

IIT Bombay Carnegie Mellon Dyadic results for "Machine learning"

Top citat	ions by $P(c z)$, computed by PHITS algorithm:
factor 1	(Reinforcement Learning)
0.0108	Learning to predict by the methods of temporal differences. Sutton
0.0066	Neuronlike adaptive elements that can solve difficult learning control problems. Barto et al
0.0065	Practical Issues in Temporal Difference Learning. Tesauro.
factor 2	(Rule Learning)
0.0038	Explanation-based generalization: a unifying view. Mitchell et al
0.0037	Learning internal representations by error propagation. Rumelhart et al
0.0036	Explanation-Based Learning: An Alternative View. DeJong et al
factor 3	(Neural Networks)
0.0120	Learning internal representations by error propagation. Rumelhart et al
0.0061	Neural networks and the bias-variance dilemma. Geman et al
0.0049	The Cascade-Correlation learning architecture. Fahlman et al
factor 4	(Theory)
0.0093	Classification and Regression Trees. Breiman et al
0.0066	Learnability and the Vapnik-Chervonenkis dimension, Blumer et al
0.0055	Learning Quickly when Irrelevant Attributes Abound. Littlestone
factor 5	(Probabilistic Reasoning)
0.0118	Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Pearl.
0.0094	Maximum likelihood from incomplete data via the em algorithm. Dempster et al
0.0056	Local computations with probabilities on graphical structures Lauritzen et al
factor 6	(Genetic Algorithms)
0.0157	Genetic Algorithms in Search, Optimization, and Machine Learning. Goldberg
0.0132	Adaptation in Natural and Artificial Systems. Holland
0.0096	Genetic Programming: On the Programming of Computers by Means of Natural Selection. Koz

Clustering based on citations + ranking within clusters

KDD2004

© Chakrabarti + Faloutsos

IIT Bombay

Spamming link-based ranking

- Recipe for spamming HITS
 - Create a hub linking to genuine authorities
 - Then mix in links to your customers' sites
 - Highly susceptible to adversarial behavior
- Recipe for spamming Pagerank
 - Buy a bunch of domains, cloak IP addresses
 - Host a site at each domain
 - Sprinkle a few links at random per page to other sites you own
 - Takes more work than spamming HITS

пт	Bombay	

ڡۜ

6

7

8

4

7

8

4

7

8

3

7

8

6

7

9

11

Carnegie Mellon Stability of link analysis [NgZJ2001]

- Compute HITS authority scores and Pagerank
- Delete 30% of nodes/links at random
- Recompute and compare ranks; repeat
- Pagerank ranks more stable than HITS authority ranks
 - Why?
 - How to design more stable algorithms?

	- T	3	1	ľ	1
<u>₹</u>	2	3 5	3	3	2 3
õ	3	12	6	6	3
Ę	4 5	52	20	23	4
\triangleleft	5	171	119	99	5
HITS Authority	6	135	56	40	4 5 8 7
ェ	10	179	159	100	7
	8	316	141	170	6
	1	1	1	1	1
	2	2	2	2	2
Ϋ́	2 3	2 5 3	6	4 5	5
agerank	4	3	5	5	2 5 4 3
ag	5	6	3	6	3

IIT Bombay

KDD2004

9

1

1

Carnegie Mellon

10

Stability depends on graph and params

© Chakrabarti + Faloutsos

- Auth score is eigenvector for $E^{T}E = S$, say
- Let $\lambda_1 > \lambda_2$ be the first two eigenvalues
- There exists an S' such that
 - S and S' are close $||S-S'||_F = O(\lambda_1 \lambda_2)$
 - But $||u_1 u'_1||_2 = \Omega(1)$
- Pagerank *p* is eigenvector of $(\varepsilon U + (1 \varepsilon)E)^T$
 - U is a matrix full of 1/N and ε is the jump prob
 - If set C of nodes are changed in any way, the new Pagerank vector p' satisfies

$$\left\| p' - p \right\|_2 \le \left(2 \sum_{u \in C} p_u \right) / \varepsilon$$

Randomized HITS

Each half-step, with probability ε , teleport to a node chosen uniformly at random

$$a^{(t+1)} = \varepsilon \vec{1} + (1-\varepsilon)E_{\text{row}}^T h^{(t)}$$
$$h^{(t+1)} = \varepsilon \vec{1} + (1-\varepsilon)E_{\text{col}}a^{(t)}$$

- Much more stable than HITS
- Results meaningful too
 - ε near 1 will always stabilize
 - Here ε was 0.2

	<u> </u>				
()	1	3	3	2	1
Ĕ	4	1	1	1	2
T	2	2	2	3	4
Randomized HITS	2 3 5 6 7	2 4 6 5 7	2 4 6 5 7	4	1 2 4 3 5 6 7 8
μi	5	6	6	6 5 7	5
p Lo	6	5	5	5	6
ng	7	7	7		7
Ř	8	8	8	8	8
	1	1	1	1	2
	3	2	2	2	2 1 3 4 5 6 7
¥	2	2 3 4 6 7	2 3	2 3	3
Pagerank	4	4	4 7	4	4
ge	5	6	7	5	5
Ба	3 2 4 5 6 7	7	6 5	4 5 6	6
	7	5	5	7	7
	8	9	9	9	11

Carnegie Mellon

h IIT Bombay

Another random walk variation of HITS

- SALSA: Stochastic HITS [Lempel+2000]
- Two separate random walks 1/3
 - From authority to authority via hub
 - From hub to hub via authority
- Transition probability $Pr(a_i \rightarrow a_j) =$
- 1/3 1/21/3² 1/2

Carnegie Mellon

- $\sum_{h:(h,a_i),(h,a_j)\in E} \frac{\cdot}{\text{InDegree}(a_i)} \frac{\cdot}{\text{OutDegree}(h)}$ • If transition graph is irreducible, $\pi_a \propto \text{InDegree}(a)$
- For disconnected components, depends on relative size of bipartite cores
- Avoids dominance of larger cores

KDD2004

© Chakrabarti + Faloutsos

KDD2004

13

© Chakrabarti + Faloutsos

14

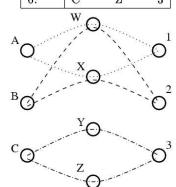
IIT Bombav

Carnegie Mellon SALSA sample result ("movies")

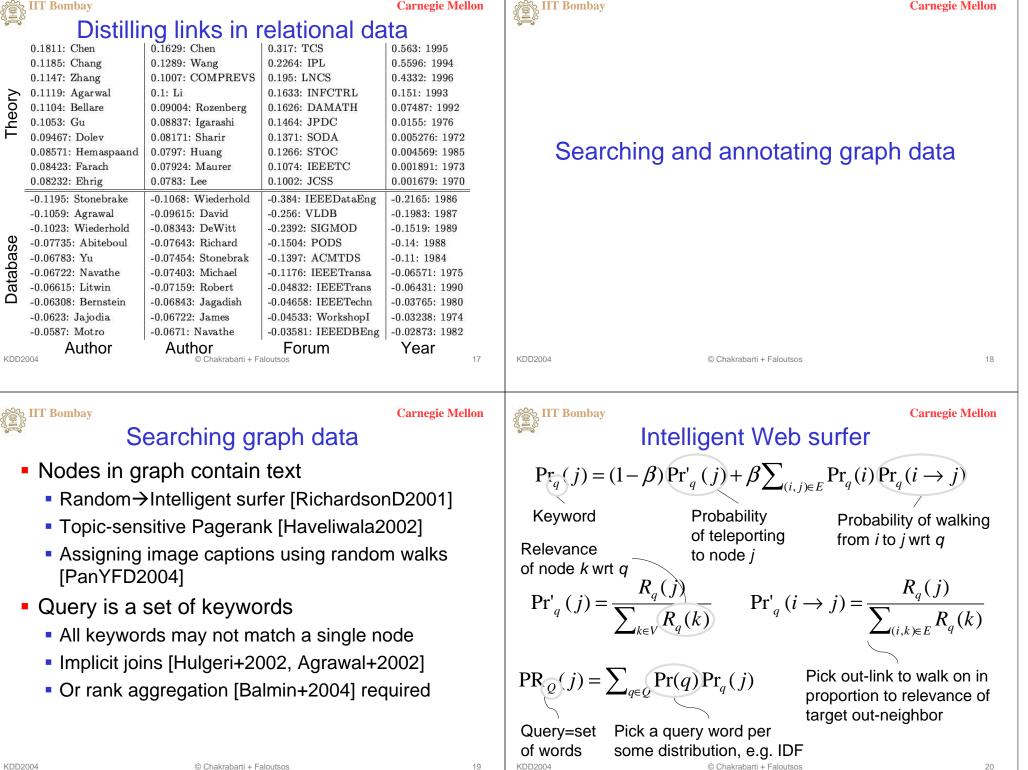
	\	· · ·	
url	title	cat	weight
http://go.msn.com/npl/msnt.asp	MSN.COM	(3)	0.1673
http://go.msn.com/bql/whitepages.asp	White Pages - msn.com	(3)	0.1672
http://go.msn.com/bsl/webevents.asp	Web Events	(3)	0.1672
http://go.msn.com/bql/scoreboards.asp	MSN Sports scores	(3)	0.1672

HITS: The Tightly-Knit Community (TKC) effect

SALSA: Less TKC influence (but no reinforcement!)


url	title	cat	weight
http://us.imdb.com/	The Internet Movie Database	(3)	0.2533
http://www.mrshowbiz.com/	Mr Showbiz	(3)	0.2233
http://www.disney.com/	Disney.com–The Web Site for Families	(3)	0.2200
http://www.hollywood.com/	Hollywood Online:all about movies	(3)	0.2134
http://www.imdb.com/	The Internet Movie Database	(3)	0.2000
http://www.paramount.com/	Welcome to Paramount Pictures	(3)	0.1967
http://www.mca.com/	Universal Studios	(3)	0.1800
http://www.discovery.com/	Discovery Online	(3)	0.1550
http://www.film.com/	Welcome to Film.com	(3)	0.1533
http://www.mgmua.com/	mgm online	(3)	0.1300

S IIT Bombay


Carnegie Mellon Links in relational data [GibsonKR1998]

- (Attribute, value) pair is a node
 - Each node v has weight w_v
- Each tuple is a hyperedge
 - Tuple r has weight x,
- HITS-like iterations to update weight w_{v}
 - For each tuple $r = (v, u_1, \dots, u_k)$ $x_r = \bigotimes(W_{u_1}, \ldots, W_{u_k})$
 - Update weight $w_v \leftarrow \sum_r x_r$
- Combining operator ⊗ can be sum, max, product, L_p avg, etc.

_		Attribut	_
Tuple	а	b	с
1.	Α	W	1
2.	Α	Х	1
3.	В	W	2
4.	В	Х	2
5.	\mathbf{C}	Y	3
6.	C	Z	3

15

19

20

Carnegie Mellon

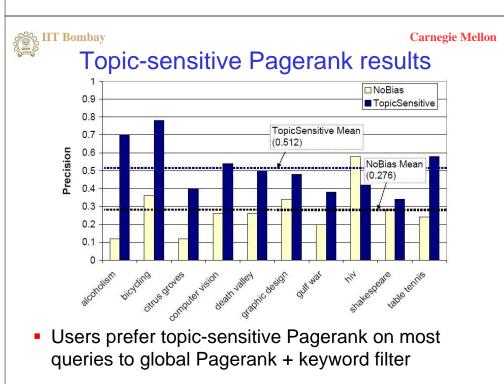
Implementing the intelligent surfer

Table 1: Resul	ts on <i>educ</i>	rawl	Table 2: Res	sults on We	bBase
Query	QD-PR	PR	Query	QD-PR	PR
chinese association	10.75	6.50	alcoholism	11.50	11.88
computer labs	9.50	13.25	architecture	8.45	2.93
financial aid	8.00	12.38	bicycling	8.45	6.88
intramural	16.5	10.25	rock climbing	8.43	5.75
maternity	12.5	6.75	shakespeare	11.53	5.03
president office	5.00	11.38	stamp collecting	9.13	10.68
sororities	13.75	7.38	vintage car	13.15	8.68
student housing	14.13	10.75	Thailand tourism	16.90	9.75
visitor visa	19.25	12.50	Zen Buddhism	8.63	10.38
Average	12.15	10.13	Average	10.68	7.99

- PR_Q(*j*) approximates a walk that picks a query keyword using Pr(*q*) at every step
- Precompute and store Pr_q(j) for each keyword q in lexicon: space blowup = avg doc length
- Query-dependent PR rated better by volunteers

© Chakrabarti + Faloutsos

Topic-sensitive Pagerank


- High overhead for per-word Pagerank
- Instead, compute Pageranks for some collection of broad topics PR_c(j)
 - Topic c has sample page set S_c
 - Walk as in Pagerank
 - Jump to a node in S_c uniformly at random
- "Project" query onto set of topics

 $\Pr(c | Q) \propto \Pr(c) \prod_{q \in Q} \Pr(q | c)$

• Rank responses by projection-weighted Pageranks Score(Q, j) = $\sum_{c} Pr(c | Q) PR_{c}(j)$

© Chakrabarti + Faloutsos

22

IIT Bombay

KDD2004

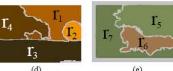
21

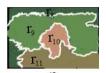
Image captioning

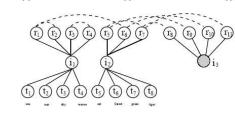
"sky", "waves")

(2)

- Segment images into regions
- Image has caption words
- Three-layer graph: image, regions, caption words
- Threshold on region similarity to connect regions (dotted)

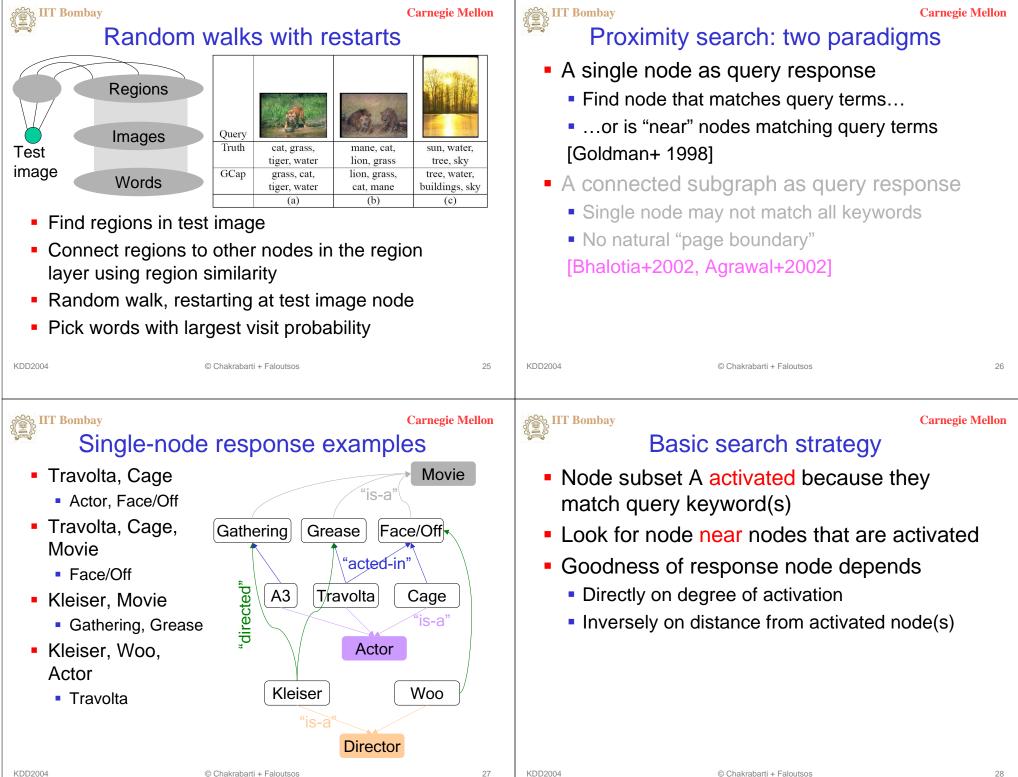


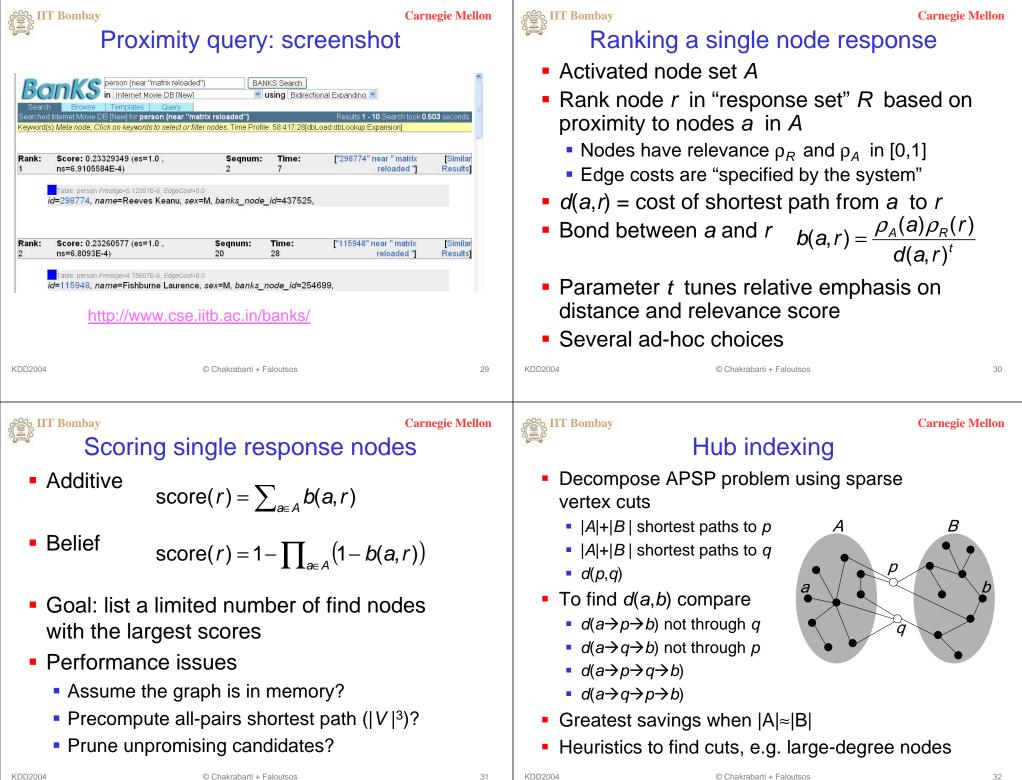


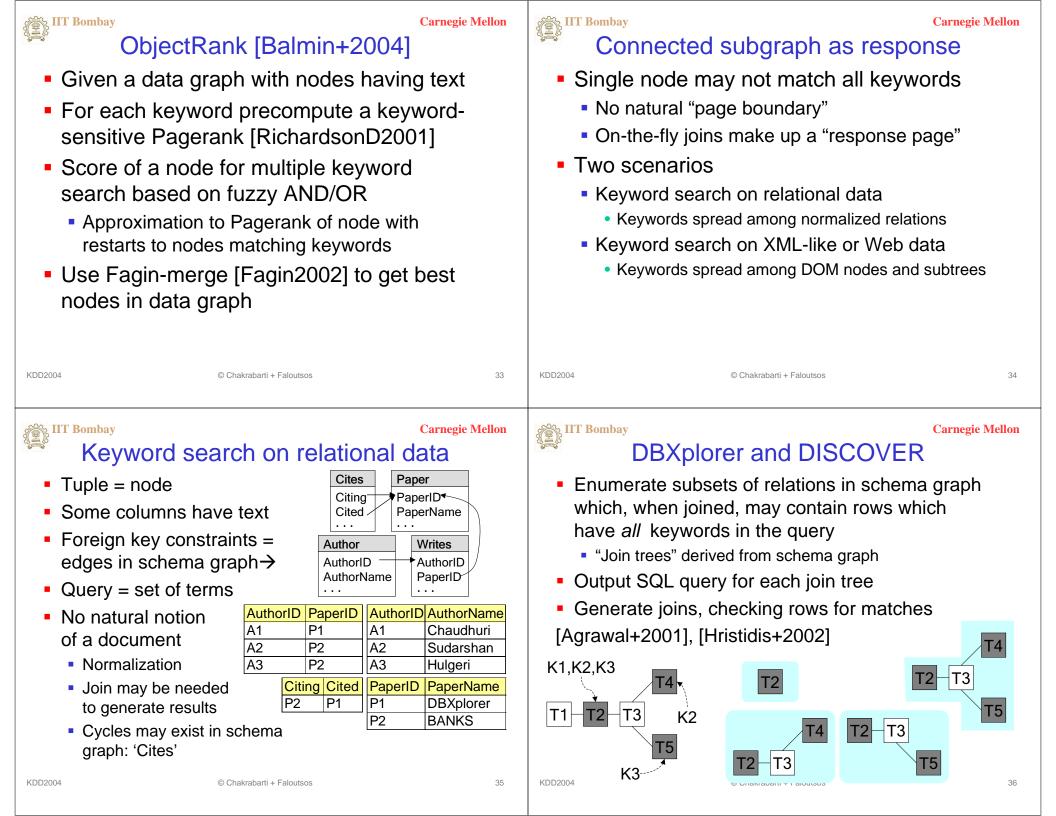

Carnegie Mellon

I₂ ("cat", "forest", "grass", "tiger") (b)

I₃ - no caption (c)






KDD2004

23

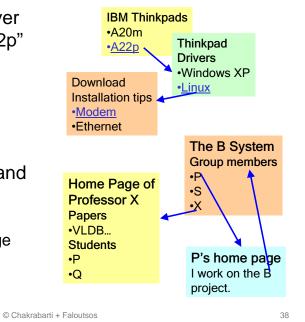
31

IIT Bombay

Discussion

- Exploits relational schema information to contain search
- Pushes final extraction of joined tuples into RDBMS
- Faster than dealing with full data graph directly

- Coarse-grained ranking based on schema tree
- Does not model proximity or (dis) similarity of individual tuples


Carnegie Mellon

 No recipe for data with less regular (e.g. XML) or ill-defined schema

IIT Bombay

Motivation from Web search

- "Linux modem driver for a Thinkpad A22p"
 - Hyperlink path matches query collectively
 - Conjunction query would fail
- Projects where X and P work together
 - Conjunction may retrieve wrong page
- General notion of graph proximity

KDD2004

BIT Bombay

Data structures for search

© Chakrabarti + Faloutsos

- Answer = tree with at least one leaf containing each keyword in query
 - Group Steiner tree problem, NP-hard
- Query term t found in source nodes S_t
- Single-source-shortest-path SSSP iterator
 - Initialize with a source (near-) node
 - Consider edges backwards
 - getNext() returns next nearest node
- For each iterator, each visited node v maintains for each t a set v.R_t of nodes in S_t which have reached v

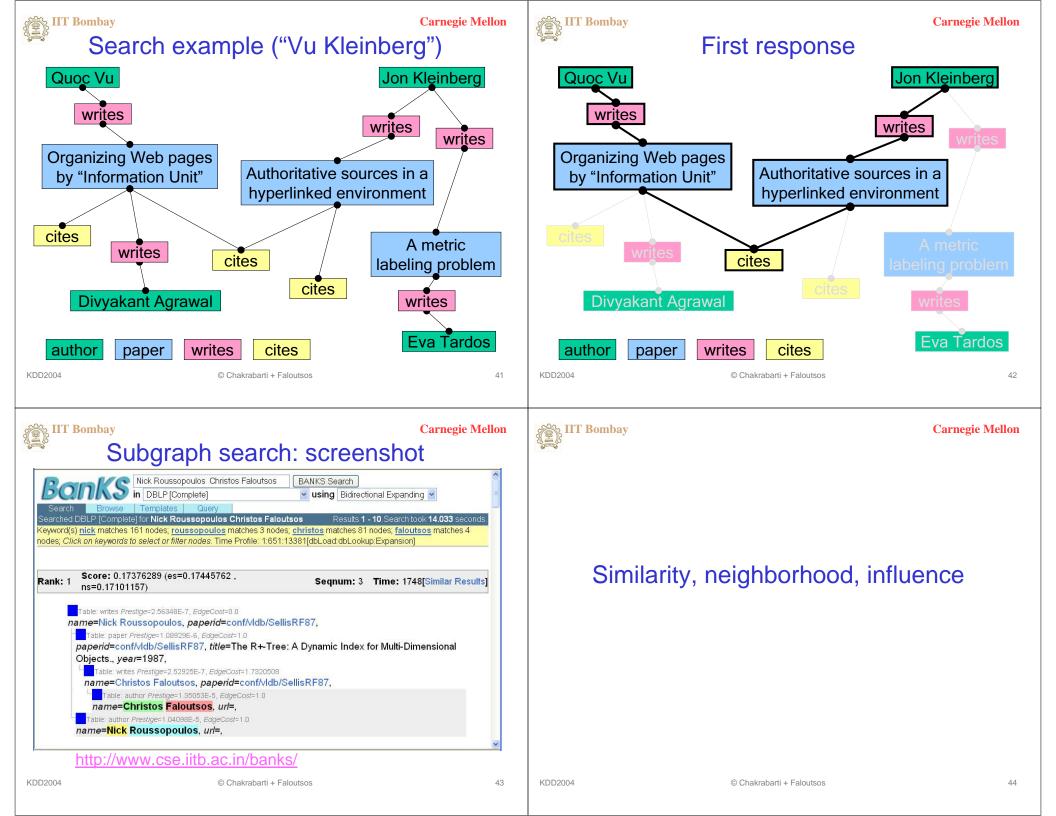
IIT Bombay

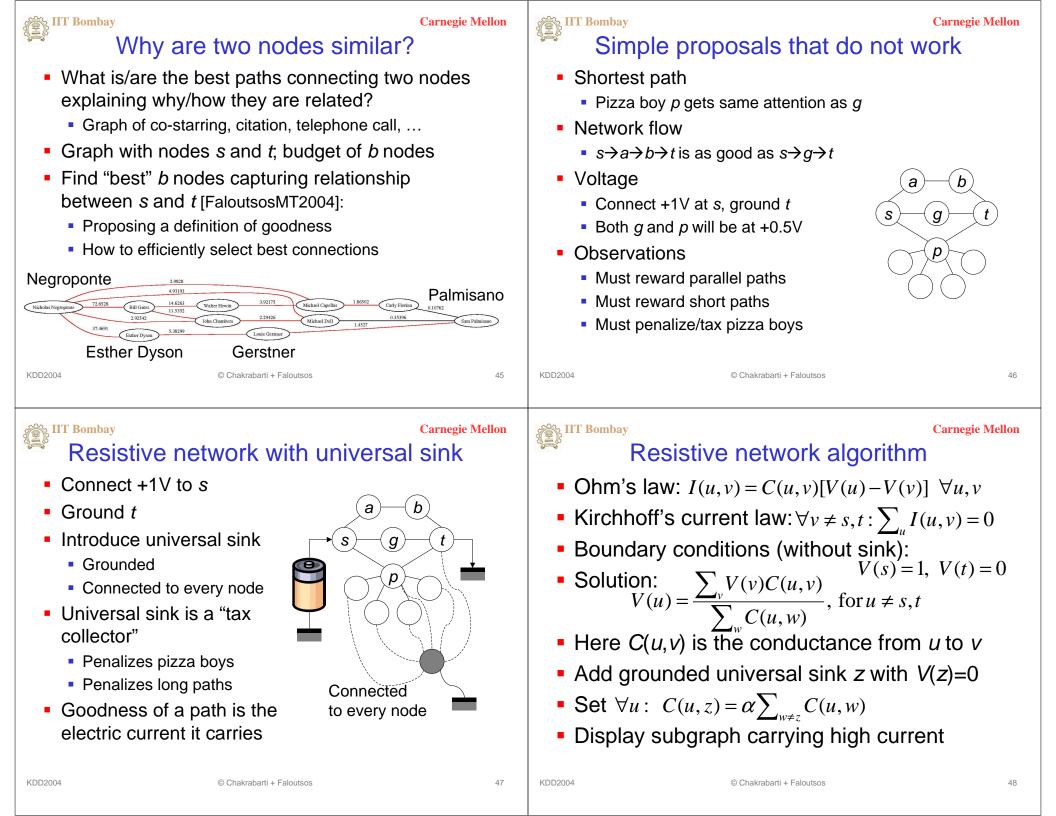
KDD2004

Carnegie Mellon

Carnegie Mellon

Generic expanding search

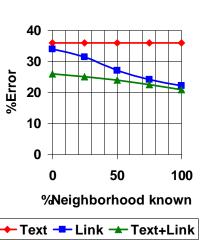

- Near node sets S_t with $S = \bigcup_t S_t$
- For all source nodes $\sigma \in S$
 - create a SSSP iterator with source σ
- While more results required
 - Get next iterator and its next-nearest node v
 - Let *t* be the term for the iterator's source *s*
 - crossProduct = {s} × $\Pi_{t' \neq t} v.R_{t'}$
 - For each tuple of nodes in crossProduct
 - Create an answer tree rooted at v with paths to each source node in the tuple
 - Add s to $v.R_t$


39

KDD2004

37

Carnegie Mellon


Distributions coupled via graphsHierarchical classification• Hierarchical classification• Obvious approaches• Document topics organized in a tree• Obvious approaches• Mapping between ontologies• Can Dmoz label help labeling in Yahoo?• Hypertext classification• Topic of Web page better predicted from hyperlink neighborhood• Categorical sequences • Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis• Categorical sequences • Pr(c d,r) tends to 0/1 for large dimensionality • Pr(c d,r) tends to 0/1 for large dimensions and • Mistake made at shallow levels become irrevocable• Topose a parametric form Pr($X_c = 1 d, x_r$) = $\frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Carege Melow • Carege Melow• Each node has an associated bit X • Propose a parametric form Pr($X_c = 1 d, x_r$) = $\frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Carege Melow • Carege Melow• Each training instance sets one path to 1, all other nodes have X=0• Text-only model: Pr[t]c] • Better model:• Carege Melow • Carege Melow	IIT Bombay Carnegie Mellon	IIT Bombay Carnegie Mellon
• Document topics organized in a tree • Mapping between ontologies • Can Dmoz label help labeling in Yahoo? • Hypertext classification • Topic of Web page better predicted from hyperlink neighborhood • Categorical sequences • Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis • Disambiguation and linkage analysis • Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{\exp(w_c \cdot F(d, x_r))}{1 + \exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • Topic T_r ,	Distributions coupled via graphs	Hierarchical classification
 Mapping between ontologies Can Dmoz label help labeling in Yahoo? Hypertext classification Topic of Web page better predicted from hyperlink neighborhood Categorical sequences Part-of-speech tagging, named entity tagging Disambiguation and linkage analysis Porceld, r) tends to 0/1 for large dimensions and Mistake made at shallow levels become irrevocable Conditional model on topic tree Each node has an associated bit X Propose a parametric form Pr(X_c = 1 d, x_r) = exp(w_c · F(d, x_r)) / 1 + exp(w_c · F(d, x_r)) Each training instance sets one path to 1, all other nodes have X=0 The mode is the state of the state is th	 Hierarchical classification 	 Obvious approaches
• Can Dmoz label help labeling in Yahoo? • Hypertext classification • Topic of Web page better predicted from hyperlink neighborhood • Categorical sequences • Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis • Disambiguation and linkage analysis • Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • The propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • The propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • The propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • The propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • The propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • The propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • The propose approximation form •	Document topics organized in a tree	Flatten to leaf topics, losing hierarchy info
• Hypertext classification • Topic of Web page better predicted from hyperlink neighborhood • Categorical sequences • Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis * Docov U where the function of $Pr(d c)$ makes naïve independence assumptions if d has high dimensionality • $Pr(c d,r)$ tends to $0/1$ for large dimensions and • Mistake made at shallow levels become irrevocable * $Pr(c d,r)$ tends to $0/1$ for large dimensions and • Mistake made at shallow levels become irrevocable * $Pr(c d,r)$ tends to $0/1$ for large dimensions and • Mistake made at shallow levels become irrevocable * $Pr(c d,r)$ tends to $0/1$ for large dimensions and • Mistake made at shallow levels become irrevocable * $Pr(c d,r)$ tends to $0/1$ for large dimensionality • $Pr(c d,r)$ tends to 0	Mapping between ontologies	Level-by-level, compounding error probability
• Topic of Web page better predicted from hyperlink neighborhood • Categorical sequences • Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis • Disambiguation and linkage analysis • Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{\exp(w_c \cdot F(d, x_r))}{1 + \exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • Topic of Web page better predicted from hyperink neighbors' text to judge my topic: Pr[t, t(N) c] • Better model:	Can Dmoz label help labeling in Yahoo?	 Cascaded generative model
hyperlink neighborhood • Categorical sequences • Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis • Disambiguation and linkage analysis • Other and the set of	 Hypertext classification 	$\Pr(c \mid d) = \Pr(r \mid d) \Pr(c \mid d, r) \qquad \bigcirc \qquad $
• Categorical sequences • Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis * CODUME Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 T_{abc} T_{abc}		Pr(c d,r) estimated as Pr(c r)Pr(d c)/Z(r)
• Part-of-speech tagging, named entity tagging • Disambiguation and linkage analysis • Disambiguation and linkage analysis • Disambiguation and linkage analysis • Disambiguation and linkage analysis • Othersberich Falcetons • Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 • Topic IX _r $F(dx)$ • Protection $F(t, t(N) c]$ • Better model:	hyperlink neighborhood	
• Disambiguation and linkage analysis • Disambiguation and linkage analysis • Mistake made at shallow levels become irrevocable • Otwarder1 + Falcetos • Otwarder1 + Falcetos • Otwarder1 + Falcetos • Otwarder1 + Falcetos • Carnegie Mellon Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 \overleftarrow{T}	 Categorical sequences 	
$\frac{1}{2} \text{ Distantioling dualities and linkage analysis}$ $\frac{1}{2} \text{ Conditional model on topic tree}$ $\frac{1}{2}$		
ITT Bombay Carnegie Mellon Conditional model on topic tree ITT Bombay Carnegie Mellon • Each node has an associated bit X • Propose a parametric form $K_c = 1 d, x_r) = \frac{\exp(w_c \cdot F(d, x_r))}{1 + \exp(w_c \cdot F(d, x_r))}$ • C=class, t=text, N=neighbors • Text-only model: $\Pr[t]c]$ • Each training instance sets one path to 1, all other nodes have X=0 • Using neighbors' text to judge my topic: • Pr[t, t(N) c] • Better model: • Better model:	 Disambiguation and linkage analysis 	
Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 $T \rightarrow T$ x_r $F(d x)$ x_r $F(d x)$ x_r $F(d x)$ x_r x_r $F(d x)$ x_r x_r $F(d x)$ x_r x_r x_r $F(d x)$ x_r $x_$	KDD2004 © Chakrabarti + Faloutsos 49	KDD2004 © Chakrabarti + Faloutsos 50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Conditional model on topic tree • Each node has an associated bit X • Propose a parametric form $Pr(X_c = 1 d, x_r) = \frac{exp(w_c \cdot F(d, x_r))}{1 + exp(w_c \cdot F(d, x_r))}$ • Each training instance sets one path to 1, all other nodes have X=0 $F(d,x_r) = \frac{K(d,x_r)}{K(d,x_r)} + \frac{K(d,x_r)}{K(d,x_r)}$	 Hypertext classification <i>c</i>=class, <i>t</i>=text, <i>N</i>=neighbors Text-only model: Pr[<i>t</i> <i>c</i>] Using neighbors' text to judge my topic: Pr[<i>t</i>, <i>t</i>(<i>N</i>) <i>c</i>] Better model: Pr[<i>t</i>, <i>c</i>(<i>N</i>) <i>c</i>]

Carnegie Mellon

Generative graphical model: results

- 9600 patents from 12 classes marked by USPTO
- Patents have text and cite other patents
- Expand test patent to include neighborhood
- 'Forget' fraction of neighbors' classes

IIT Bombay

Discriminative graphical model

- OA(X) = direct attributes of node X
- LD(X) = link-derived features of node X
 - Mode-link: most frequent label of neighbors(X)
 - Count-link: histogram of neighbor labels
 - Binary-link: 0/1 histogram of neighbor labels

 $\Pr(c \mid w_o, OA(X)) = 1 / \exp(-c w_o^T OA(X) + 1)$

Neighborhood model params ____ Local model params

 $\Pr(c \mid w_l, \text{LD}(X)) = 1 / \exp(-c w_l^T \text{LD}(X) + 1)$ $\hat{C}(X) = \arg \max \Pr(c \mid Q \land (X)) \Pr(c \mid L D(X))$

- $\hat{C}(X) = \arg \max_{c} \Pr(c \mid OA(X)) \Pr(c \mid LD(X))$
- Iterate as in generative case

© Chakrabarti + Faloutsos

54

Discriminative model: results [Li+2003]

© Chakrabarti + Faloutsos

			Cora				
	Content-Only	Flat-Mode	Flat-Binary	Flat-Count	Mode-Link	Binary-Link	Count-Link
Avg. Accuracy	0.674	0.649	0.74	0.728	0.717	0.754	0.758
Avg. Precision	0.662	0.704	0.755	0.73	0.717	0.747	0.759
Avg. Recall	0.626	0.59	0.689	0.672	0.679	0.716	0.725
Avg. F1 Measure	0.643	0.641	0.72	0.7	0.697	0.731	0.741
			CiteSee	r			
31 S.	Content-Only	Flat-Mode	Flat-Binary	Flat-Count	Mode-Link	Binary-Link	Count-Link
Avg. Accuracy	0.607	0.618	0.634	0.644	0.658	0.664	0.679
Avg. Precision	0.551	0.55	0.58	0.579	0.606	0.597	0.604
Avg. Recall	0.552	0.547	0.572	0.573	0.601	0.597	0.608
Avg. F1 Measure	0.551	0.552	0.575	0.575	0.594	0.597	0.606
	Si	6 · · · · · ·	WebKB		ç	ñ	2
	Content-Only	Flat-Mode	Flat-Binary	Flat-Count	Mode-Link	Binary-Link	Count-Link
Avg. Accuracy	0.862	0.848	0.832	0.863	0.851	0.871	0.877
Avg. Precision	0.876	0.86	0.864	0.876	0.878	0.879	0.878
Avg. Recall	0.795	0.79	0.882	0.81	0.772	0.811	0.83
Avg. F1 Measure	0.832	0.821	0.836	0.84	0.82	0.847	0.858

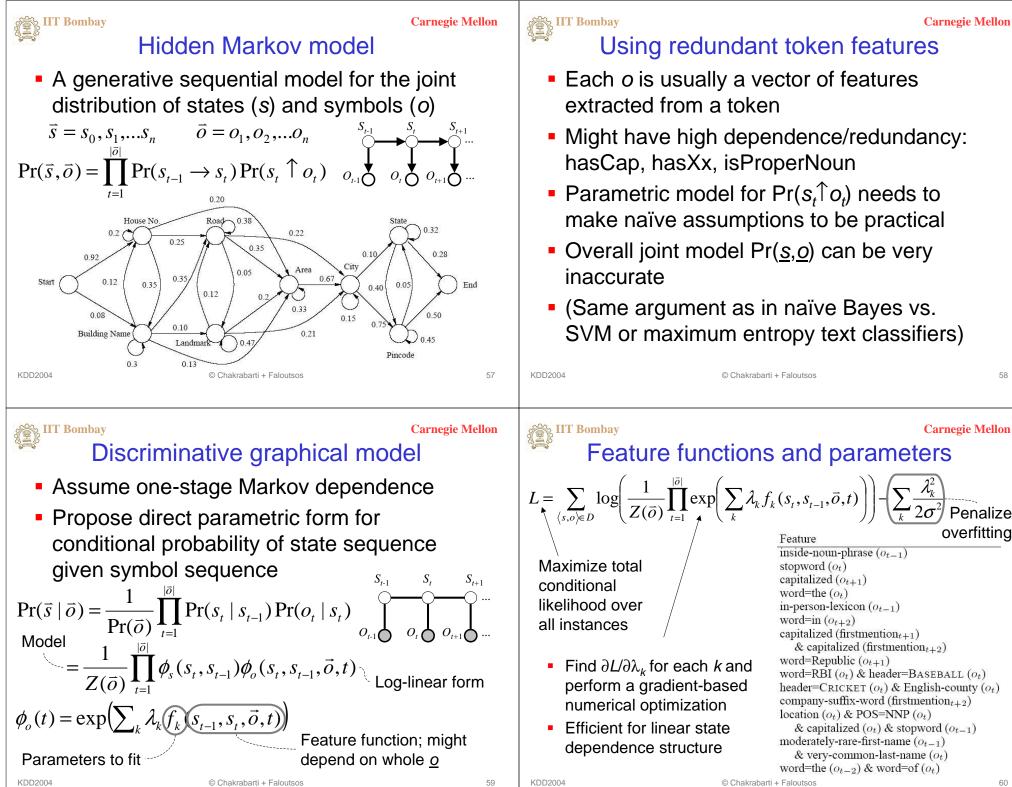
- Binary-link and count-link outperform content-only at 95% confidence
- Better to separately estimate w_l and w_o
- In+Out+Cocitation better than any subset for LD

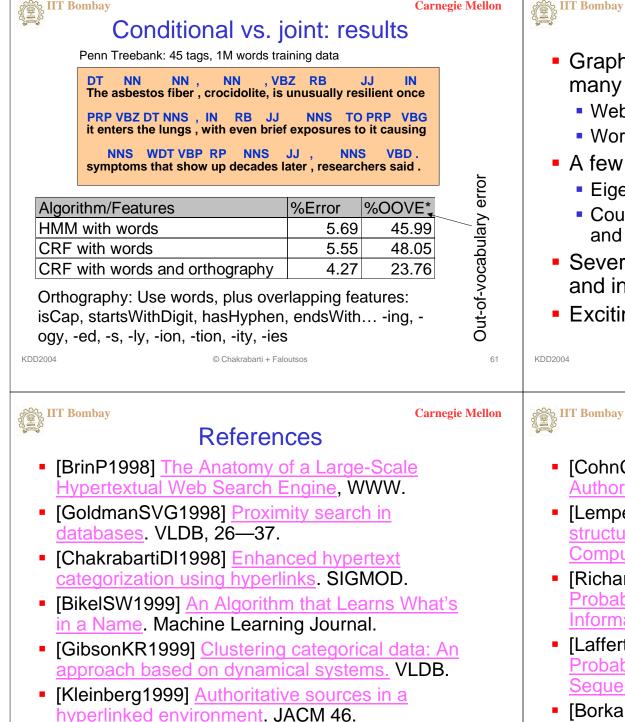
IIT Bombay

KDD2004

53

Carnegie Mellon


Carnegie Mellon


Sequential models

- Text modeled as sequence of tokens drawn from a large but finite vocabulary
- Each token has attributes
 - Visible: allCaps, noCaps, hasXx, allDigits, hasDigit, isAbbrev, (part-of-speech, wnSense)
 - Not visible: part-of-speech, (isPersonName, isOrgName, isLocation, isDateTime)
- Visible (symbols) and invisible (states) attributes of nearby tokens are dependent
- Application decides what is (not) visible
- Goal: Estimate invisible attributes

KDD2004

55

y

Summary

- Graphs provide a powerful way to model many kinds of data, at multiple levels
 - Web pages, XML, relational data, images...
 - Words, senses, phrases, parse trees...
- A few broad paradigms for analysis
 - Eigen analysis, conductance, random walks
 - Coupled distributions between node attributes and graph neighborhood
- Several new classes of model estimation and inferencing algorithms
- Exciting new applications

Carnegie Mellon

62

References

© Chakrabarti + Faloutsos

- [CohnC2000] <u>Probabilistically Identifying</u> <u>Authoritative Documents</u>, ICML.
- [LempelM2000] <u>The stochastic approach for link-structure analysis (SALSA) and the TKC effect.</u> <u>Computer Networks 33</u> (1-6): 387-401
- [RichardsonD2001] <u>The Intelligent Surfer:</u> <u>Probabilistic Combination of Link and Content</u> <u>Information in PageRank</u>. NIPS 14 (1441-1448).
- [LaffertyMP2001] <u>Conditional Random Fields:</u> <u>Probabilistic Models for Segmenting and Labeling</u> <u>Sequence Data</u>. ICML.
- [BorkarDS2001] <u>Automatic text segmentation for</u> <u>extracting structured records</u>. *SIGMOD*.

IIT Bombay	Carnegie Mellon	IIT Bombay		Carnegie Mellon
Reference	es		References	
 [NgZJ2001] <u>Stable algorithms</u> SIGIR. 	s for link analysis.		New Paradigm for Ranking Vorld Wide Web. WWW.	<u>a</u>
 [Hulgeri+2001] Keyword Sear IEEE Data Engineering Bullet 	tin 24(3): 22-32.	Context-Sensiti	3] <u>Topic-Sensitive Pagerar</u> ve Ranking Algorithm for V	
 [Hristidis+2002] <u>DISCOVER:</u> <u>Relational Databases</u>. VLDB. 		Search. IEEE T [LuG2003] Link	KDE. -based Classification. ICM	L.
 [Agrawal+2002] <u>DBXplorer: A keyword-based search over r</u> ICDE. 		Social Network	004] <u>Connection Subgraph</u> <u>s</u> . SIAM-DM workshop. GCap: Graph-based Autor	
 [Fagin2002] <u>Combining fuzzy</u> overview. SIGMOD Record 3 		Image Captioni	ng. MDDE/CVPR. Authority-Based Keyword (
 [Chakrabarti2002] Mining the Knowledge from Hypertext Data 			sing ObjectRank. VLDB.	<u>x</u>
KDD2004 © Chakrabarti + Faloutso	os 65	KDD2004	© Chakrabarti + Faloutsos	66