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Talk Outline

A historical perspective
Group representations and orbits
Invariant Theory and Orbit Separation

Stability and rings of invariants

Calculus of 1-parameter subgroups
@ Stability of permanent and determinant

o Further role of stability and geometric invariants
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Groups and Action

@ G a group and V a vector space over C.
@ GL(V): the group of linear transformations on V.

@ Representation : p: G — GL(V).
@ Action: GxV —V
> ()1l v=v (i) (g-8")-v=g-(g"V)
> (i) a(g-v)=(g-av), g (v+V)=g-v+g-V
Example 1 : G is the finite group of isometries of the cube. V' is
the space generated by the formal linear combinations of the edges of
the cube.
|G| =24 dim(V) = 12
Example 2 : G = GL,, and V = C™, the standard action, i.e., given
veC"and Ac G, A-v=Av.
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Example 3 : G = GL,, and V = M,,, square matrices of size m.

Given Ac G, X € M,, we have A- X = AXA™!, the adjoint
representation.

Example 4 : G = GL,, and V = Sym?(C™), collection of
homogenous polynomials of degree d in the variables

X =Xi,...,Xn. Given A€ GL,, and f(X) € V, we have
(A-F)(X) =f(ALX).

Orbit : v € V then

O(v)={V|Z3g e Gs.t.vV =g-v}

Enduring Question
Given p,v, V' Is v/ € Orbit(v)?
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Is there a Tractable answer to the question
Given p,v, V' Is v/ € Orbit(v)? J

@ G finite and p perumation representation: Polya Theory.
@ When G is Galilean Group x Time: Classical Mechanics.

@ In fact, many more examples. Hilbert's 3rd : Can the
tetrahedron be cut and pasted to a cube?

Approach | : Inspection or explicit solution.

@ When G is finite, try all.

@ Otherwise, try and get g € G by solving a set of equations. E.g.,
given P = Ax?> 4+ Bxy + C and P' = A'x? + B'xy + C'y?, is there

X «— aX-+bY
y «— cX+dY

such that P(x,y) = P'(X,Y)?
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continued

Expanding P and comparing with P’ gives us the equations:

a?A+acB+c?C = A
2abA+ (ad + bc)B +2cdC = B
b’A+bdB+d’C = ('

This is hard to solve. In general, the orbit problem is highly
non-linear in the group variables and usually intractable.
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Approach I

Canonical Forms : -without loss of generality
@ Locate a special element in each orbit.

@ Move both v and v’ to this canonical form and then compare.

Very popular
e Ae GL,;; X — AXA~Y: Jordan canonical form.
e For quadratic, cubic and quartic polynomials.
e LU, SVD and polar decomposition.

e Will give g such that g - v =V'.
@ Very few actions have canonical forms!
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Invariants

A function f : V — C is called an invariant if f(v) = f(g=' - v) for
allg € G and for all v € V.

@ More generally, there is a character y : G — C so that
g™ v)=x(g")f(v)

@ Most interesting groups have very few characters, e.g., SL,, has
just the identity.

@ The action of GL,, is a simple extension of the action of SL,,.
@ Clear then that f(v) # f(v) = v/ & O(v).

Question 1 : How are such invariants to be constructed?
Question 2 : Are there enough of them?
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Example 1 : GL,, acting on C™ ™ by conjugation: A- X = AXA™L.
C[X] = C[X11, - .., Xmm] is the ring of functions. Invariants are
trace(X*), and these are the only ones.

Example 2 : GL,, acting on C™*" by left multiplication; A- X = AX.
Invariants are the m x m-minors of X, and these are the only ones.

Example 3 : GL, acting on Sym?(C?), i.e., aX? + bX; Xo + cX3. In
Cla, b, c], the discriminant b?> — 4ac is an invariant and it is the only
one.

Example 4 : GL,, acting on (Xi,..., Xk) by simultaneous
conjugation:

(X1, Xoy ., Xi) — (AXIATL L AXATY

The invariants are Tr(Xj; ... Xig) for all tuples (i1, ..., iq).
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The invariants and orbit space

Hilbert (1898), Mumford, Nagata and others: For rational
actions of reductive groups the ring of polynomial invariants is a
finitely generated C-algebra.

If C[V] is the ring of functions on V/, and C[V] is denoted as the
ring of invariants, then there are fi,...,f, € C[V], homogeneous,
such that C[V]¢ = C[f,...,f].

Also note that if C[V]® = C[f;,...,f], then in general the f; are not
algebraically independent.

This explains the limitation of the canonical form approach.
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Invariants

The Reynolds Operator: : R : C[V] — C[V]C.

e Cayley process, symbolic method, restitution

This answered the construction of invariants question.

But are there enough of them?

That is, if v/ & O(v) then is there an f € C[V]® such that
f(v) # f(v')?

If C[V]® = CIf,...,f] then consider the map V — C’:

v— (A(v),..., f(v))
So, if v & O(V') then is f(v) # f(v')?
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Rings and Spaces

Variety X and C[X], ring of functions on X.

maximal ideals of C[X] < points of X
Lets apply this to C[V]¢:

maximal ideals of C[V]¢ < orbits in V

Example 2 : GL,, acting on C™*" by left multiplication; A- X = AX.
Invariants are the m x m-minors of X, and these are the only ones.

NO

. . ? . .
m-dimensional subspaces of C" < all subspaces of dimension < m
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Separation
Let C[V]¢ = C[f,...,f].
The closure
[v] = {V'|fi(v) = f;(V') for all £;}
Clear that:
@ [v] is a closed set and that O(v) C [v].
e If O(v) is not closed, invariants do not separate.

Example : Consider X — AXA™!. Let A(t) = diag(t,t™!) and X be
as follows:

A(t)XA(r)—lz[é tngé 1“1‘; 2}=[(1) Tﬂ

X cannot be separated from / by any invariant.

)
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Stability

Nagata, Mumford
@ v € V is called stable is O(v) is closed.
@ [v] has a unique stable orbit.

Part of the proof:
@ Suppose [v] has two closed disjoint G-invariant sets C; and G,.
@ Thereis an f € C[V] such that f((;) =0 and (&) = 1.

@ (rationality of action) There are a finite number of translates
fi=g -f,...,fk = gk f such that all translates g - f are linear
combinations of the above. In other words

M=CHa... &Cf

is a G-module.
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@ Finally, let p € G, and define:
eval, : M — C

given by h — h(p). This is equivariant (with the trivial action of
G on C).

@ Thus the kernel of eval, is a G-module.
@ (reductivity) There is an invariant h € M such that h(p) = 1.

Thus h(C;) =0 and h((G,) =1 and h separates C; from G,. J

@ Thus V/[] is the collection of orbits separable by invariants.

Question : So, how big is [v] fora v € V7
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@ The biggest and most complicated [v] is [0], the Null Cone, an
important feature of every group action. The 0-Orbit is the
unique closed orbit in [0].

@ For the X — AXA™1, [0] is precisely the collection of Nilpotent
Matrices N'. For all N € N/, Tr(Nk) = 0.

@ Most points are stable, but few tests to prove stability .

@ diagonal matrices are stable.

@ perm,(X), det,(X) as elements of Sym"(X) (on n x n-matrices)
are stable!

This is through the use of theory of one-parameter subgroups of G
for taking limits, initiated by Hilbert, and then by Mumford and

refined by Kempf.
AN C -G
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When G = SL,, or GL,,, \ is conjugate to:

tm 0 0 O
(D) 0 t? 0 0
t) =
0 0 : O
0O 0 0 t™

Hilbert: v € [0] iff there is a A so that lim;_ A(t) - v =0.

01
00

o a]loa]l e=[o b

Thus lim,_o A(t) - X =0 = X € [0].

For example, when X = [ ] for the action X — AXA™L:
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Hilbert and 1-PS

e ve[0] = 0¢€ O(v), the orbit-closure. Easy.

@ This implies that there is a curve A\(t) C G such that
lim A(t) - v = 0. moderate.

@ This implies there is a subgroup A(t)! Tricky.
Hilbert used this most effectively to understand the null-cone for the
action of GL,, on Sym9(X).
If f € [0] then thereisa g € G and a A € Z™ so that
g-f=>,a4X? such that

@ Y A =0 (\is code for diag(t™,...,t*) )and

e\ d<0 = gag4=0.

In other words, the polynomial may be arranged to have limited
support.
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Limiting support to a few monomials

X"3 @
eX'2Z
X"2ve A e xzm2
Z @23
Xy"2(e) (®yz2
®yr2z
1" 3(®) support

Example : f = 3X2X? + X$X; € [0]. We see that d; = [220] and
d» = [301]. The witness is A = [3, -2, —1].

July 8, 2010
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Mumford and Kempf

(i) lim(A(t) - v) exists, and (ii) it is in O(vp).

oallonllo dllot]

Thus limo A(t)- X =1 = X € [l].

Mumford : If vy is stable, and v € [v] then there is a A(t) such thatJ

Kempf : There is, in fact, a unique most efficient A doing the job!
Moreover:

@ If H stabilizes v then \(t) commutes with H.

Proof: A quadratic programming formulation with integer entries.
Optimum rational point is the answer.
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Example revisited

Example : f = 3X2X3 + X X3 € [0]. We see that d; = [220] and
d» = [301]. One witness is A\ = [3, -2, —1].
A is code for X; — t3X1, Xo — t72X5 and X3 — t 71 X5. We have

X2X2 — 2X2X2 X3Xs — 8X3X,

Thus the efficiency is 2/v/3%2 + 22 + 12 ~ 0.6.

Consider [1,0, —1] and we have efficiency as 2/v/2 > 1. In fact, this
is the most efficient \.

Kempf

@ Problem reduces to construction of a flag
ocwv,c...Ccv,=0Cm

@ The flag with the most efficiency is “unique”.
e Within a flag, problem is QP.
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Stabilizers

det,,(X) and perm,,(X) are stable in Sym™(X), where X is the space
of m X m matrices. J

Stabilizers to the rescue.
@ v unstable then there is A\, most efficient.
o Clear that g - v unstable as well, also \,., = gAg ™.
@ h-v = v implies h commutes with \.

@ )\, commutes with stabilizer H.

det,, (and similarly perm,,) is stable
@ But H for det,, includes SL,, x SL,, — SL» = SL(X).
@ And X = C™ ® C™ is H-irreducible.
@ There is no non-trivial A C SL(X) commuting with H!
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Groups and closed orbits

Groups affect stability:

» Orthogonal group: all orbits closed.
» Sl.,: some closed, GL,,: none closed.

@ Cardboard polygons under translations and rotations: lengths,
order

@ Sets of coloured points in 3-space under permutation and
translation and rotations: coloured distances

@ Cardboard polygons under cut and paste: area

3-D polyhedra under cut and paste: length-angles

iy 3, B

23 / 38



The <pom and det,, and perm,

Let X = {Xi,..., X, }.

For two form f, g € Sym?(X), we say that f <pom g, if
f(X) = g(B - X) where B is a fixed r x r-matrix.

Note that:
Program for f(Y)
° i _
B may even be singular mﬂﬁ,% —
@ =jom IS transitive. X’form for
o ol &%)

If there is an efficient algorithm to compute g then we have such for
f as well.

@ How is this related to orbits?

@ How is this related to the usual ‘reduction’?
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The insertion

Suppose that perm,(Y') has a formula of size m/2. How is one to
interpret Valiant's construction?

o Let Y benxn.
@ Build a large m x m-matrix X.

o Identify Y as its submatrix.
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The "inserted” permanent

For m > n, we construct a new function perm? € Sym™(X).

n Y

@ Let Y be the principal
n X n-matrix of X. X

e perm™ = xm"perm,(Y)

Thus perm, has been inserted into Sym™(X), of which det,,(X) is a
special element. Now, Valiant = there is an A(y) linear such that:
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The "inserted” permanent

For m > n, we construct a new function perm? € Sym™(X).

n Y

@ Let Y be the principal
n X n-matrix of X. X

e perm™ = xm"perm,(Y)

Thus perm, has been inserted into Sym™(X), of which det,,(X) is a
special element. Now, Valiant = there is an A(y) linear such that:

e formula of size m/2

implies Conclusion
erm™ = det,, (A
perm, — detn(A(y)) perm; (4)
@ Use x,,, as the perm.” =< pom dety,

homogenizing variable
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Group Action and <om

Let V = Sym™(X). The
group GL(X) acts on V as
follows. For T € GL(X) and
geVv

gr(X) =g(T7'X)

Two notions:
@ The orbit: O(g) =
{gr|T € SL(X)}.
@ The projective orbit
closure

A(g) = cone(O(g)).

If f <pom & then
f =g(B-X), whence
o If Bis full rank then f is
in the GL(X)-orbit of g.
@ If not, then B is

approximated by
elements of GL(X).

Thus, in either case,

f Zhomg = f € A(g)
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The A

@ Thus, we see that if perm, has a formula of size m/2 then
perm € A(detp,).

@ On the other hand, perm?” € A(det,,) implies that for every
e >0, thereis a T € GL(X) such that ||(det,)r — permT|| < e.
This yields a poly-time approximation algorithm for the
permanent

Thus, we have an almost faithful algebraization of the formula size
construction.
To show that perms has no formula of size 20/2, it suffices to show:

permz® & A(dety)
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Naive Expectation : detyg is stable and so is perms. We have this
great theory ... Invariants should do the job! OBSTRUCTION.

Problem 1 perms may be stable, but perm2® is NOT. It is in the
null-cone.

x; + x3 is stable in Sym?(C?) but x3(x3 + x3) is unstable in
Sym®(C*).

Problem 2 A(dety) contains more than just the orbit and its scalar
multiples.

Then fy, f, € A(f). Thus, even for stable £, A(f) contains much

Let A\(t) be a 1-PS and let \(t) - g = t%fy + t9 " 1+ ...+ tThy.
more.
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Two Questions

@ Thus every invariant p will vanish on perm!.

@ There is no invariant y such that u(det,) =0 and
(perm?) 0.

Homogeneous invariants will never serve as obstructions. They dont
even cut the null-cone

Two Questions:
@ Is there any other system of functions which vanish on A(det,)?

@ Can anything be retrieved from the superficial instability of
perm;'?
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Part Il

@ Is there any other system of functions which vanish on A(det,,)?

Yes. The Peter-Weyl argument.

@ Can anything be retrieved from the superficial instability of
perm™?
Yes. Partial or parabolic stability.

Two key ideas:
o Representations as obstructions

o Stabilizers
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Philosophically-Two Parts

@ l|dentifying structures where obstructions are to be found.

@ Actually finding one and convincing others.

Two different types of problems:
@ Geometric

> Is the ideal of A(g) determined by representation theoretic data.

» Does X1y generate the ideal of A(g)?
» |s the stabilizer H of g, G-separable?

* Larsen-Pink: do multiplicities determine subgroups?
» More?
@ Representation Theoretic
» |s this G-module H-peter-weyl!
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The subgroup restriction problem

@ Given a G-module V/, does V| contain 147
@ Given an H-module W, does V|4 contain W?

The Kronecker Product Consider H = SL, x SL; — SL,; = G,
when does V), (G) contain an H-invariant? J

This, we know, is a very very hard problem. But this is what arises

(with r = s = m) when we consider det,, and there may well be a
hope...
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The subgroup restriction problem

@ Given a G-module V/, does V| contain 147
@ Given an H-module W, does V|4 contain W?

The Kronecker Product Consider H = SL, x SL; — SL,; = G,
when does V), (G) contain an H-invariant? J

This, we know, is a very very hard problem. But this is what arises

(with r = s = m) when we consider det,, and there may well be a
hope...

through Quantum Groups!
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Any more geometry?

@ The Hilbert-Mumford-Kempf flags: limits for affine closures.

» Extendable to projective closures?
A=A, Am],

F(EMX1, ..., 0 Xy,) = t9fy 4+ ... + t°F,

» Kempf: if d > 0 then there is a unique best \: convex
programming.

» general d7: Let A(f,S,G) ={\ € G|ld(\,f) € S}.

» s there a best A € A(f,S, G)? in A(f,S, T)?

Something there, but convexity of the optmization problem ...7

July 8, 2010
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The Luna-Vust theory

Local models for stable points.

@ Tubular neighbourhoods of stable orbits look like G xy N.

@ Corollary: stabilizers of nearby points subgroups of H upto
conjugation.

@ Extendable for partially stable points, i.e., when H is not
semisimple?

@ H = RU a Levi factorization and (i) N, an R-module, (ii)
¢: N x G — V,an R-equivariant map.

@ A finite lie-algebra local model exists but ...

iy 3, B
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Another problem-Strassen
Links invariant theory to computational issues.

o Consider the 2 x 2 matrix multiplication AB = C. To compute
C, we seem to need the 8 bilinear forms aj;bj.

@ Can we do it in any fewer?
A bilinear form on A, B is rank 1 if its matrix is of rank 1. Let S
denote the collection of all rank 1 forms.

o Let S* =5+ S+ ...+ S (k times). These are the so called
secant varieties.

@ Strassen showed that S’ contains all the above 8 bi-linear forms.

Consequence J

There is an n®-time algorithm to do matrix multiplication.
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Specific to Permanent-Determinant

Negative Results

@ von zur Gathen: m > c-n

» Used the singular loci of det and perm.
» Combinatorial arguments.

e Raz: m > p(n), but multilinear case.
@ Ressayre-Mignon: m > ¢ - n?
» Used the curvature tensor.
For a point p € M, hyper-surface k : TP,, — TP,,.
e For any point of det,, rank(x(det,)) < m.
@ For one point of perm,, rank(x(perm,)) = n?.
@ A section argument.
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Thank you.



