
Conditional Models for Non-smooth Ranking Loss Functions

Avinava Dubey∗1 Jinesh Machchhar† Chiranjib Bhattacharyya‡ Soumen Chakrabarti†
∗IBM Research India †IIT Bombay ‡IISc Bangalore

Abstract

Learning to rank is an important area at the interface of machine
learning, information retrieval and Web search. The central challenge in
optimizing various measures of ranking loss is that the objectives tend
to be non-convex and discontinuous. To make such functions amenable to
gradient based optimization procedures one needs to design clever bounds.
In recent years, boosting, neural networks, support vector machines, and
many other techniques have been applied. However, there is little work
on directly modeling a conditional probability Pr(y|xq) where y is a
permutation of the documents to be ranked and xq represents their feature
vectors with respect to a query q. A major reason is that the space of y
is huge: n! if n documents must be ranked. We first propose an intuitive
and appealing expected loss minimization objective, and give an efficient
shortcut to evaluate it despite the huge space of ys. Unfortunately, the
optimization is non-convex, so we propose a convex approximation. We give
a new, efficient Monte Carlo sampling method to compute the objective
and gradient of this approximation, which can then be used in a quasi-
Newton optimizer like LBFGS. Extensive experiments with the widely-used
LETOR dataset show large ranking accuracy improvements beyond recent
and competitive algorithms.

1. Introduction

Search engines use hundreds of complex features from
documents and queries to make ranking decisions. Unlike in
traditional IR, designing scoring and ranking functions such
as TFIDF [15] or BM25 [10] “by hand” is no longer feasible
over hundreds of features. Machine learning techniques are
increasingly used to design scoring and ranking functions.
Learning to rank [13] is now an well-established area of
search and machine learning.

1.1. Overview of learning to rank

Algorithms for learning to rank are trained using a set
Q of queries. Each query q ∈ Q has a set of associated
documents Dq . Each document has a relevance judgment
assigned by a human evaluator. Typically, the relevance of
a document is a small integer between 0 and 4, with 0
representing complete irrelevance and 4 representing perfect
relevance. For simplicity we will use binary (0/1) relevance
in this paper. The relevance of a document i to query q is
zqi ∈ {0, 1}. We will call relevant documents D+

q ⊂ Dq

“good” and irrelevant documents D−q = Dq \D+
q “bad”.

From the query q and text of the ith document is con-
structed a feature vector xqi ∈ Rd, where d is usually in the
dozens to hundreds for commercial search engines. We will
use xqg and xqb for good and bad feature vectors.
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Virtually all learning to rank algorithms fit a model w ∈
Rd from the training data. When deployed, a test query t
is submitted to the system, along with its document set Dt.
The system then assigns a score w>xti to each feature vector
xti ∈ Dt, and then the documents are sorted in decreasing
order of score.

1.2. Structured learning interpretation

The ranking imposed by the model on the document set
may be encoded as a structured label y. We can represent
y as a permutation of Dq (breaking score ties arbitrarily).
Or, in case of two relevance levels (good and bad), we can
represent y as a boolean vector indexed by good-bad pairs.
ygb is +1 if good document g is ranked better than bad docu-
ment b, and −1 otherwise. Thus, y ∈ Yq = {−1,+1}n

+
q n−q ,

where n+
q = |D+

q | and n−q = |D−q |.
Thus, learning to rank can also be regarded as a classifi-

cation problem, where the label space Y is very large. The
“correct” label yq for a query q places each good document
ahead of all bad documents. The critical difference between
ranking and traditional classification is that we cannot regard
all labels other than yq as equally incorrect. Some rankings
are much better than others, even if none of them is perfect.
The “defect” of a ranking y wrt the ideal ranking yq is
encoded in a loss function [17] ∆(y, yq) ≥ 0, sometimes
shorthanded to ∆q(y). Naturally, ∆q(yq) = 0.

The second piece is a feature map [5] φ(xq, y) ∈ Rd

that combines individual document feature vectors xqi into
a single vector, using the proposed ranking y. As a simple
example, one may add up the vectors at ranks 1 through 10,
then subtract all other vectors. (We will see better examples
later.) Given a trained model w, the “consistency” of a
ranking y is expressed as w>φ(xq, y): the larger this value,
the better the ranking y for query q. Therefore, at test
time, the goal is to find arg maxy w

>φ(xq, y). This is called
inference.

1.3. Structured training

During training, we are looking for a w that minimizes∑
q ∆

(
yq, arg maxy w

>φ(xq, y)
)

(usually added to some
regularization penalty like ‖w‖22 on the model). The cen-
tral challenge in learning to rank is that the objective∑

q ∆
(
yq, arg maxy w

>φ(xq, y)
)

is highly discontinuous;
its gradient is either zero or undefined at any given point w.
The vast majority of research on learning to rank is con-



cerned with approximating the objective with more benign
ones that are more tractable for numerical optimization of w.
We review a few competitive approaches in recent work.

Some researchers minimize a convex upper bound [17]
on the objective above:

min
w

∑
q

max
{

0,max
y

∆q(y)− w>δφq(y)
}
, (1)

where δφq(y) is shorthand for φ(xq, yq) − φ(xq, y). This
is a generalization of the well-known hinge loss used in
Support Vector Machines [18]. The key is to solve the
maxy · · · problem without explicitly enumerating through
all ys [17]. Solving optimization (1) for commonly used
∆ and φ functions is nontrivial [20], [11], [5] but test
accuracy is often somewhat better than simpler algorithms
like RANKSVM [8].

A hinge loss approximation (1) yields upper bounds on the
empirical loss [17] but this may not always be the best path
to training a good model w. Previous attempts at using struc-
tured learning for ranking [5] show that the bound could be
loose and may not always yield good models. This motivates
the need for alternatives which might be guided by margin-
based approaches, and yet better model the empirical risk.
In this paper we explore conditional probabilistic models as
an alternative, with promising results.

1.4. Probabilistic listwise training

LISTNET [4] is among the best-known listwise training
methods. It proposes a very general probability distribution
over permutations. To keep training tractable, they restrict
to a simpler “top one probability” distribution, and then
use cross-entropy for training with a neural network. The
optimization is not convex. In contrast, our distribution over
permutations is very simple and has a standard log-linear
form, which allows polynomial-sized closed forms for some
losses and effective sampling techniques for others.

In SOFTRANK [16], the quantity w>xqi for each docu-
ment is regarded as the mean of a normal distribution from
which a random score is drawn. It then becomes easy to
write down the probability that one score exceeds another,
and thereby compute the expected rank of documents as a
function of w. This leads to a highly nonconvex optimization
for w. Although an intriguing idea, SOFTRANK has not
shown consistent gains beyond other approaches.

Very recently, BOLTZRANK [19] proposed an “energy
function” energy(y| ~Sq) =

∑
i,j(Sqi − Sqj) sign(yi − yj),

where yi ∈ [1, nq] is the rank of document i, and Sqi is the
score of document i, and tried to reduce a nonconvex func-
tion of the energy. Note that the energy function considers
all pairs instead of good-bad pairs and seems to be a bad
choice: the compatibility between φ and ∆ is critical for
success [5]. BOLTZRANK was evaluated on only two of the
seven LETOR [14] data sets; our approach is evaluated on

all seven, and we exceed BOLTZRANK accuracy decisively.
Another factor may be that, like LISTNET and SOFTRANK,
BOLTZRANK leads to non-convex optimizations solved by
neural network black-boxes, whereas our best performer is
a convex learner.

1.5. Our contributions

Compared to the above approaches, there has been sur-
prisingly little work on extending the paradigm of maximum
entropy classification [1] or logistic regression [2] directly
to ranking problems.

In Section 2 we propose a parametric conditional prob-
ability model Pr(y|x;w) ∝ exp(w>φ(x, y)), and an intu-
itive minimization of expected ranking loss (equivalently,
maximization of a suitably defined expected ranking gain).
For a specific but common choice of φ and ∆, we give
closed form expressions for the objective and gradient that
can be efficiently and exactly computed, despite there being
an exponential number of rankings y. Unfortunately, the
objective is not convex.

In Section 3 we propose a heuristic approximation to
the expected gain objective that is convex, but whose com-
putation requires a sum over exponentially many possible
rankings y in general. In Section 4 we give a new recipe to
replace this exponential sum over ys with a much smaller
sum over a sample of ys. We justify why, for typical ranking
problems, this approximation is adequate.

In Section 5 we describe experiments with the well-
known public ranking data set LETOR, from Microsoft.
We compare our new proposals against several competi-
tive systems, including structured max-margin learners and
RANKBOOST [6]. The expected gain formulation sometimes
beats existing systems, but is plagued by local optima.
Interestingly, our convex formulation significantly improves
upon the expected gain formulation, and frequently beats
existing algorithms significantly.

1.6. Choices of ∆

We will use three definitions of ∆ from the literature.
Observe that, in all cases, ∆ remains unchanged across
arbitrary permutations within a relevance level (here, good
and bad). Therefore, our feature map φ should be designed
accordingly.

1.6.1. Pair preference and AUC. For every query q, every
good document xqg and every bad document xqb, we want
xqg to rank higher than xqb. The number of “satisfied” pairs
where this is the case is closely related to the area under the
receiver operating characteristic (ROC) curve [9].

1−∆AUC = AUC =
number of satisfied pairs

n+n−

A long-standing criticism of pair preference satisfaction is
that all violations are not equal [3]; flipping the documents
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at ranks 2 and 11 is vastly more serious than flipping #100
and #150. This has led to several global criteria defined on
the total order returned by the search engine.

1.6.2. Mean average precision (MAP). For query q, let
the ith (counting from zero) relevant or ‘good’ document
be placed at rank rqi (again, counting from zero). Then the
precision (fraction of good documents) up to rank rqi is
(1 + i)/(1 + rqi). Average these over all good documents
for a query:

AP(q) =
∑

i:zqi=1
1+i

1+rqi

and define MAP = 1
|Q|
∑

q∈Q AP(q) (MAP)

The ideal ranking pushes all good documents to the top and
ensures a MAP of 1.

1.6.3. Normalized discounted cumulative gain. Of recent
interest in Information Retrieval and Machine Learning
communities is normalized discounted cumulative gain, ab-
breviated NDCG. The DCG for a query q and document
order is DCG(q) =

∑
0≤i<k G(q, i)D(i) where G(q, i) is

the gain or relevance of document i for query q and D(i)
is the discount factor given by [7]

D(i) =


1 0 ≤ i ≤ 1
1/ log2(1 + i) 2 ≤ i < k

0 k ≤ i
(Discount)

Note the cutoff at k. Suppose there are n+
q good documents

for query q, then the ideal DCG is

DCG∗(q) =
∑min{n+

q ,k}−1

i=0 G(q, i)D(i),

pushing all the relevant documents to the top. Now define

NDCG(q) =
DCG(q)
DCG∗(q)

=

∑
0≤i<k zqiD(i)
DCG∗(q)

(NDCG)

and average NDCG(q) over queries. G(q, i) is usually
defined as 2zqi − 1. Because we focus on zqi ∈ {0, 1}, we
can simply write G(q, i) = zqi.

1.7. Feature map φ

Recall that for us, y ∈ {−1,+1}n+n− , where ygb encodes
the order between documents g and b. A very commonly
used feature map [20] is

φpo(xq, y) =
1

n+
q n
−
q

∑
g,b

ygb(xg − xb). (2)

Note that, like ∆s above, φ is invariant across arbitrary
permutations within good or bad documents. (2) is used both
with and without the n+

q n
−
q scale factor. We omit it, based

on cross-validation.

2. Minimizing aggregated expected loss

We begin by proposing a parametric conditional probabil-
ity

Pr(y|xq;w) =
exp(w>φ(xq, y))

Zq
(3)

where Zq =
∑

y′ exp(w>φ(x, y′)). Note that computing Zq

is not easy for an arbitrary φ as it involves summing over
exponential number of terms.

Two-class logistic regression [2] with 0/1
loss seeks arg maxw

∏
q Pr(yq|xq;w) =

arg maxw

∑
q log Pr(yq|xq;w). One can also put a

homoscedastic normal prior of the form w>w/C over w,
inducing regularization in the solution. (C is set by cross
validation.) However it is not clear how to extend this setup
to general loss functions.

A reasonable quantity to minimize wrt w is the aggregate
expected loss which is essentially the sum of expected loss
per query, ∑

q

∑
y

Pr(y|xq;w)∆(yq, y) (4)

or the log of expected loss

∑
q

log

(∑
y

Pr(y|xq;w)f(∆(yq, y))

)
(5)

where f is a monotonic increasing function. It is interesting
to note that if we use f(x) = ex one can show that (4) is
a lower bound to (5). Minimizing either of them can yield
similar ranking measures.

2.1. Switching from loss to gain

Typically, n+
q � n−q . Therefore, most rankings y have

∆q(y) ≈ 1. Even if each of them have small probability,
their collective probability may be considerable. Suppose we
initialize w = ~0, then the initial objective for each query is
close to 1. Ranking optimizations tend to be ill-conditioned
[5], so, even as w is progressively optimized, the objective
(per query) will likely drop from 1 by a very small quantity.

The solution is to write ∆q(y) = 1−Gq(y), where G(·)
is a gain function. E.g., we can directly use MAP, AUC,
or NDCG instead of the corresponding losses. We modify
objective (5) to

ExpGain: max
w

∑
q

log

(∑
y

Pr(y|xq;w)Gq(y)

)
. (6)

(We also have a standard ‖w‖22/C regularization term where
C is tuned by cross validation.) Now, Gq(y) ≈ 0 for most ys,
and training w lifts terms in the innermost sum from zero,
thus increasing numerical sensitivity. We introduce some
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notation:

Sqi = w>xqi

hq
gb(ygb) = exp

(
ygb(Sqg − Sqb)

n+
q n
−
q

)
fq

gb(y)[k] =
ygb(xqg[k]− xqb[k])

n+
q n
−
q

With this notation, the objective can be written as

∑
q

log

∑
y

G(y)
∏
g,b

hq
gb(ygb)


︸ ︷︷ ︸

Aq

− logZq

︸ ︷︷ ︸
Lq

(7)

Another benefit of using log-gain is that the
exp(· · ·n+n− · · · ) in the expression above does not
create numerical difficulty.

With Aq and Lq defined as in (7), the gradient for a
particular query q and the kth dimension is

dLq

dwk
=

1
Aq

∑
y

G(y) exp(wTφ(x, y)).φ(x, y)[k]

− (1/Zq)(dZq/dwk), where (8)
Zq =

∑
y

∏
g,b h

q
gb(ygb)

dZq

dwk
=
∑

y exp(wTφ(xq, y))φ(xq, y)[k]

In the end it is easy to see that the gradient w.r.t
wk, as defined in (8), is essentially the expectation
−EY (∆(Y, yq)φ(xq, Y )[k]) where Y is a random variable
defined by (3). We would like to leverage this observations
later for efficient algorithms.

2.2. Nonconvexity

In standard logistic regression with two classes
and 0/1 loss ∆q(y) = [[y 6= yq]], it is well known
[2] that the objective maxw

∏
q Pr(yq|xq;w) is

log-concave, and therefore, there is no danger of
getting stuck in a local optimum. Unfortunately,
the generalizations minw

∑
q

∑
y Pr(y|xq;w)∆q(y) or

minw

∑
q log

(∑
y Pr(y|xq;w)∆q(y)

)
may not be convex

optimizations for arbitrary probability distributions. In
our experiments, we implemented a gradient method
with multiple restarts to guard against this problem, and
diagnostic tests suggest that these restarting strategies were
adequate.

2.3. Polynomial form for AUC

Perhaps more serious than demanding a nonconvex opti-
mization is the problem that both (7) and (8) involve a sum
over all y, which cannot be implemented as-is.

For the specific case where ∆AUC is used with φpo, we
provide algebraic identities that enable us to rewrite (7) and
(8) in a way that lets them be evaluated in polynomial time,
by exploiting the special structure of y, φ, and ∆. This may
be of independent interest.

Let #1y =
∑

g,b[[ygb = 1]]. (7) can be written as

∑
q

log

∑
y

#1y

∏
gb

hq
gb(ygb)

− logZq


Using the identities in Figure 1, the objective

∑
q log(Aq −

logZq) can be written as

∑
q

log

∑
g,b

hq
gb(−1)

∏
〈i,j〉6=〈g,b〉

(
hq

ij(−1) + hq
ij(1)

)
Note that there is no sum over y in the above expression.
Zq is completely factored and easily expressed as

Zq =
∏
g,b

(
hgb(−1) + hgb(1)

)
.

The identities in Figure 1 also allows us to manipulate∇wZq

into a form that can be evaluated in polynomial time (q
dropped for clarity):∑
g,b

(
fgb(−1)hgb(−1) + fgb(1)hgb(1)

) ∏
〈i,j〉6=〈g,b〉

(
hij(−1) + hij(1)

)
We omit the tedious details. The above setup works by
carefully exploiting the similarity of the expression for φpo
and ∆AUC. But we also need to give a general solution for
∆NDCG and ∆MAP, where a simple and efficient closed form
is not possible. As we shall see in Section 5, the expected
gain formulation, with one of AUC, NDCG or MAP gains,
beats prior art in a large majority of cases. In the next section
we give our final formulation which is even better.

3. Probabilistic structured ranking

As described in Section 1.2, structured learning can be a
powerful tool for listwise learning to rank [20], [11], [5]. In
this section, we upper bound the aggregated expected loss
expression developed in Section 2 with an expression that
is closely related to loss expressions in structured learning.
Interestingly, using our upper bound in a quasi-Newton opti-
mizer beats all other baselines, including structured learning
and BOLTZRANK, in a large majority of cases. (Note: We
keep all our objectives well-posed by adding a ‖w‖22/C term
and tune C by cross validation as usual. Here we show only
the training loss part for simplicity.)

Define δφq(y) = φ(xq, yq) − φ(xq, y) and consider the
distribution

Pr(y|xq, yq;w) =
exp(−w>δφq(y))∑
y′ exp(−w>δφq(y′))

(9)
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Figure 1. Identities used to evaluate expected gain and its gradient efficiently.

This distribution is actually the same as (3), but restating it
like this helps in relating it to structured learning scenario.
For the sake of brevity, we overload Zq(w) as the denom-
inator in (9) above. One can find the maximum likelihood
estimate the model w by minimizing the following objective:

MLE: L1(w) =
∑

q

L1q(w) =
∑

q

logZq(w) (10)

This is a reasonable objective as it leads to positive values
of w>δφq(y′) at optimum, which is the case in structured
learning. However, it does not exploit information from ∆.

To this end, we can design an expected loss per query,
along the lines of BOLTZRANK [19] and Section 2, i.e.,
EY∼(3)(∆q(Y )), where the subscript means that distribution
(3) is used to compute the expectation. Instead, we consider
the following alternative: minw L2(w), where

L2(w) =
∑

q

L2q(w) =
∑

q

EY∼(9)(∆q(Y )), (11)

now using (9) as the distribution of Y . This will result
in direct optimization of the ranking measures. We might
further boost the performance by combining (10) and (11):

min
w
L3(w) = min

w
L1(w) + L2(w), (12)

so as to reinforce the property that ys having low loss should
have large w>φq(y). The problem is that L3 will in general
be non-convex because of L2.

Now consider the final modification to (9) and (11) to
combine these two objectives:

Pr(y|xq, yq) =
exp(−w>δφq(y) + ∆q(y))∑
y′ exp(−w>δφq(y′) + ∆q(y′))

(13)

For given training data, the MLE for w under distribution
(13) will be equivalent to minw L(w) where

ConvexLoss:

L(w) =
∑

q

log
∑
y′

exp(−w>δφq(y′) + ∆q(y′)) (14)

Next, using distribution (9), write

L(w) =
∑

q

logZq

∑
y′

Pr
Y∼(9)

(y′|xq, yq) exp(∆q(y′))

Finally, using Jensen’s Inequality E(eX) ≥ eE(X), we
obtain

L(w) ≥ L1(w) + L2(w).

Summarizing, we have arrived at a convex upper bound to
L1(w) + L2(w) that, unlike L1, takes ∆ into account, but
does not have the non-convexity disadvantage of L2.

The objective functions are not easy to optimize, as
they involve summation of a large number of terms. To
circumvent this problem, we devise sampling schemes which
give gradient estimates that can be used with quasi-Newton
procedures.

4. Sampling the space of rankings

At this point our main remaining problem is to evaluate
expressions of the form EY (aY ) =

∑
y ay Pr(y|xk), where

the sum ranges over all rankings. Given our encoding of
y there are 2n+n− values of y, although not all of them
correspond to valid total orders. Approximating the above
sum is needed to compute the value of the objectives and
gradients designed in Sections 2 and 3. We do this by
drawing some m samples Ŷ from the subset of {±1}n+n−
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that is consistent with total orders, and computing the
empirical average (1/m)

∑
y∈Ŷ ay .

In theory, one should use Pr(y|xk) to draw the sam-
ples. Given the enormous space of y (and therefore nu-
merically infinitesimal probability for any y) doing this
directly is infeasible. The standard way to explore such
large spaces is Markov Chain Monte Carlo (MCMC) sam-
pling [2]:

1: while not enough samples do
2: (re)start a random walk at a well-chosen state y0

3: for some number of steps t = 1, 2, . . . do
4: transition from yt−1 to yt

5: make an accept/reject decision on yt

6: collect some subset of y0, y1, y2, . . . as samples
Getting the underlined details right is, in most applications,
a practised art.

In standard MCMC sampling, because Pr(yt|xq;w) ∝
exp(w>φ(xq, y

t)), the acceptance probability would be a
function of w. This is a big problem for quasi-Newton opti-
mizers like LBFGS [12], because as we draw samples every
Newton iteration, we would be giving LBFGS numerically
inconsistent views of the objective and gradient, and line
search would fail. (This was observed by us in practice; to
our knowledge this issue has never been reported.)

Therefore, we cannot use a standard MCMC recipe.
Instead, we draw the sample Ŷ just once before we begin
optimizing w, but we draw Ŷ using the following strategy:

• Choose restart states to span a variety of ∆s.
• In each walk, make local changes in y so as to stay

near to the restart ∆.

1: Input: yin ∈ {±1}n+n−

2: Output: yout ∈ {±1}n+n−

3: Draw a random number idx between 0 and n+n−.
4: idx gives a position indexed by gb in yin.
5: Let the number of bad documents that g beats in yin

be ng and the number of good documents that b beats
be nb.

6: if (yin[idx] = +1) then

7: θ =
n− − ng + nb + 1

2 + n+ + n−
8: else
9: θ =

n+ + ng − nb + 1
2 + n+ + n−

10: With probability θ, flip the bit at yin[idx] to get candi-
date next state y?.

11: Check y? to see if it is a valid ranking, reject if not.
12: Repeat above steps until there is a flip and some y? is

accepted.
13: return y? as yout.

Figure 2. Swap method used for sampling.

4.1. Restart states

Both ay and Pr(y|xk;w) are skewed, and this must be
taken into account while designing the sampler. If w already
fits the data reasonably well, as is the case some way into the
optimization, then high-quality rankings (with many good
documents at top ranks) have much larger probability than
poor-quality ones. ay is usually a ranking gain or loss.
Ranking gain is vanishingly small for all but a small minority
of ys. However, it is not clear ab initio if and how the
magnitudes of ay and Pr(y|xk;w) line up.

Therefore, a reasonable strategy would be to pick restart
states with a variety of Pr(y|xk;w). Assuming a reasonable
current value of w, this means the restart states (rankings)
should be picked to have a variety of losses ∆.

Sampling at the extremes is easy: the best ranking (∆ = 0)
has all good documents followed by all bad documents and
the worst ranking (∆ = 1) has all bad documents followed
by all good documents. At first we used only these two
restart points, and tuned the probability of sampling one
vs. the other. Later, we also created a bigger set of restart
rankings with a variety of ∆s, and used the distribution
Pr(y) ∝ exp(k∆(y)), with a flexible skew parameter k,
to sample a restart state.

4.2. Transitions

A well-trained w must distinguish very good rankings
from very bad ones, but also make fine distinctions between
good and excellent rankings. Having started from ys of
diverse quality, we will design each transition to mutate yin

to yout while keeping the quality yout close to that of yin,
as judged by all the ∆s that are commonly used. Together,
these two strategies should collect a reasonable sample Ŷ .

Elaborating upon the mutation step, if we want to flip a
good-bad pair, then the change in ∆ will be large if the
bad document is close to the worst possible and the good
document is close to the best possible. We want to reduce
the probability of such flips, as compared to flips that change
∆ in small amounts.

For the current w, the goodness of a good document g
is reflected by the number of bad document it beats (ng).
Similarly, the badness of a bad document b is reflected by the
number of good document that beat it (n+−nb). Continuing
the above line of thought, we should encourage a flip of the
bit indexed by g, b if g is not that good (small ng) and b is not
that bad (large nb). This is arranged using the flip probability
θ in Figure 2. If yin[idx] = +1 and n−−ng+nb is large and
we flip, then the resultant yout will have gain close to that
of yin. A symmetric argument holds when yin[idx] = −1.
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5. Experiments

5.1. Testbed

All algorithms were coded in Java 1.6 and run on 64-bit
JVMs on 2.4GHz Xeon processors with 8–16GB RAM.

5.1.1. Data sets. For our accuracy studies we primarily
use the well-known LETOR benchmark [14], version 3.
It consists of seven different data sets (TD2003, TD2004,
HP2003, HP2004, NP2003, NP2004, OHSUMED) with a
total of 575 queries. We clean the dataset in standard ways
[5] by removing documents of a particular query that has
conflicting relevance labels, and removing queries that have
no relevant document. 5-fold cross-validation as prescribed
by LETOR was used throughout, in particular, to tune C in
the regularizing term ‖w‖22/C in all objectives.

Because the data sets have different number of queries
each, we also include a weighted average (“microaverage”)
of the accuracies across all datasets. The weight of accuracy
for a particular dataset is given by the number of queries in
that dataset.

5.1.2. Baseline algorithms and evaluation. We compare
our proposed system LogRank against these competitive
baseline algorithms:
SVMMAP: Based on structured learning [17], this directly

optimizes a convex upper bound to a loss function that
reflects mean average precision (MAP).

RANKBOOST: We implemented the standard RANKBOOST
algorithm [6].

RANKSVM: We implemented standard RankSVM [8].
In addition, we quote accuracies of BOLTZRANK and LIST-
NET reported in [19] for two data sets, with the caveat that
they were run on unclean data.

5.2. Results

Figure 3 summarizes the results from all baselines and
all our proposed approaches. There are four subtables,
for MAP, NDCG@1, NDCG@5, and NDCG@10. Each
column corresponds to a data set; the last column is the
microaverage. In each column, the best three cells are shaded
green, yellow and tan. We immediately see that, often, the
top three cells are all within the family of new algorithms
presented in this paper. Also, clearly the baselines are rarely
the best. The gains we see are at par with, or larger than,
typical gains seen with new algorithms for learning to rank.
The following sections provide detailed commentary on the
relative performance of all competitors.

5.2.1. MLE. Our first comparison is between the baselines
and the ranking achieved by the MLE of w obtained by
using the distribution (3). From Figure 3, there is nothing
too special about the MLE w, although it does beats all
baselines 16 out of 32 times (There are 8 columns evaluated

on 4 evaluation measures). This is not surprising, because
MLE makes no use of ∆.

5.2.2. Expected Gain (ExpGain). Next we compare the
performance of the non-convex objective given in equation 7
against the baselines. Note that ExpGain can be trained with
different gain functions: AUC, MAP, or NDCG. Overall,
ExpGain is much better than MLE. More specifically,
• ExpGain is the best 26 out of 32 times.
• ExpGain MAP beats SVMMAP (both trained on MAP)

23 out of 32 times.
• ExpGain AUC beats RANKSVM (both trained on

AUC) 30 out of 32 times.
• Our “Combined” (microaveraged) accuracy is always

greater than that of the baselines.
• ExpGain beats MLE 21 out of 32 times.

5.2.3. Convex loss (ConvexLoss). Like ExpGain, Con-
vexLoss can be trained with three loss functions correspond-
ing to AUC, MAP and NDCG. The convex upper bound
formulation gives the best result overall. More specifically,
• ConvexLoss is the absolute best in 26 out of 32 times.
• ConvexLoss MAP beats SVMMAP (both trained on

MAP) in 26 out of 32 times.
• ConvexLoss AUC beats RANKSVM (both trained on

AUC) in 25 out of 32 times.
• ConvexLoss NDCG is the best method across all

datasets and is also the best in terms of “Combined”
(microaveraged) accuracy.

• ConvexLoss beats MLE in 29 out of 32 times, clearly
showing the worth of information from ∆(y).

• ConvexLoss beats ExpGain in 25 out of 32 times.
• ConvexLoss NDCG beats ExptGain NDCG in 25 out

of 32 times.
• Even the worse of ConvexLoss MAP and Con-

vexLoss NDCG is better than the best of the baselines
in 23 out of 32 times.

We also observe that L3 also appears as the best in each col-
umn some number of times, but not as often as ConvexLoss.

5.3. Sensitivity to sampling variations

Given the basis of our accuracy is the sampling scheme
discussed in Section 4, we present some diagnostic tests
to understand how the sampler affects the optimizer and
learner.

5.3.1. Saturation. Our first concern regarding sampling is
whether there is a natural saturation of accuracy as |Ŷ |
is increased. Figure 4 shows the result. We observe that
accuracy increases with increasing sample size, although,
at the sample sizes shown, we are close to saturation.

5.3.2. Choice of restarts. In the results above, we used
two restart states: the best possible ranking yq for query q
(∆ = 0), and the exact opposite: the worst possible ranking
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SVMmap 0.364 0.493 0.765 0.665 0.591 0.573 0.676 0.621
Rankboost 0.360 0.453 0.714 0.653 0.636 0.530 0.617 0.600
RankSVM 0.242 0.413 0.765 0.695 0.622 0.600 0.667 0.615
ListNet 0.360 0.530
BoltzRank2 0.478 0.568
MLE 0.444 0.493 0.786 0.665 0.629 0.596 0.734 0.652
ExpGain_AUC 0.302 0.480 0.779 0.695 0.637 0.600 0.696 0.638
ExpGain_MAP 0.467 0.453 0.779 0.680 0.660 0.613 0.696 0.652
ExpGain_NDCG 0.467 0.453 0.765 0.680 0.653 0.613 0.696 0.647
L_3 AUC 0.467 0.480 0.779 0.695 0.629 0.584 0.714 0.649
L_3 MAP 0.467 0.520 0.786 0.709 0.653 0.582 0.706 0.661
L_3 NDCG 0.427 0.520 0.800 0.681 0.653 0.579 0.705 0.657
ConvexLoss_AUC 0.322 0.453 0.778 0.682 0.661 0.568 0.676 0.633
ConvexLoss_MAP 0.427 0.507 0.771 0.724 0.660 0.541 0.705 0.651
ConvexLoss_NDCG 0.447 0.507 0.772 0.709 0.667 0.598 0.724 0.662
SVMmap 0.368 0.363 0.829 0.835 0.801 0.830 0.621 0.706
Rankboost 0.325 0.349 0.854 0.821 0.816 0.768 0.597 0.698
RankSVM 0.312 0.336 0.842 0.852 0.811 0.823 0.618 0.705
ListNet 0.332 0.443
BoltzRank2 0.363 0.491
MLE 0.367 0.365 0.874 0.854 0.822 0.817 0.614 0.720
ExpGain_AUC 0.347 0.365 0.849 0.862 0.813 0.833 0.618 0.715
ExpGain_MAP 0.372 0.339 0.859 0.875 0.838 0.825 0.570 0.714
ExpGain_NDCG 0.370 0.332 0.860 0.872 0.836 0.834 0.569 0.714
L_3 AUC 0.385 0.368 0.860 0.880 0.824 0.836 0.610 0.724
L_3 MAP 0.396 0.362 0.866 0.883 0.827 0.829 0.603 0.724
L_3 NDCG 0.370 0.366 0.876 0.885 0.830 0.825 0.606 0.726
ConvexLoss_AUC 0.319 0.354 0.860 0.890 0.820 0.813 0.616 0.716
ConvexLoss_MAP 0.389 0.371 0.866 0.874 0.826 0.831 0.605 0.724
ConvexLoss_NDCG 0.385 0.368 0.878 0.892 0.843 0.828 0.608 0.732
SVMmap 0.385 0.343 0.840 0.845 0.821 0.847 0.601 0.712
Rankboost 0.347 0.340 0.868 0.845 0.836 0.806 0.582 0.711
RankSVM 0.314 0.315 0.850 0.877 0.830 0.856 0.598 0.712
MLE 0.387 0.338 0.883 0.872 0.843 0.830 0.581 0.724
ExpGain_AUC 0.353 0.346 0.862 0.885 0.832 0.862 0.600 0.723
ExpGain_MAP 0.372 0.323 0.870 0.895 0.855 0.847 0.558 0.722
ExpGain_NDCG 0.366 0.309 0.867 0.890 0.859 0.850 0.553 0.719
L_3 AUC 0.405 0.341 0.874 0.898 0.844 0.851 0.582 0.729
L_3 MAP 0.402 0.335 0.871 0.900 0.848 0.848 0.576 0.727
L_3 NDCG 0.400 0.337 0.884 0.900 0.842 0.843 0.582 0.729
ConvexLoss_AUC 0.331 0.334 0.872 0.905 0.838 0.842 0.602 0.724
ConvexLoss_MAP 0.390 0.338 0.873 0.885 0.848 0.853 0.577 0.726
ConvexLoss_NDCG 0.397 0.336 0.884 0.904 0.858 0.853 0.578 0.733
SVMmap 0.296 0.259 0.781 0.746 0.707 0.709 0.563 0.626
Rankboost 0.277 0.263 0.782 0.739 0.740 0.664 0.545 0.624
RankSVM 0.244 0.233 0.794 0.764 0.726 0.718 0.563 0.629
ListNet 0.223 0.440
BoltzRank2 0.239 0.460
MLE 0.330 0.258 0.820 0.755 0.732 0.695 0.543 0.639
ExpGain_AUC 0.274 0.259 0.802 0.774 0.732 0.715 0.557 0.637
ExpGain_MAP 0.314 0.232 0.808 0.775 0.754 0.723 0.516 0.638
ExpGain_NDCG 0.294 0.220 0.804 0.772 0.752 0.718 0.517 0.633
L_3 AUC 0.342 0.259 0.807 0.771 0.739 0.704 0.544 0.641
L_3 MAP 0.340 0.259 0.813 0.786 0.749 0.703 0.540 0.646
L_3 NDCG 0.323 0.259 0.825 0.773 0.745 0.705 0.541 0.645
ConvexLoss_AUC 0.262 0.252 0.809 0.778 0.750 0.696 0.558 0.640
ConvexLoss_MAP 0.334 0.261 0.807 0.791 0.744 0.689 0.542 0.642
ConvexLoss_NDCG 0.325 0.260 0.816 0.793 0.762 0.720 0.543 0.651
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Figure 3. Comparison of all the proposed formulations and algorithms. Each column corresponds to a data set; the
last column is a microaverage (see text). In each column, the best three cells are shaded green, yellow and tan.
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Figure 4. Effect of |Ŷ | on test accuracy on HP2004 for
ConvexLoss NDCG.
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Figure 5. Effect of restart skew between ∆ = 0 and
∆ = 1 on accuracy on HP2004 for ConvexLoss NDCG.

(∆→ 1). Here we study the restart process in more detail.
First, we study the effect of setting the mix of restarts

in three ways: skewed (probability 0.9) toward ∆ = 0,
likewise skewed toward ∆ = 1, and balanced between the
two. Figure 5 shows that skewing toward ∆ = 0 generally
increases accuracy. (The number of restarts and samples
were kept fixed.)

In the second experiment, we handcrafted a number of
restarts with diverse ∆ values in [0, 1]. Then we used ths
distribution Pr(y) ∝ exp(k∆(y)) to sample restarts. For
k > 0, this means we skew toward ∆ = 1. For k < 0, we
skew toward ∆ = 0. Representative results are shown in
Figure 6: k � 0 seems uniformly better.

k → 5 0 −5 −10 −20
MAP .033 .089 .706 .774 .827
NDCG@10 .041 .124 .815 .905 .918

Figure 6. Effect of restart skew with more than two
restart states.

5.3.3. ∆ smear. We were surprised by the consistent signal
that skewing toward the ∆ = 0 restart is the best policy.
From considerations of sampling accuracy as well as pre-
senting both good and bad rankings to the learner, we had
anticipated that a more even mix of restart ∆s would work
better.

To investigate the unexpected observations, we started
from three restarts: ∆ = 0,∆ ≈ 0.5,∆ = 1, and plotted
the density of ∆s in the final sample. Results are shown in
Figure 7.
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Figure 7. Smear of the sampled ∆ density for three
restart seeds.

Note that if n+ is small, ∆ changes quite discretely and
not all ∆ values are realizable by rankings. E.g., the slightest
perturbation from ∆ = 0 may raise ∆ to a minimum of 0.5
in case of MAP. Hence the empty buckets.

The difference in the spread of sampled ∆s immediately
stands out: the smear of sampled ∆s around the seed ∆ = 1
is much smaller than that around the seed ∆ = 0. If we are
at a state with ∆ ≈ 1, flipping a random g, b pair is unlikely
to perturb ∆ much. On the contrary, given that, for most
queries, n+ � n−, a random g, b flip on a good ranking
can turn it very bad.

In other words, the sampler shown in Figure 2 results
in different spreads of sampled ∆s for different seed ∆s.
Therefore, a skew toward ∆ = 0 does not deprive the learner
from rankings with a variety of ∆s. In fact, if w is already
good enough, it may be better to present great and good
rankings to the learner than to waste samples on really bad
rankings.

5.3.4. Optimization objective dynamics. We also traced
the evolution of the exact and sampled objectives as w
evolved through iterations of the optimizer. While these val-
ues were not very close together, each improved as iterations
progressed. Based on these studies, we hypothesized that
• w quickly evolves to a reasonably good model.
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• This means that for any y with small ∆(y), w>φ(x, y)
is large.

• Figure 8 shows that a large w>φ(x, y) usually trumps
a small ∆(y).

• This means that, in our sampled estimation of∑
y′ exp(−w>δφq(y′)+∆q(y′)), preferably picking y′

with large w>φq(x, y′) (i.e., small ∆q(y′), is adequate.

(Figure 8 shows, for 10 random queries and 10 arbitrary
y rankings per query, a scatter of the values of w>φ(x, y),
averaged over the first 10 iterations, as w evolves against the
fixed ∆ ∈ [0, 1]. The latter is always quite small compared
to the former, except at the initialization w = ~0.)
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Figure 8. As w evolves, w>φ(x, y) quickly begins to
dominate ∆(y).

Summarizing, our sensitivity study on the sampling pro-
cess explains the dependency between sampling policies
and system accuracy, and gives a clear recipe for sampling
rankings based on the template in Figure 2.

6. Conclusion

The central problem in learning to rank is to approximate
the loss function with tractable surrogates. One way is to
parametrically model a conditional probability, and then
minimize the expected loss under this distribution. Com-
pared to other approaches such as neural networks and struc-
tured max-margin learners, the direct conditional probability
approach was not well-explored before our work. This was
probably because evaluating the partition function is tricky.
We gave closed form for one common setting, and gave
a new Monte Carlo sampling technique for other general
settings. Despite its simplicity, our new approach shows
significant accuracy gains compared to recent, competitive
algorithms. A natural future direction would be to guide the
ConvexLoss optimizer with some combination of all the loss
functions.
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