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Talk Outline

@ The GCT perspective and the G — G x G case.
e The Uy(glm) ® Uqy(gls) structure of V\(C™") for some .

» The structure on AK(C™").
» The bi-crystal structure on AK(C™").
» The straightening laws and the general case.

@ An m-crystal structure for Vy(C™2).

@ Conclusion.
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The Perspective

@ The Key: The determination of Peter-Weyl modules for the pair
(H, G) with H C G.
» When does V) (G) have an H-fixed vector.
» A conceptual and effective answer.

@ H is typically a reductive group, a stabilizer of a stable form.

@ The special case being the det(X) where GL,, X GL,, — GL
given by:
(A, B)(X) — AXB™*

e For this talk, the more general GL,, x GL, — GL,p,.
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The G — G x G case: Combinatorics

Largely, the GL,,-case.
@ SS(A, m), column-strict semi-standard tableau of shape A with
entries in [m].
@ The monoid M(m) of words on [m] and the Plactic Monoid
PM(m).
@ The row-bump operation and the map M(m) — PM(m).

312040204 %% 212 4l s5((3,2)9)

@ jeu-de-taquin for multiplying two tableau:

112[3] [212]_[1]2]2]2]
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The Bridge

@ The connection between V,(GL,,) and SS(A, m).
» At the weight-space level

dim(V(A)[u]) = [SS(A, m)[u]|
@ Moreover, at the tensor-product level
SS(A\, m) x §5(00, m) = Vi\(GL,,) ® Vi+(GL,)
o More generally,

SS(A, m) x SS(p, m) = VA(GL,,) ® V,.(GL,)
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The Algebra

@ The Drinfeld-Jimbo algebra U,(gl) and the Hopf:

A Uy(gln) — Ug(ghn) @ Ug(ghn)

@ Date-Jimbo-Miwa explanation of the row-bump and RSK.
@ The Kashiwara-Lusztig crystal base and various models.
» identification of SS(\, m) with specific basis elements in
VA(C™).
@ The Kashiwara tensor product rule.

Moreover, much of the theory worked beyond GL,,.

P ), 2

6/ 40



Richer combinatorics

e Crystal Operators &;, F; on M(m), PM(m), i.e., on words and
tableaus SS(\, m), e.g., Es:

N
N
N
N

2(2]4] 4|

1 1 1 4|
213[4] —[2]3]x] —[2][3]3
4] 4 4

@ Our interest: Littlewood-Richardson coefficients:
Vi@V, = @5c),, Vs

@ Proofs of the PRV and LR rule.

@ The Berenstein-Zelevinsky polytope model: Cf,u as integer
points in a suitable polytope.
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Finally..

@ The Knutson-Tao Hive model.

@ The saturation conjecture proved:

"

,,A,w>0:>cw>0

@ Abstract polynomial time algorithm to detect if cfu > 0.
@ Burgisser: A simple algorithm.
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Finally..

@ The Knutson-Tao Hive model.

@ The saturation conjecture proved:

"

n)\n”>O:>C>\M>O

@ Abstract polynomial time algorithm to detect if cfu > 0.
@ Burgisser: A simple algorithm.

Conclusion: conceptual and effective
Th quantum algebra route has settled the Peter-Weyl problem for

GL, — GL, x GLp,

i.e., a simple algorithm to detect if cf’u > 0.

y
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The GL,, X GL,, — GL,,-case: mainly RSK

@ Sym(m, n): collection of m x n matrices with Z* entries.
Sym(m, n) — U,SS(A, [m]) x SS(A, [n])
e Wedge(m, n): collection of m x n matrices with 0-1 entries.
Wedge(m, n) — U\SS(\, [m]) x SS(AT, [n])

@ Both these match the module and weight-space decompositions
for Sym*(C™) and AK(C™).

1/0]o0]1
0/1/0]1 LW (b) = 3132321 RW(b) = 3214241
1/1]1]0
1/1]2 1/1]4]
LT(b)=[2]3]3 RT(b) =22
3 3[4
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Recently..

Danilov and Koshevoi, van Leeuwen:
e Constructed a combinatorial bi-crystal-graph structure on
Sym(m, n) and Wedge(m, n).
o & Fffori=1,....m—1land EF, Ffforj=1,....n—1.
No other general case is known. Also not known:
@ algebraic basis for Danilov's operators.
@ A quantization

Uq(g/m) ® Uq(gln) - Uq(glmn)

This may not even exist.., see Hayashi. The injection
Ui(glm) ® Ui(gl,) — Ui(glnn) is straight-forward.
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We construct ...

e an embedding Uy(gly) ® Uy(glh) — Uq(glmn) on the module
AK(C™), e,

Uq(glmn) — E”dC[q,q‘ll(/\k(Cmn)) — Uqy(8lm) ® Uq(gln)

@ A bi-crystal basis for AK(C™).

e First, for 2-column A\, a Uy(glm) ® Uy(gl,)-module W), such that
at ¢ = 1, the module is isomorphic to V)\(C™") restricted to

Ul(g/m) ® Ul(g/n) - Ul(g/mn)-

@ Possible straightening laws.
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Notation

We have N = mn and the symbols ¢;, f; for i=1,...,N — 1 and

g, q ¢ fori=1,..., N so that:

g =q “q" =1, [q9,q9] =0

qe; fori=j
qieq =< qle fori=j+1
€ otherwise
q’lf} for i =
qfiqg =4 qf; fori=j+1
fi otherwise

We also use ¢ = g%g=“+ and g~ = g~igi+.
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More ...

@ The brackets

€ivl qfeiq€i+1
qg—qt
ler. & = [Fi £] = 0 for [i — j| > 1

qq
[ei7 6] = 51'1'

@ The braids
eef — (q+q Vege + efe = 2 — (g4 g 1 )fififi + 76, =0

when |i — j| = 1.
@ The Hopf

Aqe,' — q6;®q6,'
NAei=e@1+qg"@e Af=0¢"+10f

August 2, 2009 13 /40



Our model

We model A¥(C™) as the vector space with basis as the k-subsets
¢ C [mn]. For a set ¢, we denote v, as the basis element.

qe"v—{vc ifidc

qv. otherwise

- _J0 ifi+1&coriec
Give = vy otherwise, where d = ¢ — {i + 1} + {i}

f;Vc:{O ifi+t+lecoridc

vg otherwise, where d = ¢ — {i} + {i + 1}

Thus e; drops i + 1 from ¢ and introduces an i, whenever it can be
done. Similarly f;.

T ——



On the wedges...

e e?=0, efi 1 =ej1fi =0 forall j.

@ e¢eie; = 0 whenever |j — i| = 1.
J

For i < j, let E;j denote the term [e;, [e41, [. .- [6j-1, &]]] and F;;
denote [[[f;, fi_1], ..., f]]. Note the ordinary bracket.

(_1)|Cﬁ[i+1>f]|vd ifj+lecandigc
Eij(ve) = where d = c — {j + 1} + {i}
0 otherwise

Note the jumping count and the sign. Thus:

e ([2])__ 1]
el [e]) = 2
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The embedding

114|710
We identify C™" with C™®": |2 |5[8 |11
316(9]12

We will mainly use the following as basic operators:

k k
I
| T
€(k—1)m+i Fk—1ymi km+i-1
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U(gl) and US ()

We will now define the left operators EL, FL and g and the right
operators Eff, Fff and g7 . It is clear that:

H (mi+) q7 = [T gmo-v+n
j= i=1
Pictorially:
0[{0(0]0 0(0[1]0
go=|[1|1[1][1 g5 =[0[0[1]0
0[{0|0]0 0(0(1]0
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The left operators
Next, we define the left operators using:

k k—2
Bi - Zj:ol _hjm+i
k Tt h
Al = ik himy

EL = qB}e’. + fo?eer,- -|—1 . fo"e(n—1)m+i
1 n= H
Fro= q%fi+. .+ % foomii + @V o nymei

k k
I-]. A i | 11
1! "1
qB’k €(k—1)m+i qA"kf(k—l)erf
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The right operators
We define the right operators using:

ko m . Nm ,
Gr = Zj:iﬂ Ekm-j Zj:igrlle(k—l)mﬂ
k f— = . Pp— = .
oy = Zj:l €i(k—1)m+j Zj:l €km+j

k

Elf = 27;1 q° E(k—1ym+ikmti-1
k

F/f = 27;1 qi F(k—l)m+i,km+i—1

k k
1]-1
1]-1
I T I -
-111
-111

k k
9% E—tymihmei-1 9% Fl—1)m+ikmi1
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A small example: Let m=n=3

! 114 -11-114
| 1! 11
e + g le, + q62+65—61—64e7
—> 1]-1 1]-1
—> 1]-1
Fas T gy

—+ q64+65—67—68 F6,8

— EL



So then...

@ The left operators do treat the matrix as a tensor of columns,
left to right.

@ The right operators treat the matrix as a tensor of row, bottom
to top and with a sign.

Check

o Check that {EL, FL, g} together satisfy the properties for
Uq(g/m)-

o Same for {ER, FR g%} and U,(gl,).

e That these two actions commute on AK(C™).

T —



Remarks

o Actually, the left U,(gl,) comes from:

Uy(glm) = Ug(gln) © . .. @ Ug(glm) — Uq(@lrmn)

Thus, it is actually sitting inside U,(glmn).

@ The right copy has no analogue in Uy(glnn) and is synthetic.
But for the sign, the action is similar.

@ The commutation reduces to sh-sh case, is a calculation.

1 |-1
1,]-1
1'-1

k-1 k

A
1
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Moreover

@ We may check that at g = 1 the action matches the injection
Ui(glm) ® Ui(glh) — Ui(glmn)-

@ This implies that AX(C™) is isomorphic to
EAVL(C™) @ V7 (C") as Uy(gln) ® Uq(gln)-modules.

@ In fact, the highest weight vectors v, are those from subsets c,
in the upper left corner of the shape A.

o
o
o

sy = |1 V31 =

@ Thus AK(C™) as a Uy(gln) @ Uy(gl,)-module has been
constructed.
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Next, the crystal base for AK(C™)

For a subset ¢ C [mn], let v, denote the pure element in AK. Then,
there is a sign(c) such that the set

{sign(c) - vc|c C [mn], |c| = k}
is the crystal base for AK(C™).
o Let UL = Uy(sh) be the algebra generated by EL, F\, g .
@ For a subset ¢ C [mn], let V,(c) be the vector space generated

by all subsets ¢’ which match ¢ in the column-sums for the rows
i,i +1 and ¢ matches ¢’ everywhere else.

i |1|1|1]|1 1|1 1/1]|1 1
i+1 1 1 1 1|1 1
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At once!

Vi(c) is Ut equivariant, and is of dimension 2% for some k. In fact,
Vi(c) is isomorphic to ®* V(y).

k k
I-l A I | 11
1! EE
Bk Ak
q°7 €(k—1)m+i " fk—1)m+i
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At once!

Vi(c) is Ut equivariant, and is of dimension 2% for some k. In fact,
Vi(c) is isomorphic to ®* V(y).

k k o
Note that inactive
i1 ; 101 columns dont add a
1 T l 11 g-factor!
B ek 1ymyi T o 1ymei

o It follows that the pure elements constitute a crystal basis for
the left action.

@ The crystal operator £} is also clear!
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Now the right

k k
1]-1
Two 111
complications il 1<+ i T
@ The Hopf works -171
the other way -1)1
o There are signs! | ¢° E(k—1)m+i km+i—1 q° Flk—1)m+ikm+i-1
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Now the right

k k
1]-1
Two 111
complications HE . il T
@ The Hopf works -1)1
the other way -1)1
@ There are signs! | qﬂfk E(k—1ymvikmti-1 qa"k Flk—1)ym+i km+i-1

@ Tricky. Define a local sign for each UF so that:
E(k—1)ymyikmyi-1Ve = sign(d)/sign(c)vq

@ Define a global sign which is consistent only on the crystal
operators. For m = n = 2 sign({2,3}) = —1, all others +1

P 2, B
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The combinatorics

How do we implement A*(C™") «» U\SS(A, m) x SS(X, n)?
The two Hopfs give us the reading order:

@ left: read columns bottom to top, left to right.

@ right: read row back to front, bottom to top.
Let m=3and n=4 and let b= {1,3,5,6,9,10,11}.

1/0/0]1
0/1/0]1 LW(b) = 3132321 RW(b) = 3214241
1/1[1/0
1/1]2 1/1]4]
LT(b)=|2{3]3 RT(b) =212
13 1314

Question: How do | compute b from LT (b), RT(b)?

T —



Towards the general module

@ The algebra Uy(gln) ® Uq(gl,) comes with a Hopf, whence
N(C™) @ ... A*(C™) are all available.

e seems difficult to identify V), (C™") as a submodule.

@ We construct equivariant injections and the 2-column modules
Yapt AL @ AP S AT @ AP
@ The images of R, are the straightening laws .
S={R.p|ll < b< a<mn}
e We faintly hope that, if A\ = [ay, ..., a] then

W(C™) = AT ®...0 A*/S
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The 's

o Let i A?® AP — AC, equivariant.

@ Let [u] be the matrix of the map in the standard basis of sets.

@ Then [u]T : A — A7 ® AP is also equivariant and good.
We use this to construct merely:

L, AN — At AT
Ry : N — Nt AL

We obtain 1, as the composition:

| -~
pott @ abt RS e g Al g Akt ELT e g ns

P 2, B
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The L, and R,

e A?(C™") is multiplicity-free and we have the highest weight
subset ¢y and v,.

e N1 ® Al is not multiplicity-free!
@ We will define R, and L, only for these v, and extend it.

e Furthermore, at g = 1, the map L,(vy) and R,(v,) will match
the classical U;(glmn)-expressions.

For a shape A sitting inside
m x n, k X X
@ let ¢y = ¢y — (k, 1) and A
Ly = Vg, € /\afl((Cmn)-
@ Y be the vector
Vik,) € /\1(<Cm")
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The vectors

Here is R,:

Ra(va) = Z(k,/)e,\ Oty @ Xk
c /\a—l ® /\1

(_1)/\’1+...+>\§_1+k k+1=Xg

Q) = q

And here is L,:

La(va) = 2 (kner Brixu @ tu
e /\1 ® /\a—l

B = (_1)A’1+...+A;_1+kqA;—k—/

August 2, 2009
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The vectors
What happens at g = 17

Here is R,:
1
Ra(va) = Z(k,/)e,\ Oty @ Xk |
c /\a—l ® /\1 k X .
g = (=1 Ntk gkt =

And here is L,:
This proves the
La(va) = 2 (kner Brixu @ tu mn-equivariance at g = 1,

S and thusm’zhe construction
B = (1Nt otk Nk of V;(C™") for
v q 2-columns.

August 2, 2009

31/ 40



Straighten too much?

@ Recall

@ That 9, is an injection implies that S cannot straighten too
little.

@ So the only issue with

VW(CE™) =A"T® ... AN*/S

is that it may straighten too much.

@ Our ¢, at g =1 is Ui(glmn)-equivariant and matches the
standard straightening laws.

@ Does this proves the construction? NOT YET
@ True for Sym!
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Remarks

@ Only at v, is the [mn]-weight preserved. For m = n =2,
(> +1)- Rx({2,3}) is:

(°=1)/q-104—(q+1)-203+(q+1)-302+(¢—1)-4®1
@ We have achieved:
NS ATTITA TS AN S AT AT SIS A

Perhaps, R,, L, can be so chosen so that an additional
Uy(gln) @ Uy(gl) @ Uy(gh) structure on A?(C2™) is established!
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Moreover...

This reduces to finding, say {R,}, such that:
EFa : /\a—l ® /\1 :> /\a—2 ® /\l ® /\1 :> /\3—2 ® /\2
has TWO eigenvalues.

If such local maps are found then we have obtained a
Uy(glm) ® Uy(gly) ® Uy(gh) structure on A*(C™?2).

The general Uy(gln) ® Uy(glh) ® Uy(gl,) on AX(C™P) will side-step
the straightening laws.
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Indeed..

On hind-sight Uy(glm) ® Uy(gh) is obvious!
EFa : /\a—l ® /\1 :> /\3—2 ® /\1 ® /\1 : /\3—2 ® /\2
@ n=1implies A? ® Al is multiplicity free with two irreducibles.
@ In fact, our right operators are in this “factored” format.
These right-operators are essentially raising and lowering operators:
ER
/\[al,...,ai,a;+1,...,an]((Cm) AN /\[31,...,a;—1,ai+1+1,...,an]((Cm)

which are factored and local and satisfy the Serre relations.
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The Big Picture

Obviously, get the left and right operators on V,(C™").

But there are many paths to it:
@ Unwind the straightening laws.

o Get Uy(gln) ® Uy(glh) @ U,(gl,) structure on AK(C™") and get
its crystal base.
» The 2mn case is already novel: Young poset

@ A Hecke-type operator on A}(C™) @ A}(C™) commuting with
the action of Uy(gln) ® Uq(gl,)? GCT4 with Ketan.

@ some other way?
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A Puzzle

Lets consider the case of GL,, — GL;,,-the block diagonal
embedding. We also have:

Uq(glm) 2 Ug(ghn)[1, m — 1] @ Ug(ghn)[m + 1,2m — 1] — Uq(ghm)

This gives us a U,(gln)-structure on V4 (C?™).

1(2[2]4] 112]2] ﬂ551223\
213[3] =[5 ® [3]3 — [2]3]3
13 — 3] 13
In other words
ElL:e1®e3

Tempting to seek Eff as a tensor of some existing 2m-operators,
maybe after some Weyl group action. That fails.
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But even for the left operator ...

4\
2| 12|

Thus, the column-wise tensor does not hold!

N
N

‘UJI\.)I—‘
w
w

N

,_.
o

‘Lo\.)l\.)l—l
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But even for the left operator ...

4| 1
—>®®®—> 233

3
Thus, the column-wise tensor does not hold! Here is the magic
massage:

N
—_

4]

N
N

‘UJI\.)I—‘
w
w

1[2]1]4] 1[1]1]4]
2/3[3] — 234
13 13

One may indeed define an m-crystal structure on SS(\, 2m) which
@ works column-wise and acts at the right place.
@ massages in a structured way, only the columns on the left.

Is this a fragment of the crystallization?
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The m = n = 2 case, any shape.

The left operators go left-to-right. The right operators go down.

213 2|13 1/3
— —
4]4 34 34
| | !
12 2|2 11

— — e
414 313 34
! ! !
12 12 11

— —
214 213 213

Does this picture have a quantum explanation :

P 2, B
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Thank you.



