Stability in
 Geometric Complexity Theory
 Milind Sohoni
 Indian Institute of Technology-Bombay

at
 The Intractability Institute
 Princeton University

8th July, 2010

Talk Outline

- A historical perspective
- Group representations and orbits
- Invariant Theory and Orbit Separation
- Stability and rings of invariants
- Calculus of 1-parameter subgroups
- Stability of permanent and determinant
- Further role of stability and geometric invariants

Groups and Action

- G a group and V a vector space over \mathbb{C}.
- $G L(V)$: the group of linear transformations on V.
- Representation : $\rho: G \rightarrow G L(V)$.
- Action : $G \times V \rightarrow V$
- (i) $1_{G} \cdot v=v$
(ii) $\left(g \cdot g^{\prime}\right) \cdot v=g \cdot\left(g^{\prime} \cdot v\right)$
- (iii) $\alpha(g \cdot v)=(g \cdot \alpha v), g \cdot\left(v+v^{\prime}\right)=g \cdot v+g \cdot v^{\prime}$

Example 1: G is the finite group of isometries of the cube. V is the space generated by the formal linear combinations of the edges of the cube.

$$
|G|=24 \quad \operatorname{dim}(V)=12
$$

Example 2: $G=G L_{m}$ and $V=\mathbb{C}^{m}$, the standard action, i.e., given $v \in \mathbb{C}^{m}$ and $A \in G, A \cdot v=A v$.

Example 3: $G=G L_{m}$ and $V=M_{m}$, square matrices of size m. Given $A \in G, X \in M_{m}$ we have $A \cdot X=A X A^{-1}$, the adjoint representation.

Example 4: $G=G L_{m}$ and $V=\operatorname{Sym}^{d}\left(\mathbb{C}^{m}\right)$, collection of homogenous polynomials of degree d in the variables $X=X_{1}, \ldots, X_{m}$. Given $A \in G L_{m}$ and $f(X) \in V$, we have $(A \cdot f)(X)=f\left(A^{-1} X\right)$.
Orbit : $v \in V$ then

$$
O(v)=\left\{v^{\prime} \mid \exists g \in G \text { s.t. } v^{\prime}=g \cdot v\right\}
$$

Enduring Question

Given ρ, v, v^{\prime} Is $v^{\prime} \in \operatorname{Orbit}(v)$?

Is there a Tractable answer to the question

Given ρ, v, v^{\prime} Is $v^{\prime} \in \operatorname{Orbit}(v)$?

- G finite and ρ perumation representation: Polya Theory.
- When G is Galilean Group \times Time: Classical Mechanics.
- In fact, many more examples. Hilbert's 3rd : Can the tetrahedron be cut and pasted to a cube?

Approach I: Inspection or explicit solution.

- When G is finite, try all.
- Otherwise, try and get $g \in G$ by solving a set of equations. E.g., given $P=A x^{2}+B x y+C$ and $P^{\prime}=A^{\prime} x^{2}+B^{\prime} x y+C^{\prime} y^{2}$, is there

$$
\begin{aligned}
& x \leftarrow a X+b Y \\
& y \leftarrow c X+d Y
\end{aligned}
$$

such that $P(x, y)=P^{\prime}(X, Y)$?

continued

Expanding P and comparing with P^{\prime} gives us the equations:

$$
\begin{aligned}
a^{2} A+a c B+c^{2} C & =A^{\prime} \\
2 a b A+(a d+b c) B+2 c d C & =B^{\prime} \\
b^{2} A+b d B+d^{2} C & =C^{\prime}
\end{aligned}
$$

This is hard to solve. In general, the orbit problem is highly non-linear in the group variables and usually intractable.

Approach II

Canonical Forms :-without loss of generality

- Locate a special element in each orbit.
- Move both v and v^{\prime} to this canonical form and then compare.

Very popular

- $A \in G L_{m}: X \rightarrow A X A^{-1}$: Jordan canonical form.
- For quadratic, cubic and quartic polynomials.
- LU, SVD and polar decomposition.
- Will give g such that $g \cdot v=v^{\prime}$.
- Very few actions have canonical forms!

Invariants

A function $f: V \rightarrow \mathbb{C}$ is called an invariant if $f(v)=f\left(g^{-1} \cdot v\right)$ for all $g \in G$ and for all $v \in V$.

- More generally, there is a character $\chi: G \rightarrow \mathbb{C}$ so that $f\left(g^{-1} \cdot v\right)=\chi\left(g^{-1}\right) f(v)$
- Most interesting groups have very few characters, e.g., $S L_{m}$ has just the identity.
- The action of $G L_{m}$ is a simple extension of the action of $S L_{m}$.
- Clear then that $f(v) \neq f\left(v^{\prime}\right) \Longrightarrow v^{\prime} \notin O(v)$.

Question 1 : How are such invariants to be constructed?
Question 2 : Are there enough of them?

Example 1: $G L_{m}$ acting on $\mathbb{C}^{m \times m}$ by conjugation: $A \cdot X=A X A^{-1}$. $\mathbb{C}[X]=\mathbb{C}\left[X_{11}, \ldots, X_{m m}\right]$ is the ring of functions. Invariants are $\operatorname{trace}\left(X^{k}\right)$, and these are the only ones.
Example 2: $G L_{m}$ acting on $\mathbb{C}^{m \times n}$ by left multiplication; $A \cdot X=A X$. Invariants are the $m \times m$-minors of X, and these are the only ones.
Example 3: $G L_{2}$ acting on $\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)$, i.e., $a X_{1}^{2}+b X_{1} X_{2}+c X_{2}^{2}$. In $\mathbb{C}[a, b, c]$, the discriminant $b^{2}-4 a c$ is an invariant and it is the only one.

Example 4: $G L_{m}$ acting on $\left(X_{1}, \ldots, X_{k}\right)$ by simultaneous conjugation:

$$
\left(X_{1}, X_{2}, \ldots, X_{k}\right) \rightarrow\left(A X_{1} A^{-1}, \ldots, A X_{k} A^{-1}\right)
$$

The invariants are $\operatorname{Tr}\left(X_{i 1} \ldots X_{i d}\right)$ for all tuples $\left(i_{1}, \ldots, i_{d}\right)$.

The invariants and orbit space

Hilbert (1898), Mumford, Nagata and others: For rational actions of reductive groups the ring of polynomial invariants is a finitely generated \mathbb{C}-algebra.
If $\mathbb{C}[V]$ is the ring of functions on V, and $C[V]^{G}$ is denoted as the ring of invariants, then there are $f_{1}, \ldots, f_{r} \in \mathbb{C}[V]$, homogeneous, such that $\mathbb{C}[V]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{r}\right]$.

Also note that if $\mathbb{C}[V]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{r}\right]$, then in general the f_{i} are not algebraically independent.

This explains the limitation of the canonical form approach.

Invariants

The Reynolds Operator: : $R: \mathbb{C}[V] \rightarrow \mathbb{C}[V]^{G}$.

- Cayley process, symbolic method, restitution

This answered the construction of invariants question.

But are there enough of them?

That is, if $v^{\prime} \notin O(v)$ then is there an $f \in \mathbb{C}[V]^{G}$ such that $f(v) \neq f\left(v^{\prime}\right)$?

If $\mathbb{C}[V]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{r}\right]$ then consider the map $V \rightarrow \mathbb{C}^{r}$:

$$
v \rightarrow\left(f_{1}(v), \ldots, f_{r}(v)\right)
$$

So, if $v \notin O\left(v^{\prime}\right)$ then is $f(v) \neq f\left(v^{\prime}\right)$?

Rings and Spaces

Variety X and $\mathbb{C}[X]$, ring of functions on X.

$$
\text { maximal ideals of } \mathbb{C}[X] \Leftrightarrow \text { points of } X
$$

Lets apply this to $\mathbb{C}[V]^{G}$:
maximal ideals of $\mathbb{C}[V]^{G} \stackrel{?}{\Leftrightarrow}$ orbits in V
Example 2: $G L_{m}$ acting on $\mathbb{C}^{m \times n}$ by left multiplication; $A \cdot X=A X$. Invariants are the $m \times m$-minors of X, and these are the only ones.

NO
m-dimensional subspaces of $\mathbb{C}^{n} \stackrel{?}{\Leftrightarrow}$ all subspaces of dimension $\leq m$

Separation

$$
\text { Let } \mathbb{C}[V]^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{r}\right] \text {. }
$$

The closure

$$
[v]=\left\{v^{\prime} \mid f_{i}(v)=f_{i}\left(v^{\prime}\right) \text { for all } f_{i}\right\}
$$

Clear that:

- [v] is a closed set and that $O(v) \subseteq[v]$.
- If $O(v)$ is not closed, invariants do not separate.

Example : Consider $X \rightarrow A X A^{-1}$. Let $A(t)=\operatorname{diag}\left(t, t^{-1}\right)$ and X be as follows:

$$
A(t) X A(t)^{-1}=\left[\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
t^{-1} & 0 \\
0 & t
\end{array}\right]=\left[\begin{array}{ll}
1 & t^{2} \\
0 & 1
\end{array}\right]
$$

X cannot be separated from / by any invariant.

Stability

Nagata, Mumford

- $v \in V$ is called stable is $O(v)$ is closed.
- [v] has a unique stable orbit.

Part of the proof:

- Suppose $[v]$ has two closed disjoint G-invariant sets C_{1} and C_{2}.
- There is an $f \in \mathbb{C}[V]$ such that $f\left(C_{1}\right)=0$ and $f\left(C_{2}\right)=1$.
- (rationality of action) There are a finite number of translates $f_{1}=g_{1} \cdot f, \ldots, f_{k}=g_{k} \cdot f$ such that all translates $g \cdot f$ are linear combinations of the above. In other words

$$
M=\mathbb{C} f_{1} \oplus \ldots \oplus \mathbb{C} f_{k}
$$

is a G-module.

- Finally, let $p \in C_{2}$ and define:

$$
\text { eval }_{p}: M \rightarrow \mathbb{C}
$$

given by $h \rightarrow h(p)$. This is equivariant (with the trivial action of G on \mathbb{C}).

- Thus the kernel of eval ${ }_{p}$ is a G-module.
- (reductivity) There is an invariant $h \in M$ such that $h(p)=1$.

Thus $h\left(C_{1}\right)=0$ and $h\left(C_{2}\right)=1$ and h separates C_{1} from C_{2}.

- Thus $V /[\cdot]$ is the collection of orbits separable by invariants.

Question : So, how big is $[v]$ for a $v \in V$?

- The biggest and most complicated [v] is [0], the Null Cone, an important feature of every group action. The 0-Orbit is the unique closed orbit in [0].
- For the $X \rightarrow A X A^{-1}$, [0] is precisely the collection of Nilpotent Matrices \mathcal{N}. For all $N \in \mathcal{N}, \operatorname{Tr}\left(N^{k}\right)=0$.
- Most points are stable, but few tests to prove stability .
- diagonal matrices are stable.
- $\operatorname{perm}_{n}(X), \operatorname{det}_{n}(X)$ as elements of $\operatorname{Sym}^{n}(X)$ (on $n \times n$-matrices) are stable!

This is through the use of theory of one-parameter subgroups of G for taking limits, initiated by Hilbert, and then by Mumford and refined by Kempf.

$$
\lambda: \mathbb{C}^{*} \rightarrow G
$$

When $G=S L_{m}$ or $G L_{m}, \lambda$ is conjugate to:

$$
\lambda(t)=\left[\begin{array}{cccc}
t^{n_{1}} & 0 & 0 & 0 \\
0 & t^{n_{2}} & 0 & 0 \\
0 & 0 & \vdots & 0 \\
0 & 0 & 0 & t^{n_{m}}
\end{array}\right]
$$

Hilbert: $v \in[0]$ iff there is a λ so that $\lim _{t \rightarrow 0} \lambda(t) \cdot v=0$.
For example, when $X=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ for the action $X \rightarrow A X A^{-1}$:

$$
\left[\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
t^{-1} & 0 \\
0 & t
\end{array}\right]=\left[\begin{array}{cc}
0 & t^{2} \\
0 & 0
\end{array}\right]
$$

Thus $\lim _{t \rightarrow 0} \lambda(t) \cdot X=0 \Longrightarrow X \in[0]$.

Hilbert and 1-PS

- $v \in[0] \Longrightarrow 0 \in \overline{O(v)}$, the orbit-closure. Easy.
- This implies that there is a curve $\lambda(t) \subset G$ such that $\lim \lambda(t) \cdot v=0$. moderate.
- This implies there is a subgroup $\lambda(t)$! Tricky.

Hilbert used this most effectively to understand the null-cone for the action of $G L_{m}$ on $\operatorname{Sym}^{d}(X)$.
If $f \in[0]$ then there is a $g \in G$ and a $\lambda \in \mathbb{Z}^{m}$ so that $g \cdot f=\sum_{d} a_{d} X^{d}$ such that

- $\sum \lambda=0\left(\lambda\right.$ is code for $\left.\operatorname{diag}\left(t^{\lambda_{1}}, \ldots, t^{\lambda_{m}}\right)\right)$ and
- $\lambda \cdot d \leq 0 \Longrightarrow a_{d}=0$.

In other words, the polynomial may be arranged to have limited support.

Limiting support to a few monomials

Example : $f=3 X_{1}^{2} X_{2}^{2}+X_{1}^{3} X_{3} \in[0]$. We see that $d_{1}=[220]$ and $d_{2}=[301]$. The witness is $\lambda=[3,-2,-1]$.

Mumford and Kempf

Mumford: If v_{0} is stable, and $v \in\left[v_{0}\right]$ then there is a $\lambda(t)$ such that (i) $\lim (\lambda(t) \cdot v)$ exists, and (ii) it is in $O\left(v_{0}\right)$.

$$
\left[\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
t^{-1} & 0 \\
0 & t
\end{array}\right]=\left[\begin{array}{cc}
1 & t^{2} \\
0 & 1
\end{array}\right]
$$

Thus $\lim _{t \rightarrow 0} \lambda(t) \cdot X=I \Longrightarrow X \in[I]$.
Kempf : There is, in fact, a unique most efficient λ doing the job! Moreover:

- If H stabilizes v then $\lambda(t)$ commutes with H.

Proof: A quadratic programming formulation with integer entries. Optimum rational point is the answer.

Example revisited

Example : $f=3 X_{1}^{2} X_{2}^{2}+X_{1}^{3} X_{3} \in[0]$. We see that $d_{1}=[220]$ and $d_{2}=$ [301]. One witness is $\lambda=[3,-2,-1]$.
λ is code for $X_{1} \rightarrow t^{3} X_{1}, X_{2} \rightarrow t^{-2} X_{2}$ and $X_{3} \rightarrow t^{-1} X_{3}$. We have

$$
X_{1}^{2} X_{2}^{2} \rightarrow t^{2} X_{1}^{2} X_{2}^{2} \quad X_{1}^{3} X_{3} \rightarrow t^{8} X_{1}^{3} X_{3}
$$

Thus the efficiency is $2 / \sqrt{3^{2}+2^{2}+1^{2}} \approx 0.6$.
Consider $[1,0,-1]$ and we have efficiency as $2 / \sqrt{2}>1$. In fact, this is the most efficient λ.
Kempf

- Problem reduces to construction of a flag

$$
0 \subseteq V_{1} \subseteq \ldots \subseteq V_{m}=\mathbb{C}^{m}
$$

- The flag with the most efficiency is "unique".
- Within a flag, problem is QP.

Stabilizers

$\operatorname{det}_{m}(X)$ and $\operatorname{perm}_{m}(X)$ are stable in $\operatorname{Sym}^{m}(X)$, where X is the space of $m \times m$ matrices.

Stabilizers to the rescue.

- v unstable then there is λ_{v} most efficient.
- Clear that $g \cdot v$ unstable as well, also $\lambda_{g \cdot v}=g \lambda g^{-1}$.
- $h \cdot v=v$ implies h commutes with λ.
- λ_{v} commutes with stabilizer H.
det_{m} (and similarly permm_{m}) is stable
- But H for det_{m} includes $S L_{m} \times S L_{m} \rightarrow S L_{m^{2}}=S L(X)$.
- And $X=\mathbb{C}^{m} \otimes \mathbb{C}^{m}$ is H-irreducible.
- There is no non-trivial $\lambda \subseteq S L(X)$ commuting with H !

Groups and closed orbits

- Groups affect stability:
- Orthogonal group: all orbits closed.
- $S L_{m}$: some closed, $G L_{m}$: none closed.
- Cardboard polygons under translations and rotations: lengths, order
- Sets of coloured points in 3-space under permutation and translation and rotations: coloured distances
- Cardboard polygons under cut and paste: area
- 3-D polyhedra under cut and paste: length-angles

The $\preceq_{\text {hom }}$ and $d e t_{m}$ and $p e r m_{n}$

Let $X=\left\{X_{1}, \ldots, X_{r}\right\}$.
For two form $f, g \in \operatorname{Sym}^{d}(X)$, we say that $f \preceq_{\text {hom }} g$, if $f(X)=g(B \cdot X)$ where B is a fixed $r \times r$-matrix.

Note that:

- B may even be singular.
- $\preceq_{\text {hom }}$ is transitive.

Program for $\mathbf{f}(\mathbf{Y})$

If there is an efficient algorithm to compute g then we have such for f as well.

- How is this related to orbits?
- How is this related to the usual 'reduction'?

The insertion

Suppose that $\operatorname{perm}_{n}(Y)$ has a formula of size $m / 2$. How is one to interpret Valiant's construction?

- Let Y be $n \times n$.
- Build a large $m \times m$-matrix X.
- Identify Y as its submatrix.

The "inserted" permanent

For $m>n$, we construct a new function $\operatorname{perm}_{n}^{m} \in \operatorname{Sym}^{m}(X)$.

- Let Y be the principal $n \times n$-matrix of X.
- $\operatorname{perm}_{n}^{m}=x_{m}^{m-n} \operatorname{perm}_{n}(Y)$

Thus perm ${ }_{n}$ has been inserted into $\operatorname{Sym}^{m}(X)$, of which $\operatorname{det}_{m}(X)$ is a special element. Now, Valiant \Longrightarrow there is an $A(y)$ linear such that:

The "inserted" permanent

For $m>n$, we construct a new function $\operatorname{perm}_{n}^{m} \in \operatorname{Sym}^{m}(X)$.

- Let Y be the principal $n \times n$-matrix of X.
- $\operatorname{perm}_{n}^{m}=x_{m m}^{m-n} \operatorname{perm}_{n}(Y)$

Thus perm $_{n}$ has been inserted into $\operatorname{Sym}^{m}(X)$, of which $\operatorname{det}_{m}(X)$ is a special element. Now, Valiant \Longrightarrow there is an $A(y)$ linear such that:

- formula of size $m / 2$ implies

$$
\operatorname{perm}_{n}=\operatorname{det}_{m}(A(y))
$$

- Use $x_{m m}$ as the

Conclusion $\operatorname{perm}_{n}^{m}=\operatorname{det}_{m}\left(A^{\prime}\right)$ $\operatorname{perm}_{n}^{m} \preceq$ hom det_{m} homogenizing variable

Group Action and $\preceq_{\text {hom }}$

Let $V=\operatorname{Sym}^{m}(X)$. The group $G L(X)$ acts on V as follows. For $T \in G L(X)$ and $g \in V$

$$
g_{T}(X)=g\left(T^{-1} X\right)
$$

Two notions:

- The orbit: $O(g)=$ $\left\{g_{T} \mid T \in S L(X)\right\}$.
- The projective orbit closure

$$
\Delta(g)=\overline{\text { cone }(O(g))} .
$$

If $f \preceq_{\text {hom }} g$ then
$f=g(B \cdot X)$, whence

- If B is full rank then f is in the $G L(X)$-orbit of g.
- If not, then B is approximated by elements of $G L(X)$.

Thus, in either case,
$f \preceq_{\text {hom }} g \Longrightarrow f \in \Delta(g)$

The Δ

- Thus, we see that if perm $_{n}$ has a formula of size $m / 2$ then $\operatorname{perm}_{n}^{m} \in \Delta\left(\right.$ det $\left._{m}\right)$.
- On the other hand, $\operatorname{perm}_{n}^{m} \in \Delta\left(\operatorname{det}_{m}\right)$ implies that for every $\epsilon>0$, there is a $T \in G L(X)$ such that $\left\|\left(\operatorname{det}_{m}\right)_{T}-\operatorname{perm}_{n}^{m}\right\|<\epsilon$. This yields a poly-time approximation algorithm for the permanent

Thus, we have an almost faithful algebraization of the formula size construction.

To show that perm ${ }_{5}$ has no formula of size $20 / 2$, it suffices to show:

$$
\operatorname{perm}_{5}^{20} \notin \Delta\left(\text { det }_{20}\right)
$$

Naive Expectation: det_{20} is stable and so is perm $_{5}$. We have this great theory ... Invariants should do the job! OBSTRUCTION.

Problem 1 perm 5 may be stable, but perm 5_{5}^{20} is NOT. It is in the null-cone.
$x_{1}^{3}+x_{2}^{3}$ is stable in $\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)$ but $x_{3}^{5}\left(x_{1}^{3}+x_{2}^{3}\right)$ is unstable in $\operatorname{Sym}^{8}\left(\mathbb{C}^{4}\right)$.

Problem $2 \Delta\left(\right.$ det $\left._{20}\right)$ contains more than just the orbit and its scalar multiples.

Let $\lambda(t)$ be a 1-PS and let $\lambda(t) \cdot g=t^{d} f_{d}+t^{d+1} f_{d+1}+\ldots+t^{m} f_{m}$. Then $f_{d}, f_{m} \in \Delta(f)$. Thus, even for stable $f, \Delta(f)$ contains much more.

Two Questions

- Thus every invariant μ will vanish on perm ${ }_{n}^{m}$.
- There is no invariant μ such that $\mu\left(\operatorname{det}_{m}\right)=0$ and $\mu\left(\right.$ perm $\left._{n}^{m}\right) \neq 0$.

Homogeneous invariants will never serve as obstructions. They dont even cut the null-cone

Two Questions:

- Is there any other system of functions which vanish on $\Delta\left(\operatorname{det}_{m}\right)$?
- Can anything be retrieved from the superficial instability of perm n_{n}^{m} ?

Part II

- Is there any other system of functions which vanish on $\Delta\left(d e t_{m}\right)$? Yes. The Peter-Weyl argument.
- Can anything be retrieved from the superficial instability of perm ${ }_{n}^{m}$?
Yes. Partial or parabolic stability.

Two key ideas:

- Representations as obstructions
- Stabilizers

Philosophically-Two Parts

- Identifying structures where obstructions are to be found.
- Actually finding one and convincing others.

Two different types of problems:

- Geometric
- Is the ideal of $\Delta(g)$ determined by representation theoretic data.
- Does Σ_{H} generate the ideal of $\Delta(g)$?
- Is the stabilizer H of g, G-separable?
\star Larsen-Pink: do multiplicities determine subgroups?
- More?
- Representation Theoretic
- Is this G-module H-peter-weyl!

The subgroup restriction problem

- Given a G-module V, does $\left.V\right|_{H}$ contain 1_{H} ?
- Given an H-module W, does $\left.V\right|_{H}$ contain W ?

The Kronecker Product Consider $H=S L_{r} \times S L_{s} \rightarrow S L_{r s}=G$, when does $V_{\mu}(G)$ contain an H-invariant?

This, we know, is a very very hard problem. But this is what arises (with $r=s=m$) when we consider det_{m} and there may well be a hope...

The subgroup restriction problem

- Given a G-module V, does $\left.V\right|_{H}$ contain 1_{H} ?
- Given an H-module W, does $\left.V\right|_{H}$ contain W ?

The Kronecker Product Consider $H=S L_{r} \times S L_{s} \rightarrow S L_{r s}=G$, when does $V_{\mu}(G)$ contain an H-invariant?

This, we know, is a very very hard problem. But this is what arises (with $r=s=m$) when we consider det_{m} and there may well be a hope...

through Quantum Groups!

Any more geometry?

- The Hilbert-Mumford-Kempf flags: limits for affine closures.
- Extendable to projective closures?

$$
\lambda=\left[\lambda_{1}, \ldots, \lambda_{m}\right]
$$

$$
f\left(t^{\lambda_{1}} X_{1}, \ldots, t^{\lambda_{m}} X_{m}\right)=t^{d} f_{d}+\ldots+t^{e} f_{e}
$$

- Kempf: if $d \geq 0$ then there is a unique best λ : convex programming.
- general d?: Let $\Lambda(f, S, G)=\{\lambda \in G \mid I d(\lambda, f) \in S\}$.
- Is there a best $\lambda \in \Lambda(f, S, G)$? in $\Lambda(f, S, T)$? Something there, but convexity of the optmization problem ...?

The Luna-Vust theory

Local models for stable points.

- Tubular neighbourhoods of stable orbits look like $G \times_{H} N$.
- Corollary: stabilizers of nearby points subgroups of H upto conjugation.
- Extendable for partially stable points, i.e., when H is not semisimple?
- $H=R U$ a Levi factorization and (i) N, an R-module, (ii) $\phi: N \times \mathcal{G} \rightarrow V$, an R-equivariant map.
- A finite lie-algebra local model exists but ...

Another problem-Strassen

Links invariant theory to computational issues.

- Consider the 2×2 matrix multiplication $A B=C$. To compute C, we seem to need the 8 bilinear forms $a_{i j} b_{j k}$.
- Can we do it in any fewer?

A bilinear form on A, B is rank 1 if its matrix is of rank 1 . Let S denote the collection of all rank 1 forms.

- Let $S^{k}=S+S+\ldots+S$ (k times). These are the so called secant varieties.
- Strassen showed that S^{7} contains all the above 8 bi-linear forms.

Consequence

There is an $n^{2.7}$-time algorithm to do matrix multiplication.

Specific to Permanent-Determinant

Negative Results

- von zur Gathen: $m>c \cdot n$
- Used the singular loci of det and perm.
- Combinatorial arguments.
- Raz: $m>p(n)$, but multilinear case.
- Ressayre-Mignon: $m>c \cdot n^{2}$
- Used the curvature tensor.

For a point $p \in M$, hyper-surface $\kappa: T P_{m} \rightarrow T P_{m}$.

- For any point of $\operatorname{det}_{m}, \operatorname{rank}\left(\kappa\left(\operatorname{det}_{m}\right)\right) \leq m$.
- For one point of $\operatorname{perm}_{n}, \operatorname{rank}\left(\kappa\left(\right.\right.$ perm $\left.\left._{n}\right)\right)=n^{2}$.
- A section argument.

Thank you.

