Geometric Complexity Theory Milind Sohoni ${ }^{1}$

An approach to complexity theory via
 Geometric Invariant Theory.

Research Institute for Mathematical Sciences
Kyoto University

Talk Outline

- Mainly Valiant
- Mainly stability and obstructions
- Mainly Representations
- Largely hard

The satisfiability problem

- Boolean variables x_{1}, \ldots, x_{n}
- Term $t_{1}=\left(\neg x_{1} \vee x_{3} \vee x_{7}\right)$, and so on upto t_{m}.
- Formula $t_{1} \wedge t_{2} \wedge \ldots \wedge t_{m}$

Question: Decide if there is a satisfying assignment to the formula.
No known algorithm which works in time polynomial in n and m.

- The problem belongs to an equivalence class called NP-complete problems.
- The question of $\mathbf{P} \mathbf{v}$. NP asks:
- Either produce an efficient algorithm.
- Or prove none exists.
- This has been an outstanding question for the last 50 years.

Decision vs. Counting

Equivalence: Solve One \Leftrightarrow Solve All
Unsolvable One \Leftrightarrow Unsolvable All

Many relatives of $\mathrm{P} v$. NP. We look at the counting version.

- Boolean variables x_{1}, \ldots, x_{n}
- Term $t_{1}=\left(\neg x_{1} \vee x_{3} \vee x_{7}\right)$, and so on upto t_{m}.
- Formula $t_{1} \wedge t_{2} \wedge \ldots \wedge t_{m}$

Question: Decide if there is a satisfying assignment to the formula.
Harder Question: Count the number of satisfying assignments. Thus we have the decision problem and its counting version.

Matchings

Question: Given a bipartite graph on n, n vertices, check if the graph has a complete matching.

This problem has a known polynomial time algorithm.

Harder Question: Count the number of complete matchings.

- There is no known polynomial time algorithm to compute this number.
- Even worse, there is no proof of its non-existence.

Thus, there are decision problems whose counting versions are hard.

The permanent

If X is an $n \times n$ matrix, then the permanent function is:

$$
\operatorname{perm}_{n}(X)=\sum_{\sigma} \prod_{i} x_{i, \sigma(i)}
$$

The relationship with the matching problem is obvious. When X is $0-1$ matrix representing the bipartite graph, then $\operatorname{perm}(X)$ counts the number of matchings.

- There is no known polynomial time algorithm to compute the permanent, and worse, no proof of its non-existence.
- The function perm n is \#P-complete. In other words, it is the hardest counting problem whose decision version is easy to solve.

Our Thesis

- Non-existence of algorithm \Longrightarrow existence of a mathematical structure (obstructions)
- These happen to arise in the GIT and Representation Theory of Orbits.

Example

- Hilbert Nullstellensatz: Either polynomials f_{1}, \ldots, f_{n} have a common zero, or there are g_{1}, \ldots, g_{n} such that

$$
f_{1} g_{1}+\ldots+f_{n} g_{n}=1
$$

- Thus g_{1}, \ldots, g_{n} obstruct f_{1}, \ldots, f_{n} from having a common zero.

Computation Model-Formula Size

Let $p\left(X_{1}, \ldots, X_{n}\right)$ be a polynomial.
A formula is a particular way of writing it using $*$ and + .
formula = formula*formula | formula+formula

- Thus the same function may have different ways of writing it.
- The number of operations required may be different.

Example:

- $a^{3}-b^{3}=(a-b)\left(a^{2}+a * b+b^{2}\right)$.
- Van-der-Monde $\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)$.

Formula size: the number of $*$ and + operations.

- LHS1 is $5, \mathrm{RHS} 1$ is $7, \mathrm{RHS} 2$ is n^{2}.

Formula size

- A formula gives a formula tree.
- This tree yields an algorithm which takes time proportional to formula size.

Does perm n have a formula of size polynomially bounded in n ? (This also implies a polynomial time algorithm) No Answer

Valiant's construction: converts the tree into a determinant.

Valiant's Construction

If $p\left(Y_{1}, \ldots, Y_{k}\right)$ has a formula of size $m / 2$ then,

- There is an inductively constructed graph G_{p} with atmost m nodes, with edge-labels as (i) constants, or (ii) variable Y_{i}.
- The determinant $\operatorname{det}\left(A_{p}\right)$ of the adjacency matrix of G_{p} equals p.

A simple formula.
The general case.
Addition

The Matrix

In other words:

$$
p\left(Y_{1}, \ldots, Y_{k}\right)=\operatorname{det}_{m}(A)
$$

where $A_{i j}(Y)$ is a degree-1 expression on Y.
For our example, we have:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & y \\
1 & 0 & 0
\end{array}\right] \operatorname{det}(A)=y
$$

- Note that in Valiant's construction $A_{i j}=Y_{r}$ or $A_{i j}=c$.

$$
\text { formula size }=m / 2 \Longrightarrow p(Y)=\operatorname{det}_{m}(A)
$$

The homogenization

Lets homogenize the above construction:

- Add an extra variable Y_{0}.
- Let $p^{m}\left(Y_{0}, \ldots, Y_{k}\right)$ be the degree- m homogenization of p.
- Homogenize the $A_{i j}$ using Y_{0} to $A_{i j}^{\prime}$.

We then have: $p^{m}\left(Y_{0}, \ldots, Y_{k}\right)=\operatorname{det}_{m}\left(A^{\prime}\right)$

For our small example:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & y \\
1 & 0 & 0
\end{array}\right] \quad A^{\prime}=\left[\begin{array}{ccc}
0 & y_{0} & 0 \\
0 & y_{0} & y \\
y_{0} & 0 & 0
\end{array}\right] \quad \operatorname{det}\left(A^{\prime}\right)=y_{0}^{2} y
$$

Valiant-conclusion

If a form $p(Y)$ has a formula of size $m / 2$ then

- There is an $m \times m$-matrix A with linear entries

$$
\operatorname{det}(A)=p(Y)
$$

- There is an $m \times m$-matrix A^{\prime} with homogeneous linear entries

$$
\operatorname{det}\left(A^{\prime}\right)=p^{m}(Y)
$$

where p^{m} is the m-homogenization of p.

The $\preceq_{\text {hom }}$

Let $X=\left\{X_{1}, \ldots, X_{r}\right\}$.
For two form $f, g \in \operatorname{Sym}^{d}(X)$, we say that $f \preceq_{\text {hom }} g$, if $f(X)=g(B \cdot X))$ where B is a fixed $r \times r$-matrix.

Note that:

- B may even be singular.
- $\preceq_{\text {hom }}$ is transitive.

If there is an efficient algorithm to compute g then we have such for f as well.

The insertion

Suppose that $\operatorname{perm}_{n}(Y)$ has a formula of size $m / 2$. How is one to interpret Valiant's construction?

- Let Y be $n \times n$.
- Build a large $m \times m$-matrix X.
- Identify Y as its submatrix.

The "inserted" permanent

For $m>n$, we construct a new function $\operatorname{perm}_{n}^{m} \in \operatorname{Sym}^{m}(X)$.

- Let Y be the principal $n \times n$-matrix of X.
- $\operatorname{perm}_{n}^{m}=x_{m m}^{m-n} \operatorname{perm}_{n}(Y)$

Thus perm n has been inserted into $\operatorname{Sym}^{m}(X)$, of which $\operatorname{det}_{m}(X)$ is a special element.

The "inserted" permanent

For $m>n$, we construct a new function $\operatorname{perm}_{n}^{m} \in \operatorname{Sym}^{m}(X)$.

- Let Y be the principal $n \times n$-matrix of X.
- $\operatorname{perm}_{n}^{m}=x_{m m}^{m-n} \operatorname{perm}_{n}(Y)$

Thus perm n has been inserted into $\operatorname{Sym}^{m}(X)$, of which $\operatorname{det}_{m}(X)$ is a special element.

- formula of size $m / 2$ implies $\operatorname{perm}_{n}=\operatorname{det}_{m}(A)$
$\operatorname{perm}_{n}^{m}=\operatorname{det}_{m}\left(A^{\prime}\right)$
- Use $x_{m m}$ as the

$$
\operatorname{perm}_{n}^{m} \preceq_{\text {hom }} \operatorname{det}_{m}
$$

homogenizing variable

Group Action and $\preceq_{\text {hom }}$

Let $V=\operatorname{Sym}^{m}(X)$. The group $G L(X)$ acts on V as follows. For $T \in G L(X)$ and $g \in V$

$$
g_{T}(X)=g\left(T^{-1} X\right)
$$

Two notions:

- The orbit: $O(g)=$ $\left\{g_{T} \mid T \in S L(X)\right\}$.
- The projective orbit closure

$$
\Delta(g)=\overline{\operatorname{cone}(O(g))}
$$

If $f \preceq$ hom g then
$f=g(B \cdot X)$, whence

- If B is full rank then f is in the $G L(X)$-orbit of g.
- If not, then B is approximated by elements of $G L(X)$.

Thus, in either case,

$$
f \preceq \text { hom } g \Longrightarrow f \in \Delta(g)
$$

The Δ

- Thus, we see that if perm $_{n}$ has a formula of size $m / 2$ then $\operatorname{perm}_{n}^{m} \in \Delta\left(\operatorname{det}_{m}\right)$.
- On the other hand, perm ${ }_{n}^{m} \in \Delta\left(\operatorname{det}_{m}\right)$ implies that for every $\epsilon>0$, there is a $T \in G L(X)$ such that $\left\|\left(\operatorname{det}_{m}\right)_{T}-\operatorname{perm}_{n}^{m}\right\|<\epsilon$. This yields a poly-time approximation algorithm for the permanent

Thus, we have an almost faithful algebraization of the formula size construction.

The Obstruction and its existence

To show that perm 5 has no formula of size $20 / 2$, it suffices to show:

perm ${ }_{5}^{20} \notin \Delta\left(\operatorname{det}_{20}\right)$

In other words:

- V is a $G L(X)$-module.
- f and g are special points.
- What is the witness to $f \notin \Delta(g)$?

It is clear that such witnesses or obstructions exist in the coordinate ring $k[V]$.
Real Question: How do I find this family and prove that it is indeed so.

What is the structure of such obstructions?

The Obstruction

So let $g, f \in V=\operatorname{Sym}^{d}(X)$. How do we show that $f \notin \Delta(g)$.

- Exhibit a homogeneous polynomial $\mu \in \operatorname{Sym}^{r}\left(V^{*}\right)$ which vanishes on $\Delta(g)$ but not on f.
This μ is then the required obstruction. We would need to show that:
- $\mu(f) \neq 0$.
- $\mu\left(g_{T}\right)=0$ for all $T \in S L(X)$.

Check μ on every point of $\operatorname{Orbit}(g)$

False start: Use the $S L(X)$-invariant elements of $\operatorname{Sym}^{r}\left(V^{*}\right)$ for constructing such a μ.

Invariants

- V is a space with a group G acting on V.
- $\operatorname{Orbit}(v)=\{g . v \mid G \in G\}$.
- Invariant is a function $\mu: V \rightarrow \mathbb{C}$ which is constant on orbits.

Existence and constructions of invariants has been an enduring interest for over 150 years.

Example:

- V is the space of all $m \times m$-matrices.
- $G=G L_{m}$ and $g . v=g v g^{-1}$.
- Invariants are the coefficients of the characteristic polynomial.

Invariants and orbit separation

To show that $f \notin \Delta(g)$

Exhibit a homogeneous invariant μ which vanishes on g but not on f. This μ would then be the desired obstruction.

- Easy to check if a form is an invariant.
- Easy to construct using age-old recipes.
- Easy to check that $\mu(g)=0$ and $\mu(f) \neq 0$.

$$
\mu(g)=0 \Longrightarrow \mu\left(g_{T}\right)=0 \Longrightarrow \mu(\Delta(g))=0
$$

Important Fact

If g and f are stable and $f \notin \Delta(g)$, then there is a homogeneous invariant μ such that $\mu(g) \neq \mu(f)$.

Stability

- g is stable iff
$S L(X)$ - $\operatorname{Orbit}(g)$ is Zariski-closed in V.
- Most polynomials are stable.
- It is difficult to show that a particular form is stable.

Hilbert: Classification of unstable points.

- For matrices under conjugation, precisely the diagonalizable matrices are stable.
perm m and $d e t_{n}$ are stable.

Proof:

- Kempf's criteria.
- Based on the stabilizers of the determinant and permanent.

Rich Stabilizers

The stabilizer of the determinant:

- The form $\operatorname{det}_{m}(X)$:
- $X \rightarrow A X B$
- $X \rightarrow X^{T}$
- $\operatorname{det}_{m} \in \operatorname{Sym}^{m}(X)$ determined by its stabilizer.

The stabilizer of the permanent:

- The form $\operatorname{perm}_{m}(X)$:
- $X \rightarrow P X Q$
- $X \rightarrow D_{1} X D_{2}$
- $X \rightarrow X^{T}$
- $\operatorname{perm}_{m} \in \operatorname{Sym}^{m}(X)$ determined by its stabilizer.

Tempting to conclude that the homogeneous obstructing invariant μ now exists.

The Main Problem

Recall we wish to show

$$
\operatorname{perm}_{n}^{m} \notin \Delta\left(\operatorname{det}_{m}\right)
$$

where
$\operatorname{perm}_{n}^{m}=x_{m m}^{m-n} \operatorname{perm}(Y)$.
perm n_{n}^{m} is unstable, in fact in the null-cone, for very trivial reasons.

- Added an extra degree equalizing variable.
- Treated as a polynomial in a larger redundant set of variables.

Two Questions

- Thus every invariant μ will vanish on perm ${ }_{n}^{m}$.
- There is no invariant μ such that $\mu\left(\operatorname{det}_{m}\right)=0$ and $\mu\left(\right.$ perm $\left._{n}^{m}\right) \neq 0$.

Homogeneous invariants will never serve as obstructions. They dont even enter the null-cone

Two Questions:

- Is there any other system of functions which vanish on $\Delta\left(d e t_{m}\right)$?
- Can anything be retrieved from the superficial instability of perm n_{n}^{m} ?

Part II

- Is there any other system of functions which vanish on $\Delta\left(\operatorname{det}_{m}\right)$?

Yes. The admissibility argument.

- Can anything be retrieved from the superficial instability of perm ${ }_{n}^{m}$?
Yes. Partial or parabolic stability.

Two key focal points:

- Representations as obstructions
- Stabilizers

Question 1

Is there any other system of functions which vanish on $\Delta\left(\operatorname{det}_{m}\right)$ and enter the null-cone?

- We use the stabilizer $H \subseteq S L(X)$ of det_{m}.
- For a representation V_{λ} of $S L(X)$, we say that V_{λ} is H-admissible iff $\left.V_{\lambda}^{*}\right|_{H}$ contains the trivial representation 1_{H}.

For g stable:
Fact: $k[\operatorname{Orbit}(g)] \cong k[G / H] \cong \sum_{\lambda} H$-admissible $n_{\lambda} V_{\lambda}$
Thankfully: $k[\Delta(g)] \cong \sum_{\lambda} H$-admissible $m_{\lambda} V_{\lambda}$
Thus a fairly restricted class of G-modules will appear in $k[\Delta(g)]$. We use this to generate some elements of the ideal for $\Delta(g)$.

G and H

Consider next the G-equivariant surjection:

$$
\phi: k[V] \rightarrow k[\Delta(g)]
$$

We see that (i) ϕ is a graded surjection, and (ii) if $V_{\mu} \subseteq k[V]^{d}$ is not H-admissible, then $V_{\mu} \in \operatorname{ker}(\phi)$.

Let Σ_{H} be the ideal generated by such V_{μ} within $k[V]$. Clearly Σ_{H} vanishes on $\Delta(g)$.

How good is Σ_{H} ?

The Local Picture

G-separability: We say that $H \subseteq G$ is G-separable, if for every non-trivial H -module W_{α} such that:

- W_{α} appears in some restriction $\left.V_{\lambda}\right|_{H}$. then there exists a H-non-admissible V_{μ} such that $\left.V_{\mu}\right|_{H}$ contains W_{α}.

Theorem: Let g and H be as above, with (i) g stable, (ii) g only vector in V with stabilizer H, and (iii) H is G-separable. Then for an open subset U of $V, U \cap \Delta(g)$ matches $\left(k[V] / \Sigma_{H}\right)_{U}$.

Applying this ...

The conditions: (i) stability of g, (ii) $V^{H}=<g>$ and (iii) G-separability of H.

- det_{m} and perm satisfy conditions (i) and (ii) above.
- For $n=2$, stabilizer of $^{2} t_{2}$ is indeed $S L_{4}$-separable.
- For $V=\bigwedge^{d}$ and g the highest weight vector, $\Delta(g)$ is the grassmanian. For this Σ_{H} generates the ideal.
- For $g=\operatorname{det}_{m}$, the data Σ_{H} does indeed enter the null-cone.

Still open:

- Look at $H=S L_{n} \times S L_{n}$ sitting inside $G=S L_{n^{2}}$. Is H G-separable?
- Does Σ_{H} determine $\Delta\left(\right.$ det $\left._{m}\right)$?

To conclude on Question 1

- Stabilizer yields a rich set Σ_{H} of relations vanishing on $\Delta\left(\operatorname{det}_{m}\right)$.
- Given G-separability, Σ_{H} does determine $\Delta\left(\operatorname{det}_{m}\right)$ locally.

Now suppose that perm $_{n}^{m} \in \Delta\left(\operatorname{det}_{m}\right)$ then:

- Look at the surjection $k\left[\Delta\left(\operatorname{det}_{m}\right)\right] \rightarrow k\left[\Delta\left(\right.\right.$ perm $\left.\left._{n}^{m}\right)\right]$.
$V_{\mu} \subseteq k\left[\Delta\left(\right.\right.$ perm $\left.\left._{n}^{m}\right)\right]$ and V_{μ} non- H-admissible, then V_{μ} is the required obstruction.

If $k\left[\Delta\left(\right.\right.$ perm $\left.\left._{n}^{m}\right)\right]$ is understood then this sets up the representation-theoretic obstruction.

Question 2-Partial Stability

Can anything be retrieved from the superficial instability of permer

- Let's consider the simpler function $f=$ $\operatorname{perm}(Y) \in \operatorname{Sym}^{n}(X)$,
i.e., with useful
variables Y and useless $X-Y$.
- Let parabolic
$P \subseteq G L(X)$ fix Y.
- $P=L U$, with U the unipotent radical.

We see that:

- f is fixed by U.
- f is L-stable.

The form f

Recall $f=\operatorname{perm}(Y) \in V=\operatorname{Sym}^{n}(X)$ and P fixing Y.
We see that f is partially stable with $R=L=G L(Y) \times G L(X-Y)$.
With $W=S^{\prime} m^{n}(Y)$, we have the P-equivariant diagrams:

where $\Delta_{W}(f)$ is the projective closure of the $G L(Y)$-orbit of f, and $\Delta_{V}(f)$ is that of the $G L(X)$-orbit of f.

The Theorem

Lifting

- The $G L(X)$-module $V_{\mu}(X)$ occurs in $k\left[\Delta_{V}(f)\right]^{d *}$ iff $\left(V_{\mu}(X)\right)^{U}$ is non-zero. Thus the $G L(Y)$-module $V_{\mu}(Y)$ must exist.
- Next, the multiplicity of $V_{\mu}(X)$ in $k\left[\Delta_{V}(f)\right]^{d *}$ equals that of $V_{\mu}(Y)$ in $\left.k\left[\Delta_{W}(f)\right]^{d *}\right]$.

Now recall that $f=\operatorname{perm}_{m}(Y)$, and let $K=\operatorname{stabilizer}(f) \subseteq G L(Y)$.
But f is $G L(Y)$-stable, and

- the $G L(Y)$-modules which appear in $k\left[\Delta_{W}(f)\right]^{d}$ must be K-admissible.

The Grassmanian

Consider $V=V_{1^{k}}\left(\mathbb{C}^{m}\right)=\bigwedge^{k}\left(\mathbb{C}^{m}\right)$ and the highest weight vector v.

- v is stable for the $G L_{k} \times G L_{m-k}$ action.
- $\Delta_{V}(v)$ is just the grassmanian.
- v is partially stable with the obvious P.
- $W=\mathbb{C}^{k} \subseteq \mathbb{C}^{m}$ and $\Delta_{W}(v)$ is the line through v.
- whence

$$
k\left[\Delta_{W}(v)\right]=\sum_{d} \mathbb{C}
$$

- The above theorem subsumes the Borel-Weil theorem:

$$
k\left[\Delta_{V}(v)\right] \cong \sum_{d} V_{d^{k}}\left(\mathbb{C}^{m}\right)
$$

The general partially stable case

Recall: Let V be a G-module. Vector $v \in V$ is called partially stable if there is a parabolic $P=L U$ and a regular $R \subseteq L$ such that:

- v is fixed by U, and
- v is R-stable.

In the general case, there is a regular subgroup $R \subseteq L$, whence the theory goes through

$$
\Delta_{W}(v) \rightarrow \Delta_{Y}(v) \rightarrow \Delta_{V}(v)
$$

- The first injection goes through a Pieri branching rule.
- The second injection follows the lifting theorem.

In Summary

In other words, the theory of partially-stable $\Delta_{V}(f)$ lifts from that of the stable case $\Delta_{W}(f)$.

The Obstruction

Let $H \subseteq G L(X)$ stabilize det_{m} and $K \subseteq G L(Y)$ stabilize perm $_{m}^{n}$.
The representation-theoretic obstruction $V_{\mu}^{*}(X)$ for perm ${ }_{n}^{m} \in \Delta\left(\right.$ det $\left._{m}\right)$

- V_{μ} is such that $V_{\mu}(X)^{U}$ is non-zero.
- $\left.V_{\mu}(Y, y)\right|_{R}$ has a K-fixed point.
- $\left.V_{\mu}(X)\right|_{H}$ does not have a H-fixed point.

Philosophically-Two Parts

- Identifying structures where obstructions are to be found.
- Actually finding one and convincing others.

Two different types of problems:

- Geometric
- Is the ideal of $\Delta(g)$ determined by representation theoretic data.
- Does Σ_{H} generate the ideal of $\Delta(g)$?
- Is the stabilizer H of g, G-separable?
\star Larsen-Pink: do multiplicities determine subgroups?
- Representation Theoretic
- Is this G-module H-admissible!

The subgroup restriction problem

- Given a G-module V, does $\left.V\right|_{H}$ contain 1_{H} ?
- Given an H-module W, does $\left.V\right|_{H}$ contain W ?

The Kronecker Product Consider $H=S L_{r} \times S L_{s} \rightarrow S L_{r s}=G$, when does $V_{\mu}(G)$ contain an H-invariant?

This, we know, is a very very hard problem. But this is what arises (with $r=s=m$) when we consider det_{m}.

Another problem-Strassen

Links invariant theory to computational issues.

- Consider the 2×2 matrix multiplication $A B=C$. To compute C, we seem to need the 8 bilinear forms $a_{i j} b_{j k}$.
- Can we do it in any fewer?

A bilinear form on A, B is rank 1 if its matrix is of rank 1 . Let S denote the collection of all rank 1 forms.

- Let $S^{k}=S+S+\ldots+S$ (k times). These are the so called secant varieties.
- Strassen showed that S^{7} contains all the above 8 bi-linear forms.

Consequence

There is an $n^{2.7}$-time algorithm to do matrix multiplication.

Specific to Permanent-Determinant

Negative Results

- von zur Gathen: $m>c \cdot n$
- Used the singular loci of det and perm.
- Combinatorial arguments.
- Raz: $m>p(n)$, but multilinear case.
- Ressayre-Mignon: $m>c \cdot n^{2}$
- Used the curvature tensor.

For a point $p \in M$, hyper-surface $\kappa: T P_{m} \rightarrow T P_{m}$.

- For any point of $\operatorname{det}_{m}, \operatorname{rank}\left(\kappa\left(\operatorname{det}_{m}\right)\right) \leq m$.
- For one point of $\operatorname{perm}_{n}, \operatorname{rank}\left(\kappa\left(\right.\right.$ perm $\left.\left._{n}\right)\right)=n^{2}$.
- A section argument.

Any more geometry?

Is there any more geometry which will help?

- The Hilbert-Mumford-Kempf flags: limits for affine closures.
- Extendable to projective closures?
- Something there, but convexity of the optmization problem breaks down.
- The Luna-Vust theory: local models for stable points.
- Extendable for partially stable points?
- A finite limited local model exists, but no stabilizer condition seems to pop out.

In Conclusion

- Complexity Theory questions and projective orbit closures.
- stable and partially stable points.
- obstructions
- obstruction existence
- Representations as obstructions
- Distinctive stabilizers
- local definability of $\operatorname{Orbit}(g)$
- partial stability
- lifting theorems
- subgroup restriction problem
- tests for non-zero-ness of group-theoretic data

Thank you.

