Quantum deformations of the restriction of some $GL_{mn}(\mathbb{C})$ -modules to $GL_m(\mathbb{C}) \times GL_n(\mathbb{C})$

Milind Sohoni¹ IIT Bombay

Research Institute for Mathematical Sciences Kyoto University

¹ongoing work with Bharat Adsul and K. V. Subrahmanyam (a > b > b)

Talk Outline

- The GCT perspective and the $G \rightarrow G \times G$ case.
- The $U_q(gl_m) \otimes U_q(gl_n)$ structure of $V_{\lambda}(\mathbb{C}^{mn})$ for some λ .
 - The structure on $\wedge^k(\mathbb{C}^{mn})$.
 - The bi-crystal structure on $\wedge^k(\mathbb{C}^{mn})$.
 - The straightening laws and the general case.
- An *m*-crystal structure for $V_{\lambda}(\mathbb{C}^{m \cdot 2})$.
- Conclusion.

The Perspective

- The Key: The determination of Peter-Weyl modules for the pair (H, G) with H ⊆ G.
 - When does $V_{\lambda}(G)$ have an *H*-fixed vector.
 - A conceptual and effective answer.
- H is typically a reductive group, a stabilizer of a stable form.
- The special case being the det(X) where $GL_m \times GL_m \rightarrow GL_{m^2}$ given by:

$$(A,B)(X) \rightarrow AXB^{-1}$$

• For this talk, the more general $GL_m \times GL_n \rightarrow GL_{mn}$.

The $G \rightarrow G \times G$ case: Combinatorics

Largely, the GL_m -case.

- SS(λ, m), column-strict semi-standard tableau of shape λ with entries in [m].
- The monoid M(m) of words on [m] and the Plactic Monoid PM(m).
- The row-bump operation and the map $M(m) \rightarrow PM(m)$.

$$\boxed{3 \ 2 \ 4 \ 2 \ 4} \xrightarrow{RSK} \boxed{2 \ 2 \ 4} \in SS([3,2],4)$$

• *jeu-de-taquin* for multiplying two tableau:

A (10) A (10) A (10)

The Bridge

- The connection between $V_{\lambda}(GL_m)$ and $SS(\lambda, m)$.
 - At the weight-space level

$$dim(V(\lambda)[\mu]) = |SS(\lambda, m)[\mu]|$$

• Moreover, at the tensor-product level

$$SS(\lambda, m) \times SS(\Box, m) \equiv V_{\lambda}(GL_m) \otimes V_{\Box}(GL_m)$$

• More generally,

$$SS(\lambda, m) \times SS(\mu, m) \equiv V_{\lambda}(GL_m) \otimes V_{\mu}(GL_m)$$

► < ∃ ►</p>

The Algebra

• The Drinfeld-Jimbo algebra $U_q(gl_m)$ and the Hopf:

$$\Delta: U_q(gl_m) \rightarrow U_q(gl_m) \otimes U_q(gl_m)$$

- Date-Jimbo-Miwa explanation of the row-bump and RSK.
- The Kashiwara-Lusztig crystal base and various models.
 - identification of $SS(\lambda, m)$ with specific basis elements in $V_{\lambda}(\mathbb{C}^m)$.
- The Kashiwara tensor product rule.

Moreover, much of the theory worked beyond GL_m .

Richer combinatorics

Crystal Operators *E_i*, *F_i* on *M(m)*, *PM(m)*, i.e., on words and tableaus SS(λ, m), e.g., *E*₃:

	1	2	2	4		1	2	2	4		1	2	2	4
	2	3	4		\rightarrow	2	3	*		\rightarrow	2	3	3	
4	4					4					4			

• Our interest: Littlewood-Richardson coefficients:

$$V_\lambda \otimes V_\mu = \oplus_eta c^eta_{\lambda,\mu} V_eta$$

- Proofs of the PRV and LR rule.
- The Berenstein-Zelevinsky polytope model: $c_{\lambda,\mu}^{\beta}$ as integer points in a suitable polytope.

Finally..

- The Knutson-Tao Hive model.
- The saturation conjecture proved:

$$c_{n\lambda,n\mu}^{neta}>0\Rightarrow c_{\lambda,\mu}^{eta}>0$$

- Abstract polynomial time algorithm to detect if $c_{\lambda,\mu}^{\beta} > 0$.
- Burgisser: A simple algorithm.

Finally..

- The Knutson-Tao Hive model.
- The saturation conjecture proved:

$$c_{n\lambda,n\mu}^{n\beta} > 0 \Rightarrow c_{\lambda,\mu}^{\beta} > 0$$

• Abstract polynomial time algorithm to detect if $c_{\lambda,\mu}^{\beta} > 0$.

• Burgisser: A simple algorithm.

Conclusion: conceptual and effective

Th quantum algebra route has settled the Peter-Weyl problem for

$$GL_m \rightarrow GL_m \times GL_m$$

i.e., a simple algorithm to detect if $c_{\lambda,\mu}^{\beta} > 0$.

The $GL_m \times GL_n \rightarrow GL_{mn}$ -case: mainly RSK

- Sym(m, n): collection of $m \times n$ matrices with \mathbb{Z}^+ entries. $Sym(m, n) \rightarrow \cup_{\lambda} SS(\lambda, [m]) \times SS(\lambda, [n])$
- Wedge(m, n): collection of $m \times n$ matrices with 0-1 entries. $Wedge(m, n) \rightarrow \cup_{\lambda} SS(\lambda, [m]) \times SS(\lambda^{T}, [n])$
- Both these match the module and weight-space decompositions for Sym^k(ℂ^{mn}) and ∧^k(ℂ^{mn}).

Recently..

Danilov and Koshevoi, van Leeuwen:

- Constructed a *combinatorial* bi-crystal-graph structure on *Sym*(*m*, *n*) and *Wedge*(*m*, *n*).
- $\mathcal{E}_i^L, \mathcal{F}_i^L$ for $i = 1, \dots, m-1$ and $\mathcal{E}_j^R, \mathcal{F}_j^R$ for $j = 1, \dots, n-1$.

No other general case is known. Also not known:

- algebraic basis for Danilov's operators.
- A quantization

$$U_q(gl_m)\otimes U_q(gl_n)
ightarrow U_q(gl_{mn})$$

This may not even exist.., see Hayashi. The injection $U_1(gl_m) \otimes U_1(gl_n) \rightarrow U_1(gl_{mn})$ is straight-forward.

< 回 > < 三 > < 三 >

We construct ...

• an embedding $U_q(gl_m) \otimes U_q(gl_n) \to U_q(gl_{mn})$ on the module $\wedge^k(\mathbb{C}^{mn})$, i.e.,

$$U_q(gl_{mn}) \longrightarrow End_{\mathbb{C}[q,q^{-1}]}(\wedge^k(\mathbb{C}^{mn})) \longleftarrow U_q(gl_m) \otimes U_q(gl_n)$$

- A bi-crystal basis for $\wedge^k(\mathbb{C}^{mn})$.
- First, for 2-column λ, a U_q(gl_m) ⊗ U_q(gl_n)-module W_λ such that at q = 1, the module is isomorphic to V_λ(C^{mn}) restricted to U₁(gl_m) ⊗ U₁(gl_n) ⊆ U₁(gl_{mn}).
- Possible straightening laws.

Notation

We have N = mn and the symbols e_i , f_i for i = 1, ..., N - 1 and q^{ϵ_i} , $q^{-\epsilon_i}$, for i = 1, ..., N so that:

$$q^{\epsilon_i}q^{-\epsilon_i} = q^{-\epsilon_i}q^{\epsilon_i} = 1, \quad [q^{\epsilon_i}, q^{\epsilon_j}] = 0$$
 $q^{\epsilon_i}e_jq^{-\epsilon_i} = \begin{cases} qe_j & \text{for } i=j \\ q^{-1}e_j & \text{for } i=j+1 \\ e_j & \text{otherwise} \end{cases}$
 $q^{\epsilon_i}f_jq^{-\epsilon_i} = \begin{cases} q^{-1}f_j & \text{for } i=j \\ qf_j & \text{for } i=j+1 \\ f_j & \text{otherwise} \end{cases}$

We also use $q^{h_i} = q^{\epsilon_i}q^{-\epsilon_{i+1}}$ and $q^{-h_i} = q^{-\epsilon_i}q^{\epsilon_{i+1}}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

More ...

• The brackets

• The braids

$$e_j e_i^2 - (q + q^{-1})e_i e_j e_i + e_i^2 e_j = f_j f_i^2 - (q + q^{-1})f_i f_j f_i + f_i^2 f_j = 0$$

when $|i - j| = 1$.

• The Hopf

$$\Delta q^{\epsilon_i} = q^{\epsilon_i} \otimes q^{\epsilon_i} \ \Delta e_i = e_i \otimes 1 + q^{-h_i} \otimes e_i, \Delta f_i = f_i \otimes q^{h_i} + 1 \otimes f_i$$

・ロト ・回ト ・ヨト ・ヨ

Our model

We model $\wedge^k(\mathbb{C}^{mn})$ as the vector space with basis as the *k*-subsets $c \subseteq [mn]$. For a set *c*, we denote v_c as the basis element.

$$q^{\epsilon_i} v_c = \begin{cases} v_c & \text{if } i \notin c \\ qv_c & \text{otherwise} \end{cases}$$

$$e_i v_c = \begin{cases} 0 & \text{if } i+1 \notin c \text{ or } i \in c \\ v_d & \text{otherwise, where } d = c - \{i+1\} + \{i\} \end{cases}$$

$$f_i v_c = \begin{cases} 0 & \text{if } i+1 \in c \text{ or } i \notin c \\ v_d & \text{otherwise, where } d = c - \{i\} + \{i+1\} \end{cases}$$

Thus e_i drops i + 1 from c and introduces an i, whenever it can be done. Similarly f_i .

On the wedges...

•
$$e_i^2 = 0$$
, $e_i f_{i+1} = e_{i+1} f_i = 0$ for all *i*.

•
$$e_i e_j e_i = 0$$
 whenever $|j - i| = 1$

For i < j, let $E_{i,j}$ denote the term $[e_i, [e_{i+1}, [\dots [e_{j-1}, e_j]]]$ and $F_{i,j}$ denote $[[[f_j, f_{j-1}], \dots, f_i]]$. Note the ordinary bracket.

$$E_{i,j}(v_c) = \begin{cases} (-1)^{|c \cap [i+1,j]|} v_d & \text{if } j+1 \in c \text{ and } i \notin c \\ & \text{where } d = c - \{j+1\} + \{i\} \\ 0 & \text{otherwise} \end{cases}$$

Note the jumping count and the *sign*. Thus:

$$E_{1,3}\left(\begin{array}{c}2\\4\end{array}\right)=-\begin{array}{c}1\\2\end{array}$$

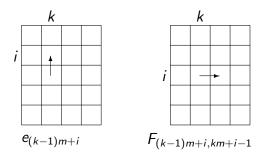
・ 何 ト ・ ヨ ト ・ ヨ ト

The embedding

We identify $\mathbb{C}^{m \cdot n}$ with $\mathbb{C}^{m \otimes n}$:

1	4	7	10
2	5	8	11
3	6	9	12

We will mainly use the following as basic operators:



 $U_q^L(gI_m)$ and $U_a^R(gI_n)$

We will now define the left operators E_i^L , F_i^L and $q^{\epsilon_i^L}$ and the right operators E_j^R , F_j^R and $q^{\epsilon_j^R}$. It is clear that:

$$q^{\epsilon_i^L} = \prod_{j=0}^{n-1} q^{\epsilon_{(mj+i)}} \qquad q^{\epsilon_j^R} = \prod_{i=1}^m q^{\epsilon_{(m(j-1)+i)}}$$

Pictorially:

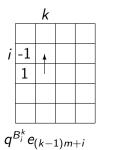
,	0	0	0	0	0	0	1	0
$q^{\epsilon_2^L} =$	1	1	1	1	$q^{\epsilon_3^R} = 0$	0	1	0
	0	0	0	0	0	0	1	0

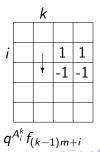
The left operators

Next, we define the left operators using:

$$B_{i}^{k} = \sum_{j=0}^{k-2} -h_{jm+i}$$
$$A_{i}^{k} = \sum_{j=k}^{n-1} h_{jm+i}$$

$$\begin{aligned} E_i^L &= q^{B_i^1} e_i + q^{B_i^2} e_{m+i} + \dots q^{B_i^n} e_{(n-1)m+i} \\ F_i^L &= q^{A_i^1} f_i + \dots + q^{A_i^{n-1}} f_{(n-2)m+i} + q^{A_i^n} f_{(n-1)m+i} \end{aligned}$$





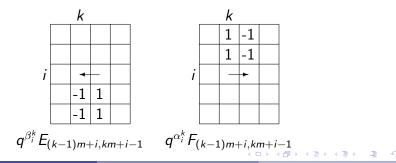
< 🗇 >

18 / 40 August 2, 2009

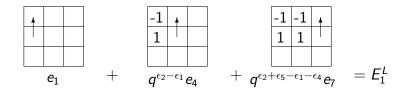
The right operators

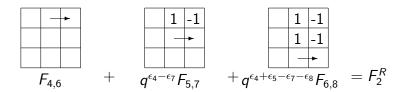
We define the **right operators** using:

$$E_k^R = \sum_{i=1}^m q^{\beta_i^k} E_{(k-1)m+i,km+i-1} F_k^R = \sum_{i=1}^m q^{\alpha_i^k} F_{(k-1)m+i,km+i-1}$$



A small example: Let m = n = 3





3

・ロン ・四 ・ ・ ヨン ・ ヨン

So then...

- The left operators do treat the matrix as a tensor of columns, left to right.
- The right operators treat the matrix as a tensor of row, bottom to top and with a sign.

Check

- Check that $\{E_i^L, F_i^L, q^{\epsilon_i^L}\}$ together satisfy the properties for $U_q(gI_m)$.
- Same for $\{E_k^R, F_k^R, q^{\epsilon_k^R}\}$ and $U_q(gI_n)$.
- That these two actions commute on $\wedge^k(\mathbb{C}^{mn})$.

Remarks

• Actually, the left $U_q(gI_m)$ comes from:

$$U_q(gl_m) \stackrel{\Delta}{\longrightarrow} U_q(gl_m) \otimes \ldots \otimes U_q(gl_m) o U_q(gl_{mn})$$

Thus, it is actually sitting inside $U_q(gl_{mn})$.

- The right copy has no analogue in U_q(gl_{mn}) and is synthetic.
 But for the sign, the action is similar.
- The commutation reduces to sl_2-sl_2 case, is a calculation.

Moreover

- We may check that at q = 1 the action matches the injection $U_1(gl_m) \otimes U_1(gl_n) \rightarrow U_1(gl_{mn})$.
- This implies that $\wedge^k(\mathbb{C}^{mn})$ is isomorphic to $\oplus_{\lambda} V_{\lambda}(\mathbb{C}^m) \otimes V_{\lambda^{\intercal}}(\mathbb{C}^n)$ as $U_q(gl_m) \otimes U_q(gl_n)$ -modules.
- In fact, the highest weight vectors v_λ are those from subsets c_λ in the upper left corner of the shape λ.

$$c_{(3,1)} = \begin{array}{c|c} 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{array} \quad v_{(3,1)} = \begin{array}{c} 1 \\ \hline 2 \\ \hline 4 \\ \hline 7 \end{array}$$

• Thus $\wedge^k(\mathbb{C}^{mn})$ as a $U_q(gl_m)\otimes U_q(gl_n)$ -module has been constructed.

イロト 不得下 イヨト イヨト 三日

Next, the crystal base for $\wedge^k(\mathbb{C}^{mn})$

For a subset $c \subseteq [mn]$, let v_c denote the *pure* element in \wedge^k . Then, there is a sign(c) such that the set

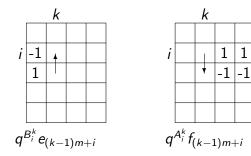
 $\{sign(c) \cdot v_c | c \subseteq [mn], |c| = k\}$

is the crystal base for $\wedge^k(\mathbb{C}^{mn})$.

- Let $U_i^L \equiv U_q(sl_2)$ be the algebra generated by $E_i^L, F_i^L, q^{h_i^L}$.
- For a subset $c \subseteq [mn]$, let $V_L(c)$ be the vector space generated by all subsets c' which match c in the column-sums for the rows i, i + 1 and c matches c' everywhere else.

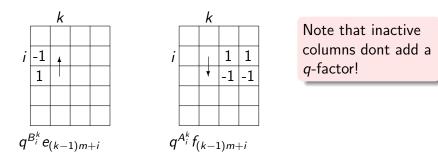
At once!

 $V_L(c)$ is U_i^L equivariant, and is of dimension 2^k for some k. In fact, $V_L(c)$ is isomorphic to $\otimes^k V_{(1)}$.



At once!

 $V_L(c)$ is U_i^L equivariant, and is of dimension 2^k for some k. In fact, $V_L(c)$ is isomorphic to $\otimes^k V_{(1)}$.

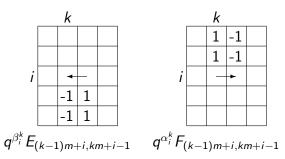


- It follows that the pure elements constitute a crystal basis for the left action.
- The crystal operator \mathcal{E}_i^L is also clear!

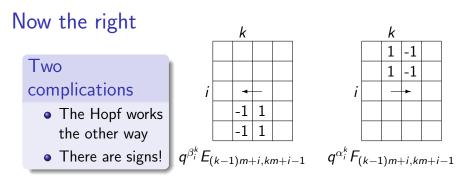
Now the right

Two complications

- The Hopf works the other way
- There are signs!



A 🖓



• Tricky. Define a local sign for each U_i^R so that:

$$E_{(k-1)m+i,km+i-1}v_c = sign(d)/sign(c)v_d$$

Define a global sign which is consistent only on the crystal operators. For m = n = 2 sign({2,3}) = -1, all others +1

The combinatorics

How do we implement $\wedge^*(\mathbb{C}^{mn}) \leftrightarrow \cup_{\lambda} SS(\lambda, m) \times SS(\lambda', n)$? The two Hopfs give us the reading order:

- left: read columns bottom to top, left to right.
- right: read row back to front, bottom to top.

Let m = 3 and n = 4 and let $b = \{1, 3, 5, 6, 9, 10, 11\}$.

Question: How do I compute b from LT(b), RT(b)?

Towards the general module

- The algebra $U_q(gl_m) \otimes U_q(gl_n)$ comes with a Hopf, whence $\wedge^a(\mathbb{C}^{mn}) \otimes \ldots \otimes \wedge^z(\mathbb{C}^{mn})$ are all available.
- seems difficult to identify $V_{\lambda}(\mathbb{C}^{mn})$ as a submodule.
- We construct equivariant injections and the 2-column modules

$$\psi_{\mathbf{a},\mathbf{b}}:\wedge^{\mathbf{a}+1}\otimes\wedge^{\mathbf{b}-1}\to\wedge^{\mathbf{a}}\otimes\wedge^{\mathbf{b}}$$

• The images of $R_{a,b}$ are the straightening laws .

$$\mathcal{S} = \{R_{\mathsf{a},b} | 1 \le b \le \mathsf{a} \le \mathsf{mn}\}$$

• We faintly hope that, if $\lambda^T = [a_1, \ldots, a_k]$ then

$$V_\lambda(\mathbb{C}^{mn}) = \wedge^{\mathsf{a}_1} \otimes \ldots \otimes \wedge^{\mathsf{a}_k}/\mathcal{S}$$

The ψ 's

- Let $\mu : \wedge^{a} \otimes \wedge^{b} \to \wedge^{c}$, equivariant.
- Let $[\mu]$ be the matrix of the map in the *standard basis* of sets.
- Then $[\mu]^T : \wedge^c \to \wedge^a \otimes \wedge^b$ is also equivariant and good.

We use this to construct merely:

$$\begin{aligned} L_{a} : \wedge^{a} \to \wedge^{1} \otimes \wedge^{a-1} \\ R_{a} : \wedge^{a} \to \wedge^{a-1} \otimes \wedge^{1} \end{aligned}$$

We obtain $\psi_{a,b}$ as the composition:

$$\wedge^{a+1} \otimes \wedge^{b-1} \stackrel{R_{a+1} \otimes id}{\longrightarrow} \wedge^{a} \otimes \wedge^{1} \otimes \wedge^{b-1} \stackrel{id \otimes [L_b]^{T}}{\longrightarrow} \wedge^{a} \otimes \wedge^{b}$$

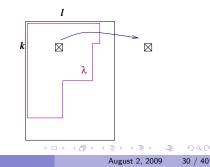
The L_a and R_a

- ∧^a(ℂ^{mn}) is multiplicity-free and we have the highest weight subset c_λ and v_λ.
- $\wedge^{a-1} \otimes \wedge^1$ is not multiplicity-free!
- We will define R_a and L_a only for these v_λ and extend it.
- Furthermore, at q = 1, the map $L_a(v_\lambda)$ and $R_a(v_\lambda)$ will match the classical $U_1(gl_{mn})$ -expressions.

For a shape λ sitting inside $m \times n$,

• let $c_{kl} = c_{\lambda} - (k, l)$ and $t_{kl} = v_{c_{kl}} \in \wedge^{a-1}(\mathbb{C}^{mn}).$

• χ_{kl} be the vector $v_{(k,l)} \in \wedge^1(\mathbb{C}^{mn})$



The vectors

Here is R_a :

$$R_{a}(v_{\lambda}) = \sum_{(k,l)\in\lambda} \alpha_{kl} t_{kl} \otimes \chi_{kl}$$
$$\in \wedge^{a-1} \otimes \wedge^{1}$$
$$\alpha_{kl} = (-1)^{\lambda'_{1}+\ldots+\lambda'_{l-1}+k} q^{k+l-\lambda_{k}}$$

And here is L_a :

$$L_{a}(v_{\lambda}) = \sum_{(k,l)\in\lambda} \beta_{kl}\chi_{kl} \otimes t_{kl}$$
$$\in \wedge^{1} \otimes \wedge^{a-1}$$
$$\beta_{kl} = (-1)^{\lambda'_{1}+\ldots+\lambda'_{l-1}+k}q^{\lambda'_{l}-k-l}$$

3

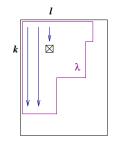
A B > A
 A
 B > A
 A

The vectors

Here is R_a :

$$\begin{aligned} R_{a}(\mathbf{v}_{\lambda}) &= \sum_{(k,l)\in\lambda} \alpha_{kl} t_{kl} \otimes \chi_{kl} \\ &\in \wedge^{a-1} \otimes \wedge^{1} \\ \alpha_{kl} &= (-1)^{\lambda'_{1}+\ldots+\lambda'_{l-1}+k} q^{k+l-\lambda_{k}} \end{aligned}$$

What happens at q = 1?



And here is L_a :

$$L_{a}(\mathbf{v}_{\lambda}) = \sum_{(k,l)\in\lambda} \beta_{kl}\chi_{kl} \otimes t_{kl}$$
$$\in \wedge^{1} \otimes \wedge^{a-1}$$
$$\beta_{kl} = (-1)^{\lambda'_{1}+\ldots+\lambda'_{l-1}+k}q^{\lambda'_{l}-k-l}$$

This proves the *mn*-equivariance at q = 1, and thus the construction of $V_{\lambda}(\mathbb{C}^{mn})$ for 2-columns.

Straighten too much?

Recall

$$\psi_{\mathbf{a},\mathbf{b}}:\wedge^{\mathbf{a}+1}\otimes\wedge^{\mathbf{b}-1}\to\wedge^{\mathbf{a}}\otimes\wedge^{\mathbf{b}}$$

- That $\psi_{\mathbf{a},\mathbf{b}}$ is an injection implies that $\mathcal S$ cannot straighten too little.
- So the only issue with

$$V_{\lambda}(\mathbb{C}^{mn}) = \wedge^{\mathsf{a}_1} \otimes \ldots \otimes \wedge^{\mathsf{a}_k} / \mathcal{S}$$

is that it may straighten too much.

- Our $\psi_{a,b}$ at q = 1 is $U_1(gI_{mn})$ -equivariant and matches the standard straightening laws.
- Does this proves the construction? NOT YET
- True for Sym!

Remarks

• Only at v_{λ} is the [mn]-weight preserved. For m = n = 2, $(q^2 + 1) \cdot R_2(\{2, 3\})$ is:

$$(q^3-1)/q \cdot 1 \otimes 4 - (q+1) \cdot 2 \otimes 3 + (q+1) \cdot 3 \otimes 2 + (q-1) \cdot 4 \otimes 1$$

We have achieved:

$$\wedge^{a} \stackrel{\longleftarrow}{\longrightarrow} \wedge^{a-1} \otimes \wedge^{1} \stackrel{\longleftarrow}{\longrightarrow} \dots \wedge^{r} \otimes \wedge^{s} \stackrel{\longleftarrow}{\longrightarrow} \dots \wedge^{1} \otimes \wedge^{a-1} \stackrel{\longleftarrow}{\longrightarrow} \wedge^{a}$$

Perhaps, R_a , L_b can be so chosen so that an additional $U_q(gl_m) \otimes U_q(gl_n) \otimes U_q(gl_2)$ structure on $\wedge^a(\mathbb{C}^{2mn})$ is established!

Moreover...

This reduces to finding, say $\{R_a\}_a$ such that:

$$\textit{EF}_{\textit{a}}: \wedge^{\textit{a}-1} \otimes \wedge^{1} \xrightarrow{\longleftarrow} \wedge^{\textit{a}-2} \otimes \wedge^{1} \otimes \wedge^{1} \xrightarrow{\longleftarrow} \wedge^{\textit{a}-2} \otimes \wedge^{2}$$

has TWO eigenvalues.

If such local maps are found then we have obtained a $U_q(gl_m) \otimes U_q(gl_n) \otimes U_q(gl_2)$ structure on $\wedge^*(\mathbb{C}^{mn^2})$.

The general $U_q(gl_m) \otimes U_q(gl_n) \otimes U_q(gl_p)$ on $\wedge^k(\mathbb{C}^{mnp})$ will side-step the straightening laws.

Indeed..

On hind-sight $U_q(gl_m) \otimes U_q(gl_2)$ is obvious!

$$\mathsf{EF}_{\mathsf{a}}: \wedge^{\mathsf{a}-1} \otimes \wedge^1 \xrightarrow{\longleftarrow} \wedge^{\mathsf{a}-2} \otimes \wedge^1 \otimes \wedge^1 \xrightarrow{\longleftarrow} \wedge^{\mathsf{a}-2} \otimes \wedge^2$$

n = 1 implies ∧^a ⊗ ∧¹ is multiplicity free with two irreducibles.
In fact, our right operators are in this "factored" format.

These right-operators are essentially raising and lowering operators:

$$\wedge^{[a_1,\ldots,a_i,a_{i+1},\ldots,a_n]}(\mathbb{C}^m) \xrightarrow{E_i^R} \wedge^{[a_1,\ldots,a_i-1,a_{i+1}+1,\ldots,a_n]}(\mathbb{C}^m)$$

which are factored and local and satisfy the Serre relations.

The Big Picture

Obviously, get the left and right operators on $V_{\lambda}(\mathbb{C}^{mn})$.

But there are many paths to it:

- Unwind the straightening laws.
- Get $U_q(gl_m) \otimes U_q(gl_n) \otimes U_q(gl_r)$ structure on $\wedge^k(\mathbb{C}^{mnr})$ and get its crystal base.
 - The 2mn case is already novel: Young poset
- A Hecke-type operator on ∧¹(ℂ^{mn}) ⊗ ∧¹(ℂ^{mn}) commuting with the action of U_q(gI_m) ⊗ U_q(gI_n)? GCT4 with Ketan.

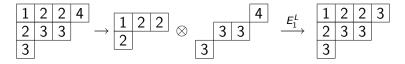
• some other way?

A Puzzle

Lets consider the case of $GL_m \rightarrow GL_{2m}$ -the block diagonal embedding. We also have:

$$U_q(gl_m) \stackrel{\Delta}{\longrightarrow} U_q(gl_m)[1,m-1] \otimes U_q(gl_m)[m+1,2m-1]
ightarrow U_q(gl_{2m})$$

This gives us a $U_q(gl_m)$ -structure on $V_{\lambda}(\mathbb{C}^{2m})$.



In other words

$$E_1^L = e_1 \otimes e_3$$

Tempting to seek E_1^R as a tensor of some existing 2*m*-operators, maybe after some Weyl group action. That fails.

But even for the left operator ...

Thus, the column-wise tensor does not hold!

But even for the left operator ...

Thus, the column-wise tensor does not hold! Here is the **magic massage**:

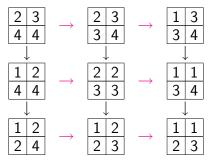
One may indeed define an *m*-crystal structure on $SS(\lambda, 2m)$ which

- works column-wise and acts at the right place.
- massages in a structured way, only the columns on the left.

Is this a fragment of the crystallization?

The m = n = 2 case, any shape.

The left operators go left-to-right. The right operators go down.



Does this picture have a quantum explanation :

Thank you.

-2

▲ロト ▲圖ト ▲国ト ▲国ト