ 0 ∈ O(v), the orbit-closure. Easy.

This implies that there is a curve λ(t) ⊂ G such that
limλ(t) · v = 0. moderate.

This implies there is a subgroup λ(t)! Tricky.

Hilbert used this most effectively to understand the null-cone for the
action of GLm on Symd(X ).

If f ∈ [0] then there is a g ∈ G and a λ ∈ Zm so that
g · f =

∑
d adX d such that∑

λ = 0 (λ is code for diag(tλ1 , . . . , tλm) )and

λ · d ≤ 0 =⇒ ad = 0.

In other words, the polynomial may be arranged to have limited
support.
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Limiting support to a few monomials

XYZ

Y^3

XY^2

X^2 Y

X^3

X^2 Z

Y^2 Z

YZ^2

XZ^2

Z^3

λ

support

Example : f = 3X 2
1 X 2

2 + X 3
1 X3 ∈ [0]. We see that d1 = [220] and

d2 = [301]. The witness is λ = [3,−2,−1].
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Mumford and Kempf

Mumford : If v0 is stable, and v ∈ [v0] then there is a λ(t) such that
(i) lim(λ(t) · v) exists, and (ii) it is in O(v0).

[
t 0
0 t−1

] [
1 1
0 1

] [
t−1 0
0 t

]
=

[
1 t2

0 1

]
Thus limt→0 λ(t) · X = I =⇒ X ∈ [I ].

Kempf : There is, in fact, a unique most efficient λ doing the job!
Moreover:

If H stabilizes v then λ(t) commutes with H .

Proof: A quadratic programming formulation with integer entries.
Optimum rational point is the answer.
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Example revisited

Example : f = 3X 2
1 X 2

2 + X 3
1 X3 ∈ [0]. We see that d1 = [220] and

d2 = [301]. One witness is λ = [3,−2,−1].
λ is code for X1 → t3X1,X2 → t−2X2 and X3 → t−1X3. We have

X 2
1 X 2

2 → t2X 2
1 X 2

2 X 3
1 X3 → t8X 3

1 X3

Thus the efficiency is 2/
√

32 + 22 + 12 ≈ 0.6.
Consider [1, 0,−1] and we have efficiency as 2/

√
2 > 1. In fact, this

is the most efficient λ.
Kempf

Problem reduces to construction of a flag
0 ⊆ V1 ⊆ . . . ⊆ Vm = Cm.

The flag with the most efficiency is “unique”.

Within a flag, problem is QP.
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Stabilizers

detm(X ) and permm(X ) are stable in Symm(X ), where X is the space
of m ×m matrices.

Stabilizers to the rescue.

v unstable then there is λv most efficient.

Clear that g · v unstable as well, also λg ·v = gλg−1.

h · v = v implies h commutes with λ.

λv commutes with stabilizer H .

detm (and similarly permm) is stable

But H for detm includes SLm × SLm → SLm2 = SL(X ).

And X = Cm ⊗ Cm is H-irreducible.

There is no non-trivial λ ⊆ SL(X ) commuting with H!
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Groups and closed orbits

Groups affect stability:
I Orthogonal group: all orbits closed.
I SLm: some closed, GLm: none closed.

Cardboard polygons under translations and rotations: lengths,
order

Sets of coloured points in 3-space under permutation and
translation and rotations: coloured distances

Cardboard polygons under cut and paste: area

3-D polyhedra under cut and paste: length-angles
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The �hom and detm and permn

Let X = {X1, . . . ,Xr}.
For two form f , g ∈ Symd(X ), we say that f �hom g , if
f (X ) = g(B · X ) where B is a fixed r × r -matrix.

Note that:

B may even be singular.

�hom is transitive.
Linear
X’form

Program 
for 
g(X)

(y) (x)

O O’

Program for f(Y)

If there is an efficient algorithm to compute g then we have such for
f as well.

How is this related to orbits?

How is this related to the usual ‘reduction’?
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The insertion

Suppose that permn(Y ) has a formula of size m/2. How is one to
interpret Valiant’s construction?

Let Y be n × n.

Build a large m ×m-matrix X .

Identify Y as its submatrix.

Y

X

n
m
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The ”inserted” permanent

For m > n, we construct a new function permm
n ∈ Symm(X ).

Let Y be the principal
n × n-matrix of X .

permm
n = xm−n

mm permn(Y )

Y

X

n
m

Thus permn has been inserted into Symm(X ), of which detm(X ) is a
special element. Now, Valiant =⇒ there is an A(y) linear such that:

formula of size m/2
implies
permn = detm(A(y))

Use xmm as the
homogenizing variable

Conclusion
permm

n = detm(A′)

permm
n �hom detm
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Group Action and �hom

Let V = Symm(X ). The
group GL(X ) acts on V as
follows. For T ∈ GL(X ) and
g ∈ V

gT (X ) = g(T−1X )

Two notions:

The orbit: O(g) =
{gT |T ∈ SL(X )}.
The projective orbit
closure
∆(g) = cone(O(g)).

If f �hom g then
f = g(B · X ), whence

If B is full rank then f is
in the GL(X )-orbit of g .

If not, then B is
approximated by
elements of GL(X ).

Thus, in either case,

f �hom g =⇒ f ∈ ∆(g)
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The ∆

Thus, we see that if permn has a formula of size m/2 then
permm

n ∈ ∆(detm).

On the other hand, permm
n ∈ ∆(detm) implies that for every

ε > 0, there is a T ∈ GL(X ) such that ‖(detm)T − permm
n ‖ < ε.

This yields a poly-time approximation algorithm for the
permanent

Thus, we have an almost faithful algebraization of the formula size
construction.

To show that perm5 has no formula of size 20/2, it suffices to show:

perm20
5 6∈ ∆(det20)
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Naive Expectation : det20 is stable and so is perm5. We have this
great theory . . . Invariants should do the job! OBSTRUCTION.

Problem 1 perm5 may be stable, but perm20
5 is NOT. It is in the

null-cone.

x3
1 + x3

2 is stable in Sym2(C2) but x5
3 (x3

1 + x3
2 ) is unstable in

Sym8(C4).

Problem 2 ∆(det20) contains more than just the orbit and its scalar
multiples.

Let λ(t) be a 1-PS and let λ(t) · g = td fd + td+1fd+1 + . . . + tmfm.
Then fd , fm ∈ ∆(f ). Thus, even for stable f , ∆(f ) contains much
more.
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Two Questions

Thus every invariant µ will vanish on permm
n .

There is no invariant µ such that µ(detm) = 0 and
µ(permm

n ) 6= 0.

Homogeneous invariants will never serve as obstructions. They dont
even cut the null-cone

Two Questions:

Is there any other system of functions which vanish on ∆(detm)?

Can anything be retrieved from the superficial instability of
permm

n ?
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Part II

Is there any other system of functions which vanish on ∆(detm)?

Yes. The Peter-Weyl argument.

Can anything be retrieved from the superficial instability of
permm

n ?

Yes. Partial or parabolic stability.

Two key ideas:

Representations as obstructions

Stabilizers
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Philosophically-Two Parts

Identifying structures where obstructions are to be found.

Actually finding one and convincing others.

Two different types of problems:

Geometric
I Is the ideal of ∆(g) determined by representation theoretic data.
I Does ΣH generate the ideal of ∆(g)?
I Is the stabilizer H of g , G -separable?

F Larsen-Pink: do multiplicities determine subgroups?

I More?

Representation Theoretic
I Is this G -module H-peter-weyl!
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The subgroup restriction problem

Given a G -module V , does V |H contain 1H?

Given an H-module W , does V |H contain W ?

The Kronecker Product Consider H = SLr × SLs → SLrs = G ,
when does Vµ(G ) contain an H-invariant?

This, we know, is a very very hard problem. But this is what arises
(with r = s = m) when we consider detm and there may well be a
hope...

through Quantum Groups!
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Any more geometry?

The Hilbert-Mumford-Kempf flags: limits for affine closures.
I Extendable to projective closures?
λ = [λ1, . . . , λm],

f (tλ1X1, . . . , t
λmXm) = td fd + . . .+ te fe

I Kempf: if d ≥ 0 then there is a unique best λ: convex
programming.

I general d?: Let Λ(f ,S ,G ) = {λ ∈ G |ld(λ, f ) ∈ S}.
I Is there a best λ ∈ Λ(f , S ,G )? in Λ(f ,S ,T )?

Something there, but convexity of the optmization problem ...?
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The Luna-Vust theory

Local models for stable points.

Tubular neighbourhoods of stable orbits look like G ×H N .

Corollary: stabilizers of nearby points subgroups of H upto
conjugation.

Extendable for partially stable points, i.e., when H is not
semisimple?

H = RU a Levi factorization and (i) N , an R-module, (ii)
φ : N × G → V , an R-equivariant map.

A finite lie-algebra local model exists but . . .
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Another problem-Strassen

Links invariant theory to computational issues.

Consider the 2× 2 matrix multiplication AB = C . To compute
C , we seem to need the 8 bilinear forms aijbjk .

Can we do it in any fewer?

A bilinear form on A,B is rank 1 if its matrix is of rank 1. Let S
denote the collection of all rank 1 forms.

Let Sk = S + S + . . . + S (k times). These are the so called
secant varieties.

Strassen showed that S7 contains all the above 8 bi-linear forms.

Consequence

There is an n2.7-time algorithm to do matrix multiplication.
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Specific to Permanent-Determinant

Negative Results

von zur Gathen: m > c · n
I Used the singular loci of det and perm.
I Combinatorial arguments.

Raz: m > p(n), but multilinear case.

Ressayre-Mignon: m > c · n2

I Used the curvature tensor.

For a point p ∈ M , hyper-surface κ : TPm → TPm.

For any point of detm, rank(κ(detm)) ≤ m.

For one point of permn, rank(κ(permn)) = n2.

A section argument.
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Thank you.
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