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Learning to Rank

» Web search, recommender systems, database search, ...

» Vector Spaces: Learn a good scoring function (3, (x)) from
training preferences for fixed feature mapping % on instances x

» Graphs: Of great recent interest for modelling relationships
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Need to exploit/respect information from links

Alekh Agarwal and Soumen Chakrabarti Learning Random Walks to Rank Nodes in Graphs



Two Roles of Edges in Graph Ranking

Associative Networks
» Edges encode similarity
» Preference for smooth scoring functions
» Typically edge weights indicate extent of similarity
Random Walk Approach
» Edges indicate endorsement
» Motivated by Pagerank, widely used
» Each edge (u, v) has transition probability
Q(v, u) = Pr(v|u)
Note : Equivalent for undirected graphs.

» Typically Q fixed by hand and 7 = Q7 found

» We have an “inverse problem”: given properties of 7, find a
transition probability matrix
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Training and Testing

v

Fixed directed graph G
Training set of some node-pair preferences:

v

“u<v" means we want score(u) < score(v)
» More node-pair preferences in test set

» Sampling distribution over node pairs not necessarily uniform, but
same for training and testing

» Transductive, in the sense that node-pair space is finite
» Performance measured by number of incorrect test set predictions

» Learner must assign scores to satisfy training pairs without
overfitting
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Ranking Using Random Walk (Agarwal-+ 2006)

» Pagerank vector m = Qm, IN = diag(w), induces flow
qu = m(u)Q,, along graph edges
» Goal: learn flow p close to g that satisfies training preferences

min 3 pu og Puv “+ BY s, (KL)

0<puv
;{{Oggw}}: (u,v)EE u<v
s.t.: Z puw =1 (Sum)
(u,v)EE
YveV: Z Puv — Z P =0 (Balance)
(u,v)eE (v,w)eE
Vu <v: Z pwu - Z pwv — Suv S 0 (Pref)
(w,u)eE (w,v)EE
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Limitations of Markovian Flow Approach

» Only intuitive motivation for use of g
» No known generalization bounds

» No margin in training constraints
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Ranking in Associative Networks (Agarwal 2006)

2

2
> -: > (uwyee T( u) Quv (\ﬁ \;Er%)) enforces smoothness

Scoring algorithm:
min fTLf+ B Zsuv subject to

s:{;cu:vVZ_O):§<v} u<v (Lap)
f,—f,>1—s,, VYu<v
Generalization proved using algorithmic stability (Bousquet+ 2002)
f(v) o< \/7(v) minimizes fTLf
l.e. prefers pagerank ordering in absence of training data

» Directed Graph Laplacian L =1 — <n1/2Q”71/2+”71/2Q”1/2>.

v
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Limitations of the Laplacian Approach

» “Link as similarity hint" not universal view

v

Millions of obscure pages u link to v =
http://kernel-machines.org, with score(u) < score(v)

v

Score f, can be arbitrary, even negative

No intuitive meaning like probability as for 7(u)

v

Generalization depends on k = max,ecy LT (u, u) , hard to interpret

v

v

Typical QP solvers compute and store large, dense L™ in RAM
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Our Contributions

Relating Laplacian regularization with KL regularization
Stability-based generalization bounds for random walk ranking
Key parameters that affect generalization

Incorporation of margin in random walk ranking

vV V. v v Vv

Cost-sensitive ranking framework
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Laplacian-KL Correspondence

v

Algorithm(KL) returns flow {p,, }
Define node scores using flow {p,, }:

fp(u) = Z pwu

Same rank order as Pagerank node score: ZW:(W,U)EE Pwu
We show that
KL(pllg) <e = £ Lf <4(2€In2)?

" If (KL) achieves a small KL distance, we can find scores with low
Laplacian roughness penalty too

v

v

v

v

First hint that KL(-||q) is a good regularizer
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Generalization Bound for (KL)

>

vV V. v v Vv

For any m > 1, any ¢ € (0,1), the following holds w.p. >1—¢
over random draws of sample < of size m:
In(1/9)

RSRemp+2ﬁ+(4mﬁ+1) W
2In2

Graph-agnostic case: = o © 0
G may not reduce function class (a)(a) 0

Degree bound D not enough (c)
But G can be useful too (b)
Key parameter: eccentricity
MaXy:(u,v)eE Puv
p = max —
ueV MiNy:(y v)eE Puv
Modified 7 worsens with increasing D, p

Together, p and D control influence of any single node
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Loss Functions and Problem with Margin

» Thus far, our loss function has been
G uv) = 0, f(u)—f(v) <0
f(u) = f(v), 0<f(u)—f(v)
|deally, we want an upper bound on 0/1 loss e.g., hinge loss
0 f(u)—f —1
o - L0 ()~ £(v) <
1+f(u) — f(v), —1<f(u)—"~f(v)
In (KL), >>(,) Puv = 1 means all node scores in [0, 1]

v

v

v

Typically most nodes scores are very small

v

Arbitrary additive margin (like “1") unattainable except for
“meaningless” slacks

v

Let flows {p, } float to variable scale: =, cry puv = F
» Luckily, KL(p||q) well-defined even if p not normalized
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(KL) with Additive Margin

{,,f;igw} > pulog?2+BY s, + |BIEY

(u,v)eE’ u=<v
subject to 1+ Z Pwu — Z Pwv — Suv <0 Yu<v
(w,u)eE (w,v)€E

» Small F enforces large margin
» Can show (polynomial in §) generalization bound

» Generalization worsens as upper bound on F increases
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Experimental Results
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Evaluated on real and synthetic social networks
First computed reference (unweighted) pagerank

Secretely perturbed conductance of some edges

vV v v v

Computed perturbed pagerank, considered to be the “true” hidden
score

» Sampled training and test pairs from agreements and
disagreements between the two rankings

» Additive margin in (KL) helps, gives best results
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Cost Sensitivity in Ranking

» Tester wants no mistake at top of ranked list
» Excessive cognitive burden on trainer to provide total orders or
“true” scores

» Main Intuition: Use score estimate as surrogate
» High confidence in nodes predicted to be ranked high.

fu - T maxif,, f)if- )
0.9 o 0.1 0.1
O,
'
!
0.1 ° 0.1 0.01
o2 @

» With high probability, loss is small for pairs with large f, or f,
» Generalization bounds follow from stability wrt g.
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Cost-sensitive ranking experiments
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» Number of violations in test set no longer appropriate, need
cost-sensitive performance measure

» Use precision at rank k

» Cost-sensitive formulation does better than cost-ignorant
counterpart

» Better for other accuracy measures too, like Kendall's tau
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Summary

» Connections between Laplacian and random walk setups

» Generalization bounds in terms of intuitive graph parameters for
random walk ranking

» Margin in random walk ranking, beats Laplacian approach in
experiments

» Optimization more scalable for random walk approach
» A general cost-sensitive ranking framework

» Effective experimental results in modified Laplacian framework

Alekh Agarwal and Soumen Chakrabarti Learning Random Walks to Rank Nodes in Graphs

17



References |

[§ A. Agarwal, S. Chakrabarti, and S. Aggarwal, “Learning to rank
networked entities,” in SIGKDD Conference, 2006, pp. 14-23.
http://www.cse.iitb.ac.in/~soumen/doc/netrank

[§ S. Agarwal, “Ranking on graph data,” in ICML, 2006, pp. 25-32.
http://web.mit.edu/shivani/www /Papers/2006/
icml06-graph-ranking.pdf

[@ O. Bousquet and A. Elisseeff, “Stability and generalization,” Journal
of Machine Learning Research, vol. 2, pp. 499-526, 2002.
http://www.cmap.polytechnique.fr/~bousquet /papers/

BouEliO1 _stability jmlr.ps

Alekh Agarwal and Soumen Chakrabarti Learning Random Walks to Rank Nodes in Graphs 18


http://www.cse.iitb.ac.in/~soumen/doc/netrank
http://web.mit.edu/shivani/www/Papers/2006/icml06-graph-ranking.pdf
http://web.mit.edu/shivani/www/Papers/2006/icml06-graph-ranking.pdf
http://www.cmap.polytechnique.fr/~bousquet/papers/BouEli01_stability_jmlr.ps
http://www.cmap.polytechnique.fr/~bousquet/papers/BouEli01_stability_jmlr.ps

	Introduction
	Algorithms for Ranking in Graphs
	Our Contributions
	Laplacian-KL Correspondence
	Stability and Generalization
	Additive Margin
	Cost Sensitive Ranking Framework

