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Learning to Rank
I Web search, recommender systems, database search, . . .

I Vector Spaces: Learn a good scoring function 〈β, ψ(x)〉 from
training preferences for fixed feature mapping ψ on instances x

I Graphs: Of great recent interest for modelling relationships
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Two Roles of Edges in Graph Ranking

Associative Networks

I Edges encode similarity
I Preference for smooth scoring functions
I Typically edge weights indicate extent of similarity

Random Walk Approach

I Edges indicate endorsement
I Motivated by Pagerank, widely used
I Each edge (u, v) has transition probability

Q(v , u) = Pr(v |u)

Note : Equivalent for undirected graphs.

I Typically Q fixed by hand and π = Qπ found

I We have an “inverse problem”: given properties of π, find a
transition probability matrix
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Training and Testing
I Fixed directed graph G

I Training set of some node-pair preferences:

“u ≺ v” means we want score(u) < score(v)

I More node-pair preferences in test set

I Sampling distribution over node pairs not necessarily uniform, but
same for training and testing

I Transductive, in the sense that node-pair space is finite

I Performance measured by number of incorrect test set predictions

I Learner must assign scores to satisfy training pairs without
overfitting
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Ranking Using Random Walk (Agarwal+ 2006)

I Pagerank vector π = Qπ, Π = diag(π), induces flow
quv = π(u)Qvu along graph edges

I Goal: learn flow p close to q that satisfies training preferences

min
{0≤puv}
{0≤suv}

∑
(u,v)∈E

puv log
puv

quv
+ B

∑
u≺v

suv (KL)

s.t.:
∑

(u,v)∈E

puv = 1 (Sum)

∀v ∈ V :
∑

(u,v)∈E

puv −
∑

(v ,w)∈E

pvw = 0 (Balance)

∀u ≺ v :
∑

(w ,u)∈E

pwu −
∑

(w ,v)∈E

pwv − suv ≤ 0 (Pref)
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Limitations of Markovian Flow Approach
I Only intuitive motivation for use of q

I No known generalization bounds

I No margin in training constraints
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Ranking in Associative Networks (Agarwal 2006)

I Directed Graph Laplacian L = I−
(

Π1/2QΠ−1/2+Π−1/2QΠ1/2

2

)
.

I f >Lf =
∑

(u,v)∈E π(u)Q̂uv

(
f (u)√
π(u)

− f (v)√
π(v)

)2

enforces smoothness

I Scoring algorithm:

min
f :V→R

s={suv≥0:u≺v}

1
2
f >Lf + B

∑
u≺v

suv subject to

fv − fu ≥ 1− suv ∀u ≺ v

(Lap)

I Generalization proved using algorithmic stability (Bousquet+ 2002)
I f (v) ∝

√
π(v) minimizes f >Lf

I I.e. prefers pagerank ordering in absence of training data
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Limitations of the Laplacian Approach
I “Link as similarity hint” not universal view

I Millions of obscure pages u link to v =
http://kernel-machines.org, with score(u) � score(v)

I Score fu can be arbitrary, even negative

I No intuitive meaning like probability as for π(u)

I Generalization depends on κ = maxu∈V L+(u, u) , hard to interpret

I Typical QP solvers compute and store large, dense L+ in RAM
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Our Contributions
I Relating Laplacian regularization with KL regularization

I Stability-based generalization bounds for random walk ranking

I Key parameters that affect generalization

I Incorporation of margin in random walk ranking

I Cost-sensitive ranking framework
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Laplacian-KL Correspondence
I Algorithm(KL) returns flow {puv}
I Define node scores using flow {puv}:

fp(u) =

√ ∑
w :(w ,u)∈E

pwu

I Same rank order as Pagerank node score:
∑

w :(w ,u)∈E pwu

I We show that

KL(p‖q) ≤ ε ⇒ f >p Lfp ≤ 4(2ε ln 2)2

∴ If (KL) achieves a small KL distance, we can find scores with low
Laplacian roughness penalty too

I First hint that KL(·‖q) is a good regularizer
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Generalization Bound for (KL)
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I For any m ≥ 1, any δ ∈ (0, 1), the following holds w.p. ≥ 1− δ
over random draws of sample ≺ of size m:

R ≤ Remp + 2β + (4mβ + 1)

√
ln(1/δ)

2m
I Graph-agnostic case: β = 2ln2

λm

I G may not reduce function class (a)

I Degree bound D not enough (c)

I But G can be useful too (b)

I Key parameter: eccentricity

ρ = max
u∈V

maxv :(u,v)∈E puv

minv :(u,v)∈E puv

I Modified β worsens with increasing D, ρ

I Together, ρ and D control influence of any single node
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Loss Functions and Problem with Margin
I Thus far, our loss function has been

`0(f , u, v) =

{
0, f (u)− f (v) < 0

f (u)− f (v), 0 ≤ f (u)− f (v)

I Ideally, we want an upper bound on 0/1 loss e.g., hinge loss

`1(f , u, v) =

{
0, f (u)− f (v) < −1

1+f (u)− f (v), −1 ≤ f (u)− f (v)

I In (KL),
∑

(u,v) puv = 1 means all node scores in [0, 1]

I Typically most nodes scores are very small

I Arbitrary additive margin (like “1”) unattainable except for
“meaningless” slacks

I Let flows {puv} float to variable scale:
∑

{uv∈E} puv = F

I Luckily, KL(p‖q) well-defined even if p not normalized
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(KL) with Additive Margin

min
{puv},{suv}

F≥1

∑
(u,v)∈E ′

puv log puv

quv
+ B

∑
u≺v

suv + B1 F 2

subject to 1 +
∑

(w ,u)∈E

pwu −
∑

(w ,v)∈E

pwv − suv ≤ 0 ∀u ≺ v

I Small F enforces large margin

I Can show (polynomial in δ) generalization bound

I Generalization worsens as upper bound on F increases
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Experimental Results
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I Evaluated on real and synthetic social networks

I First computed reference (unweighted) pagerank

I Secretely perturbed conductance of some edges

I Computed perturbed pagerank, considered to be the “true” hidden
score

I Sampled training and test pairs from agreements and
disagreements between the two rankings

I Additive margin in (KL) helps, gives best results
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Cost Sensitivity in Ranking
I Tester wants no mistake at top of ranked list

I Excessive cognitive burden on trainer to provide total orders or
“true” scores

I Main Intuition: Use score estimate as surrogate

I High confidence in nodes predicted to be ranked high.

I With high probability, loss is small for pairs with large fu or fv
I Generalization bounds follow from stability wrt g .
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Cost-sensitive ranking experiments
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I Number of violations in test set no longer appropriate, need
cost-sensitive performance measure

I Use precision at rank k

I Cost-sensitive formulation does better than cost-ignorant
counterpart

I Better for other accuracy measures too, like Kendall’s tau
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Summary
I Connections between Laplacian and random walk setups

I Generalization bounds in terms of intuitive graph parameters for
random walk ranking

I Margin in random walk ranking, beats Laplacian approach in
experiments

I Optimization more scalable for random walk approach

I A general cost-sensitive ranking framework

I Effective experimental results in modified Laplacian framework
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