

Centrality and prestige

KDD2004

© Chakrabarti + Faloutsos

Carnegie Mellon

1

2

How important is a node?

- Degree, min-max radius, ...
- Pagerank
- Maximum entropy network flows
- HITS and stochastic variants
- Stability and susceptibility to spamming
- Hypergraphs and nonlinear systems
- Using other hypertext properties
- Applications: Ranking, crawling, clustering, detecting obsolete pages

KDD2004

IT Bombay Prestige as Pagerank [BrinP1997] • "Maxwell's equation for the Web" $PR(v) = \sum_{(u,v) \in E} \frac{PR(u)}{OutDegree(u)}$ OutDegree(u)=3 v• PR converges only if E is aperiodic and irreducible; make it so: $PR(v) = \frac{d}{N} + (1-d) \sum_{(u,v) \in E} \frac{PR(u)}{OutDegree(u)}$ • d is the (tuned) probability of "teleporting" to one of N pages uniformly at random • (Possibly) unintended consequences: topic sensitivity, stability

KDD2004

IIT Bombay

Carnegie Mellon

3

4

Prestige as network flow

© Chakrabarti + Faloutsos

- y_{ii} = #surfers clicking from i to j per unit time
- Hits per unit time on page *j* is $H_j = \sum_{(i,j) \in E} Y_{ij}$
- Flow is conserved at $\forall j : \sum_{(i,j) \in E} y_{ij} = \sum_{(j,k) \in E} y_{jk}$
- The total traffic is $Y = \sum_{j} H_{j} = \sum_{i,j} y_{ij}$
- Normalize: $p_{ij} = y_{ij} / Y$ Can interpret p_{ij} as a probability
- Standard Pagerank corresponds to one solution: p_{ii} = H_i/(Y OutDegree(i))
- Many other solutions possible

KDD2004

IIT Bombay

Maximum entropy flow [Tomlin2003]

Flow conservation modeled using feature

$$\forall r = 1, \dots, N: f_r(x_{ij}) = \begin{cases} +1 & j = r, (i, r) \in E \\ -1 & i = r, (r, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

• And the constraints $0 = E(f_r(x_{ij})) = \sum_{i,j} p_{ij} f_r(x_{ij})$

© Chakrabarti + Faloutsos

Maxent flow results

- Goal is to maximize $-\sum_{i,j} p_{ij} \log p_{ij}$ subject to $\sum_{i,j} p_{ij} = 1$
- Solution has form $p_{ij} = \exp(\lambda_0 \lambda_i + \lambda_j)$
- λ_i is the "hotness" of page *i*

KDD2004

IIT (Bombay
20 - US	

Carnegie Mellon

	Test	PageRank	TrafficRa	nk HOT	'ness λ	ranking is	s better
\frown	1	0.6443	2.275	0.4	610 th	an Pager	ank; <i>H_i</i>
	2	1.242	1.417	1.1	₆₀ ra	anking is v	vorse
Two IBM intranet data sets with know	A ra n o	verage ank (10 ⁶) f known	De dr us	epth up noz.org ed as	o to whic g URLs a ground t	h are ruth	$-H_i$
top URLs	to	op URLs	Level	Number	PageRank	TrafficRank	HOTness
	w	when	1	27	0.753	6.404	1.656
	S	orted by	2	4258	3.143	2.862	2.614
	Р	Pagerank	3	65343	4.448	4.385	3.949
(0		- 	4	228943	4.686	4.887	4.286
(Smaller rank is better)		5	427578	4.817	5.127	4.438	
Average rank (108)			3)∞	990354	5.236	5.677	4.812
KDD2004			© Chakrabar	ti + Faloutsos			6

7

IIT Bombay

HITS [Kleinberg1997]

- Two kinds of prestige
 - Good hubs link to good authorities
 - Good authorities are linked to by good hubs

$$a(v) = \sum_{(u,v)\in E} h(u); \quad h(u) = \sum_{(u,v)\in E} a(v)$$

- Eigensystems of $EE^{T}(h)$ and $E^{T}E(a)$

© Chakrabarti + Faloutsos

KDD2004

IIT Bombay Dyadic results for "Machine learning"

Top citat	ions by $F(c z)$, computed by FH115 algorithm:
factor 1	(Reinforcement Learning)
0.0108	Learning to predict by the methods of temporal differences. Sutton
0.0066	Neuronlike adaptive elements that can solve difficult learning control problems. Barto et al
0.0065	Practical Issues in Temporal Difference Learning. Tesauro.
factor 2	(Rule Learning)
0.0038	Explanation-based generalization: a unifying view. Mitchell et al
0.0037	Learning internal representations by error propagation. Rumelhart et al
0.0036	Explanation-Based Learning: An Alternative View. DeJong et al
factor 3	(Neural Networks)
0.0120	Learning internal representations by error propagation. Rumelhart et al
0.0061	Neural networks and the bias-variance dilemma. Geman et al
0.0049	The Cascade-Correlation learning architecture. Fahlman et al
factor 4	(Theory)
0.0093	Classification and Regression Trees. Breiman et al
0.0066	Learnability and the Vapnik-Chervonenkis dimension, Blumer et al
0.0055	Learning Quickly when Irrelevant Attributes Abound. Littlestone
factor 5	(Probabilistic Reasoning)
0.0118	Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Pearl.
0.0094	Maximum likelihood from incomplete data via the em algorithm. Dempster et al
0.0056	Local computations with probabilities on graphical structures Lauritzen et al
factor 6	(Genetic Algorithms)
0.0157	Genetic Algorithms in Search, Optimization, and Machine Learning. Goldberg
0.0132	Adaptation in Natural and Artificial Systems. Holland
0.0096	Genetic Programming: On the Programming of Computers by Means of Natural Selection. Koz

Clustering based on citations + ranking within clusters

KDD2004

© Chakrabarti + Faloutsos

h IIT Bombay

Carnegie Mellon

Spamming link-based ranking

- Recipe for spamming HITS
 - Create a hub linking to genuine authorities
 - Then mix in links to your customers' sites
 - Highly susceptible to adversarial behavior
- Recipe for spamming Pagerank
 - Buy a bunch of domains, cloak IP addresses
 - Host a site at each domain
 - Sprinkle a few links at random per page to other sites you own
 - Takes more work than spamming HITS

KDD2004

IIT Bombay

Carnegie Mellon

Stability of link analysis [NgZJ2001]

- Compute HITS authority scores and Pagerank
- Delete 30% of nodes/links at random
- Recompute and compare ranks; repeat
- Pagerank ranks more stable than HITS authority ranks
 - Why?
 - How to design more stable algorithms?

Ľ	19	202	-00	11 J	
	1	3	1	1	1
₹	2	5	3	3	2
õ	3	12	6	6	3
Ę	4	52	20	23	4
<	5	171	119	99	5
ທ ⊢	6	135	56	40	8
Τ	10	179	159	100	7
	8	316	141	170	6

	1	1	1	1	1
	2	2	2	2	2
Ę	3	5	6	4	5
era	4	3	5	5	4
g	5	6	3	6	3
۵ï	6	4	4	3	6
	7	7	7	7	7
	8	8	8	8	9
					11

KDD2004

Carnegie Mellon Carnegie Mellon Stability depends on graph and params

© Chakrabarti + Faloutsos

- Auth score is eigenvector for $E^{T}E = S$, say
- Let $\lambda_1 > \lambda_2$ be the first two eigenvalues
- There exists an S' such that
 - S and S' are close $||S-S'||_F = O(\lambda_1 \lambda_2)$
 - But $||u_1 u'_1||_2 = \Omega(1)$
- Pagerank *p* is eigenvector of $(\varepsilon U + (1 \varepsilon)E)^T$
 - U is a matrix full of 1/N and ε is the jump prob
 - If set C of nodes are changed in any way, the new Pagerank vector p'satisfies

$$\left\|p'-p\right\|_{2} \leq \left(2\sum_{u\in C} p_{u}\right)/\varepsilon$$

KDD2004

© Chakrabarti + Faloutsos

Randomized HITS

 Each half-step, with probability *ɛ*, teleport to a node chosen uniformly at random

$$a^{(t+1)} = \varepsilon \vec{1} + (1-\varepsilon)E_{\text{row}}^T h^{(t)}$$
$$h^{(t+1)} = \varepsilon \vec{1} + (1-\varepsilon)E_{\text{col}}a^{(t)}$$

- Much more stable than HITS
- Results meaningful too
 - ε near 1 will always stabilize
 - Here *ε* was 0.2

6	1	3	3	2	1
Ĕ	4	1	1	1	2
Ξ	2	2	2	3	4
ed	3	4	4	4	3
υİΖ	5	6	6	6	5
Ы	6	5	5	5	6
pu	7	7	7	7	7
Ra	8	8	8	8	8
Г					
	1	1	1	1	2
	3	2	2	2	1
¥	2	3	3	3	3
rai	4	4	4	4	4
ge	5	6	7	5	5
Ба	6	7	6	6	6
	7	5	5	7	7
	8	9	9	9	11
_					1:

Carnegie Mellon LIT Bombay Another random walk variation of HITS SALSA: Stochastic HITS [Lempel+2000] Two separate random walks a_1 1/3 🔶 From authority to authority via hub 1/3 1/21/3 From hub to hub via authority • Transition probability $Pr(a_i \rightarrow a_j) =$ 1/2 $\sum_{h:(h,a_i),(h,a_j)\in \mathcal{E}} \overline{\text{InDegree}(a_i)} \overline{\text{OutDegree}(h)}$ • If transition graph is irreducible, $\pi_a \propto \text{InDegree}(a)$ For disconnected components, depends on relative size of bipartite cores

© Chakrabarti + Faloutsos

Avoids dominance of larger cores

KDD2004

KDD2004

SALSA sample result ("movies")

url	title	cat	weight
http://go.msn.com/npl/msnt.asp	MSN.COM	(3)	0.1673
http://go.msn.com/bql/whitepages.asp	White Pages - msn.com	(3)	0.1672
http://go.msn.com/bsl/webevents.asp	Web Events	(3)	0.1672
http://go.msn.com/bql/scoreboards.asp	MSN Sports scores	(3)	0.1672

HITS: The Tightly-Knit Community (TKC) effect

url	title	cat	weight
http://us.imdb.com/	The Internet Movie Database	(3)	0.2533
http://www.mrshowbiz.com/	Mr Showbiz	(3)	0.2233
http://www.disney.com/	Disney.com–The Web Site for Families	(3)	0.2200
http://www.hollywood.com/	Hollywood Online:all about movies	(3)	0.2134
http://www.imdb.com/	The Internet Movie Database	(3)	0.2000
http://www.paramount.com/	Welcome to Paramount Pictures	(3)	0.1967
http://www.mca.com/	Universal Studios	(3)	0.1800
http://www.discovery.com/	Discovery Online	(3)	0.1550
http://www.film.com/	Welcome to Film.com	(3)	0.1533
http://www.mgmua.com/	mgm online	(3)	0.1300

SALSA: Less TKC influence (but no reinforcement!)

KDD2004

KDD2004

ू IIT Bombay

© Chakrabarti + Faloutsos

15

Links in relational data [GibsonKR1998]

- (Attribute, value) pair is a node
 Each node v has weight w_v
- Each tuple is a hyperedge
 - Tuple r has weight x_r
- HITS-like iterations to update weight w_v
 - For each tuple $r = (v, u_1, \dots, u_k)$ $x_r = \bigotimes(w_{u_1}, \dots, w_{u_k})$
 - Update weight $w_v \leftarrow \sum_r x_r$
- Combining operator ⊗ can be sum, max, product, L_p avg, etc.

IIT Bombay

Carnegie Mellon

Distilling links in relational data

KDD2	Author	Author © Chakrabarti + Fa		Year	17
	-0.0587: Motro	-0.0671: Navathe	-0.03581: IEEEDBEng	-0.02873: 1982	
	-0.0623: Jajodia	-0.06722: James	-0.04533: WorkshopI	-0.03238: 1974	
Ц	-0.06308: Bernstein	-0.06843: Jagadish	-0.04658: IEEETechn	-0.03765: 1980	
)ai	-0.06615: Litwin	-0.07159: Robert	-0.04832: IEEETrans	-0.06431: 1990	
tat	-0.06722: Navathe	-0.07403: Michael	-0.1176: IEEETransa	-0.06571: 1975	
Зa	-0.06783: Yu	-0.07454: Stonebrak	-0.1397: ACMTDS	-0.11: 1984	
Se	-0.07735: Abiteboul	-0.07643: Richard	-0.1504: PODS	-0.14: 1988	
-	-0.1023: Wiederhold	-0.08343: DeWitt	-0.2392: SIGMOD	-0.1519: 1989	
	-0.1059: Agrawal	-0.09615: David	-0.256: VLDB	-0.1983: 1987	
:	-0.1195: Stonebrake	-0.1068: Wiederhold	-0.384: IEEEDataEng	-0.2165: 1986	
	0.08232: Ehrig	0.0783: Lee	0.1002: JCSS	0.001679: 1970	_
	0.08423: Farach	0.07924: Maurer	0.1074: IEEETC	0.001891: 1973	
	0.08571: Hemaspaand	0.0797: Huang	0.1266: STOC	0.004569: 1985	
F	0.09467: Dolev	0.08171: Sharir	0.1371: SODA	0.005276: 1972	
μ	0.1053: Gu	0.08837: Igarashi	0.1464: JPDC	0.0155: 1976	
õ	0.1104: Bellare	0.09004: Rozenberg	0.1626: DAMATH	0.07487: 1992	
≥	0.1119: Agarwal	0.1: Li	0.1633: INFCTRL	0.151: 1993	
	0.1147: Zhang	0.1007: COMPREVS	0.195: LNCS	0.4332: 1996	
	0.1185: Chang	0.1289: Wang	0.2264: IPL	0.5596: 1994	
	0.1811: Chen	0.1629: Chen	0.317: TCS	0.563: 1995	

Carnegie Mellon

Searching and annotating graph data

KDD2004

Searching graph data

- Nodes in graph contain text
 - Random→Intelligent surfer [RichardsonD2001]
 - Topic-sensitive Pagerank [Haveliwala2002]
 - Assigning image captions using random walks [PanYFD2004]
- Query is a set of keywords
 - All keywords may not match a single node
 - Implicit joins [Hulgeri+2002, Agrawal+2002]
 - Or rank aggregation [Balmin+2004] required

Implementing the intelligent surfer

Table 1: Resul	ts on educ	rawl	Table 2: Res	sults on We	bBase
Query	QD-PR	PR	Query	QD-PR	PR
chinese association	10.75	6.50	alcoholism	11.50	11.88
computer labs	9.50	13.25	architecture	8.45	2.93
financial aid	8.00	12.38	bicycling	8.45	6.88
intramural	16.5	10.25	rock climbing	8.43	5.75
maternity	12.5	6.75	shakespeare	11.53	5.03
president office	5.00	11.38	stamp collecting	9.13	10.68
sororities	13.75	7.38	vintage car	13.15	8.68
student housing	14.13	10.75	Thailand tourism	16.90	9.75
visitor visa	19.25	12.50	Zen Buddhism	8.63	10.38
Average	12.15	10.13	Average	10.68	7.99

- PR_Q(*j*) approximates a walk that picks a query keyword using Pr(*q*) at every step
- Precompute and store Pr_q(j) for each keyword q in lexicon: space blowup = avg doc length
- Query-dependent PR rated better by volunteers

© Chakrabarti + Faloutsos

KDD2004

IIT Bombay

IIT Bombay

Carnegie Mellon

21

Topic-sensitive Pagerank

- High overhead for per-word Pagerank
- Instead, compute Pageranks for some collection of broad topics PR_c(j)
 - Topic c has sample page set S_c
 - Walk as in Pagerank
 - Jump to a node in S_c uniformly at random
- "Project" query onto set of topics

$$\Pr(c \mid Q) \propto \Pr(c) \prod_{q \in Q} \Pr(q \mid c)$$

• Rank responses by projection-weighted Pageranks Score(Q, j) = $\sum_{c} Pr(c | Q) PR_{c}(j)$

KDD2004

- Find regions in test image
- Connect regions to other nodes in the region layer using region similarity
- Random walk, restarting at test image node
- Pick words with largest visit probability

KDD2004	© Chakrabarti + Faloutsos	25
IIT Bombay		Carnegie Mellon
Prox	imity search: two paradig	yms
A single	node as query response	
Find network	ode that matches query terms	

- ...or is "near" nodes matching query terms
 [Goldman+ 1998]
- A connected subgraph as query response
 - Single node may not match all keywords
 - No natural "page boundary"

[Bhalotia+2002, Agrawal+2002]

Basic search strategy

- Node subset A activated because they match query keyword(s)
- Look for node near nodes that are activated
- Goodness of response node depends
 - Directly on degree of activation
 - Inversely on distance from activated node(s)

Proximity query: screenshot

Search Searchec Keyword(Internet Movie DB (New) for person (near "matrix reload in Internet Movie DB (New) I Erowse Templates Query I Internet Movie DB (New) for person (near "r 5) Meta node, Click on keywords to select or	led") BAN I ✓ matrix reloaded") filter nodes. Time Profil	IKS Search using Bidirecti e: 58:417:28[db	ional Expanding 💌 Results 1 - 10 Search took 0. Load:dbLookup:Expansion]	503 seconds.
Rank: 1	Score: 0.23329349 (es=1.0 , ns=6.9105584E-4)	Seqnum: 2	Time: 7	["298774" near " matrix reloaded "]	[Similar Results]
	Table: person Prestige=5.12351E-6, EdgeCos id=298774, name=Reeves Keanu, se	=0.0 ex=M, banks_node_	_id=437525,		

http://www.cse.iitb.ac.in/banks/

KDD2004	© Chakrabarti + Faloutsos	29
IIT Bo	ombay C:	arnegie Mellon
	Ranking a single node response	Э

- Activated node set A
- Rank node r in "response set" R based on proximity to nodes a in A
 - Nodes have relevance ρ_R and ρ_A in [0,1]
 - Edge costs are "specified by the system"
- d(a,r) = cost of shortest path from a to r

Bond between *a* and *r*
$$b(a,r) = \frac{\rho_A(a)\rho_R(r)}{d(a,r)^t}$$

- Parameter t tunes relative emphasis on distance and relevance score
- Several ad-hoc choices

KDD2004

© Chakrabarti + Faloutsos

IIT Bombay

Carnegie Mellon

Scoring single response nodes

- Additive $score(r) = \sum_{a \in A} b(a, r)$
- Belief $\operatorname{score}(r) = 1 \prod_{a \in A} (1 b(a, r))$
- Goal: list a limited number of find nodes with the largest scores
- Performance issues
 - Assume the graph is in memory?
 - Precompute all-pairs shortest path (|V|³)?

© Chakrabarti + Faloutsos

Prune unpromising candidates?

KDD2004

Carnegie Mellon

31

Hub indexing

- Decompose APSP problem using sparse vertex cuts
 - |A|+|B| shortest paths to p
 - |A|+|B| shortest paths to q
 - d(p,q)
- To find d(a,b) compare
 - $d(a \rightarrow p \rightarrow b)$ not through q
 - $d(a \rightarrow q \rightarrow b)$ not through p
 - $d(a \rightarrow p \rightarrow q \rightarrow b)$
 - $d(a \rightarrow q \rightarrow p \rightarrow b)$
- Greatest savings when |A|≈|B|
- Heuristics to find cuts, e.g. large-degree nodes

KDD2004

ObjectRank [Balmin+2004]

- Given a data graph with nodes having text
- For each keyword precompute a keywordsensitive Pagerank [RichardsonD2001]
- Score of a node for multiple keyword search based on fuzzy AND/OR
 - Approximation to Pagerank of node with restarts to nodes matching keywords
- Use Fagin-merge [Fagin2002] to get best nodes in data graph

KDD200	04 © Chakrabarti + Faloutsos	33
I I	TT Bombay Carne Connected subgraph as response Single node may not match all keywords • No natural "page boundary" • On-the-fly joins make up a "response page"	gie Mellon
•	 Two scenarios Keyword search on relational data Keywords spread among normalized relations Keyword search on XML-like or Web data Keywords spread among DOM nodes and subtree 	ees

© Chakrabarti + Faloutsos

IIT Bombay

Carnegie Mellon

Keyword search on relational data

- Tuple = node
- Some columns have text
- Foreign key constraints = edges in schema graph→
- Query = set of terms
- No natural notion of a document
 - Normalization
 - Join may be needed to generate results
 - Cycles may exist in schema graph: 'Cites'

	Cites		Paper	
	Citing-		PaperID	
	Cited /		PaperNan	ne 📉
		l	• • •	
Α	uthor		Writes	;
A	uthorID		Autho	rID
A	uthorNa	me	Paper	ID
ŀ	• •			

Autho	rID	Pa	perID	AuthorID	AuthorName
A1		P1		A1	Chaudhuri
A2		P2		A2	Sudarshan
A3	A3 P2			A3	Hulgeri
	Citi	ng	Cited	PaperID	PaperName
	P2		P1	P1	DBXplorer
homo				P2	BANKS
	Autho A1 A2 A3	AuthorID A1 A2 A3 Citi P2	AuthorID Pa A1 P1 A2 P2 A3 P2 Citing P2	AuthorID PaperID A1 P1 A2 P2 A3 P2 Citing Cited P2 P1	AuthorID PaperID AuthorID A1 P1 A1 A2 P2 A2 A3 P2 A3 Citing Cited PaperID P2 P1 P1

KDD2004

Carnegie Mellon

35

DBXplorer and DISCOVER

- Enumerate subsets of relations in schema graph which, when joined, may contain rows which have all keywords in the query
 - "Join trees" derived from schema graph
- Output SQL query for each join tree
- Generate joins, checking rows for matches [Agrawal+2001], [Hristidis+2002]

Discussion

Exploits relational schema information to contain search

IIT Bombay

- Pushes final extraction of joined tuples into RDBMS
- Faster than dealing with full data graph directly
- Coarse-grained ranking based on schema tree
- Does not model proximity or (dis) similarity of individual tuples
- No recipe for data with less regular (e.g. XML) or ill-defined schema

Data structures for search

- Answer = tree with at least one leaf containing each keyword in query
 - Group Steiner tree problem, NP-hard
- Query term t found in source nodes S_t
- Single-source-shortest-path SSSP iterator
 - Initialize with a source (near-) node
 - Consider edges backwards
 - getNext() returns next nearest node
- For each iterator, each visited node v maintains for each t a set v.R_t of nodes in S_t which have reached v

© Chakrabarti + Faloutsos

KDD2004

IIT Bombay

📸 IIT Bombay

Carnegie Mellon

39

Generic expanding search

- Near node sets S_t with $S = \bigcup_t S_t$
- For all source nodes $\sigma \in S$
 - create a SSSP iterator with source σ
- While more results required
 - Get next iterator and its next-nearest node v
 - Let t be the term for the iterator's source s
 - crossProduct = {s} $\times \Pi_{t' \neq t} v.R_{t'}$
 - For each tuple of nodes in crossProduct
 - Create an answer tree rooted at v with paths to each source node in the tuple
 - Add s to v.R_t

KDD2004

Similarity, neighborhood, influence

KDD2004

© Chakrabarti + Faloutsos

Why are two nodes similar?

- What is/are the best paths connecting two nodes explaining why/how they are related?
 - Graph of co-starring, citation, telephone call, ...
- Graph with nodes *s* and *t*, budget of *b* nodes
- Find "best" b nodes capturing relationship between s and t [FaloutsosMT2004]:
 - Proposing a definition of goodness
 - How to efficiently select best connections

Negroponte 29828 430193	Walter Hewitt 3.92175 Michael Capellias	LAGGOZ Carly Florina 0.10762
202542 37.4091 Eather Dyson Esther Dyson	Iotanters 2.29426 Michael Dell Louis Genuer	0.35396 Sam Palmisano
KDD2004	© Chakrabarti + Faloutsos	45

- Shortest path
 - Pizza boy p gets same attention as g
- Network flow
 - $s \rightarrow a \rightarrow b \rightarrow t$ is as good as $s \rightarrow g \rightarrow t$
- Voltage

🖹 IIT Bombay

- Connect +1V at s, ground t
- Both g and p will be at +0.5V
- Observations
 - Must reward parallel paths
 - Must reward short paths
 - Must penalize/tax pizza boys

KDD2004

- Penalizes pizza boys
- Penalizes long paths
- Goodness of a path is the electric current it carries

Carnegie Mellon LIT Bombay Resistive network algorithm

© Chakrabarti + Faloutsos

- Ohm's law: $I(u,v) = C(u,v)[V(u) V(v)] \quad \forall u, v$
- Kirchhoff's current law: $\forall v \neq s, t : \sum_{u} I(u, v) = 0$
- Boundary conditions (without sink):
- Solution: $V(u) = \frac{\sum_{v} V(v)C(u,v)}{\sum_{w} C(u,w)}, \text{ for } u \neq s,t$
- Here C(u, v) is the conductance from u to v
- Add grounded universal sink z with V(z)=0

• Set
$$\forall u: C(u,z) = \alpha \sum_{w \neq z} C(u,w)$$

Display subgraph carrying high current

KDD2004

KDD2004

Distributions coupled via graphs

- Hierarchical classification
 - Document topics organized in a tree
- Mapping between ontologies
 - Can Dmoz label help labeling in Yahoo?
- Hypertext classification
 - Topic of Web page better predicted from hyperlink neighborhood
- Categorical sequences
 - Part-of-speech tagging, named entity tagging

© Chakrabarti + Faloutsos

Disambiguation and linkage analysis

KDD2004

IIT Bombay

Carnegie Mellon

49

Hierarchical classification

- Obvious approaches
 - Flatten to leaf topics, losing hierarchy info
 - Level-by-level, compounding error probability
- Cascaded generative model

 $\Pr(c \mid d) = \Pr(r \mid d) \Pr(c \mid d, r)$

- Pr(c|d,r) estimated as Pr(c|r)Pr(d|c)/Z(r)
- Estimate of Pr(d|c) makes naïve independence assumptions if d has high dimensionality
- Pr(c|d,r) tends to 0/1 for large dimensions and
- Mistake made at shallow levels become irrevocable

KDD2004

Conditional model on topic tree

- Each node has an associated bit X
- Propose a parametric form

$$\Pr(X_c = 1 \mid d, x_r) = \frac{\exp(w_c \cdot F(d, x_r))}{1 + \exp(w_c \cdot F(d, x_r))}$$

 Each training instance sets one path to 1, all other nodes have X=0

📸 IIT Bombay

Carnegie Mellon

Hypertext classification

- c=class, t=text,
 N=neighbors
- Text-only model: Pr[t|c]
- Using neighbors' text to judge my topic: Pr[t, t(N) | c]
- Better model:
 Pr[*t*, *c*(*N*) | *c*]
- Non-linear relaxation

KDD2004

© Chakrabarti + Faloutsos

9600 patents from 12 classes marked by **USPTO**

IIT Bombay

- Patents have text and cite other patents
- Expand test patent to include neighborhood
- 'Forget' fraction of neighbors' classes

Discriminative model: results [Li+2003]

			Cora				
	Content-Only	Flat-Mode	Flat-Binary	Flat-Count	Mode-Link	Binary-Link	Count-Link
Avg. Accuracy	0.674	0.649	0.74	0.728	0.717	0.754	0.758
Avg. Precision	0.662	0.704	0.755	0.73	0.717	0.747	0.759
Avg. Recall	0.626	0.59	0.689	0.672	0.679	0.716	0.725
Avg. F1 Measure	0.643	0.641	0.72	0.7	0.697	0.731	0.741
			CiteSee	r			
	Content-Only	Flat-Mode	Flat-Binary	Flat-Count	Mode-Link	Binary-Link	Count-Link
Avg. Accuracy	0.607	0.618	0.634	0.644	0.658	0.664	0.679
Avg. Precision	0.551	0.55	0.58	0.579	0.606	0.597	0.604
Avg. Recall	0.552	0.547	0.572	0.573	0.601	0.597	0.608
Avg. F1 Measure	0.551	0.552	0.575	0.575	0.594	0.597	0.606
		· · · · · · · · · · · · · · · · · · ·	WebKE	1		· · · · · ·	
	Content-Only	Flat-Mode	Flat-Binary	Flat-Count	Mode-Link	Binary-Link	Count-Link
Avg. Accuracy	0.862	0.848	0.832	0.863	0.851	0.871	0.877
Avg. Precision	0.876	0.86	0.864	0.876	0.878	0.879	0.878
Avg. Recall	0.795	0.79	0.882	0.81	0.772	0.811	0.83
Avg. F1 Measure	0.832	0.821	0.836	0.84	0.82	0.847	0.858

- Binary-link and count-link outperform content-only at 95% confidence
- Better to separately estimate w_l and w_o
- In+Out+Cocitation better than any subset for LD

© Chakrabarti + Faloutsos

📸 IIT Bombay

KDD2004

IIT Bombay

Carnegie Mellon

55

Sequential models

- Text modeled as sequence of tokens drawn from a large but finite vocabulary
- Each token has attributes
 - Visible: allCaps, noCaps, hasXx, allDigits, hasDigit, isAbbrev, (part-of-speech, wnSense)
 - Not visible: part-of-speech, (isPersonName, isOrgName, isLocation, isDateTime)
- Visible (symbols) and invisible (states) attributes of nearby tokens are dependent
- Application decides what is (not) visible
- Goal: Estimate invisible attributes

KDD2004

Using redundant token features

- Each o is usually a vector of features extracted from a token
- Might have high dependence/redundancy: hasCap, hasXx, isProperNoun
- Parametric model for Pr(s_t↑o_t) needs to make naïve assumptions to be practical
- Overall joint model Pr(<u>s,o</u>) can be very inaccurate
- (Same argument as in naïve Bayes vs. SVM or maximum entropy text classifiers)

KDD2004

Discriminative graphical model

Assume one-stage Markov dependence

📸 IIT Bombay

 Propose direct parametric form for conditional probability of state sequence given symbol sequence

Conditional vs. joint: results

Penn Treebank: 45 tags, 1M words training data

	DT NN NN , NN , VB The asbestos fiber , crocidolite, is	Z RB unusually res	JJ IN silient once		
	PRP VBZ DT NNS ,IN RB JJ it enters the lungs , with even brief	NNS TO exposures to	PRP VBG tit causing		
	NNS WDT VBP RP NNS symptoms that show up decades la	JJ , NNS ater , researc	S VBD . hers said .	ļ	
Algori	ithm/Features	%Error	%OOVE*		
НММ	with words	5.69	45.99		
CRF	with words	5.55	48.05	ļ	
CRF with words and orthography 4.27 23.76					
Orthography: Use words, plus overlapping features: sCap, startsWithDigit, hasHyphen, endsWithing, -					

Orthography: Use words, plus overlapping features: isCap, startsWithDigit, hasHyphen, endsWith... -ing, ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies

KDD2004

© Chakrabarti + Faloutsos

IIT Bombay

Carnegie Mellon

61

Summary

- Graphs provide a powerful way to model many kinds of data, at multiple levels
 - Web pages, XML, relational data, images...
 - Words, senses, phrases, parse trees...
- A few broad paradigms for analysis
 - Eigen analysis, conductance, random walks
 - Coupled distributions between node attributes and graph neighborhood
- Several new classes of model estimation and inferencing algorithms
- Exciting new applications

KDD2004

References

- [BrinP1998] <u>The Anatomy of a Large-Scale</u> <u>Hypertextual Web Search Engine</u>, WWW.
- [GoldmanSVG1998] Proximity search in databases. VLDB, 26—37.
- [ChakrabartiDI1998] <u>Enhanced hypertext</u> <u>categorization using hyperlinks</u>. SIGMOD.
- [BikelSW1999] <u>An Algorithm that Learns What's</u> in a Name. Machine Learning Journal.
- [GibsonKR1999] <u>Clustering categorical data: An</u> <u>approach based on dynamical systems.</u> VLDB.
- [Kleinberg1999] <u>Authoritative sources in a</u> <u>hyperlinked environment</u>. JACM 46.

KDD2004	© Chakrabarti + Faloutsos	63

Carnegie Mellon

References

- [CohnC2000] <u>Probabilistically Identifying</u> <u>Authoritative Documents</u>, ICML.
- [LempelM2000] <u>The stochastic approach for link-structure analysis (SALSA) and the TKC effect</u>. <u>Computer Networks 33</u> (1-6): 387-401
- [RichardsonD2001] <u>The Intelligent Surfer:</u> <u>Probabilistic Combination of Link and Content</u> <u>Information in PageRank</u>. NIPS 14 (1441-1448).
- [LaffertyMP2001] <u>Conditional Random Fields:</u> <u>Probabilistic Models for Segmenting and Labeling</u> <u>Sequence Data</u>. ICML.
- [BorkarDS2001] <u>Automatic text segmentation for</u> <u>extracting structured records</u>. SIGMOD.

KDD2004

References

- [NgZJ2001] <u>Stable algorithms for link analysis</u>. SIGIR.
- [Hulgeri+2001] Keyword Search in Databases.
 IEEE Data Engineering Bulletin 24(3): 22-32.
- [Hristidis+2002] <u>DISCOVER: Keyword Search in</u> <u>Relational Databases</u>. VLDB.
- [Agrawal+2002] <u>DBXplorer: A system for</u> <u>keyword-based search over relational databases</u>. ICDE.
- [Fagin2002] <u>Combining fuzzy information: an</u> <u>overview</u>. SIGMOD Record 31(2), 109–118.
- [Chakrabarti2002] <u>Mining the Web: Discovering</u> <u>Knowledge from Hypertext Data</u>

KDD2004

© Chakrabarti + Faloutsos

IIT Bombay

Carnegie Mellon

65

References

- [Tomlin2003] <u>A New Paradigm for Ranking</u> <u>Pages on the World Wide Web</u>. WWW.
- [Haveliwala2003] <u>Topic-Sensitive Pagerank: A</u> <u>Context-Sensitive Ranking Algorithm for Web</u> <u>Search</u>. IEEE TKDE.
- [LuG2003] <u>Link-based Classification</u>. ICML.
- [FaloutsosMT2004] <u>Connection Subgraphs in</u> <u>Social Networks</u>. SIAM-DM workshop.
- [PanYFD2004] <u>GCap: Graph-based Automatic</u> Image Captioning. MDDE/CVPR.
- [Balmin+2004] <u>Authority-Based Keyword Queries</u> in Databases using ObjectRank. VLDB.

KDD2004