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Search engine evolution

• From brittle ranking and near-duplicate 
results (ca. 1995) …

• … to spam filtering, link-assisted ranking, 
result diversification, geosensitivity

• Limited type-awareness in verticals
– 1 kg = ? lb, distance rome venice
– Hotels near Brooklyn Bridge

• However, there remain information needs 
where cognitive burden is still very large



Challenging queries
• Artists who got Oscars for both acting and 

direction (same movie?)
• (Typical price of) Opteron motherboards 

with at least two PCI express slots
• Is the number of Oscars won directly 

related to production budget?
• How many justices serve in the 

International Criminal Court?
• Exxon Valdez cleanup cost
• How many papers submitted to SIGMOD?



Why difficult?
• Search engines provide excellent “low-

level access methods to pages”, but …
• No variables

– ?a acts, ?a directs movies

• No types
– ?m ∈∈∈∈ Motherboard, ?p ∈∈∈∈ MoneyAmount

• No predicates
– ?m sells for ?p, ?m costs ?p

• No aggregates
– Large variation in Exxon Valdez estimate



What if we could ask…

• ?f ∈∈∈∈+ Category:FrenchMovie
• ?a ∈∈∈∈ QType:Number
• ?b ∈∈∈∈ QType:MoneyAmount
• ?c1, ?c2 are snippet contexts
• InContext(?c1, ?f, ?a, +oscar, won),
• InContext(?c2, ?f, ?p, +"production cost") 

or InContext(?c2, ?f, ?p, +budget)
• Aggregate(?c1, ?c2)

• Answer: list of 〈〈〈〈?f, ?a, ?b〉〉〉〉 tuples



Disclaimers
• Esoteric
• Public domain
• May not work today
• Speculative, “what if”
• Ideas, prototypes

• Mainstream
• Proprietary
• Stable, practical
• Broad user base
• Traffic, revenue
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Mentions and spots

• A mention is any token segment that may be a 
reference to an entity in the catalog

• Mention + limited token context = spot
• Mentions and spots may overlap
• S0: set of all spots on a page

• s ∈ S0 : one spot among S0

The lack of memory and time efficient libraries in 
the free software world has been the main 
motivation to create the C Minimal Perfect 
Hashing Library, a portable LGPL library.



A massive similarity join

York University
Duke of York
…

New York City
New York State
York University
…

New York Times
Time Magazine
…

Library, a collection of books...
Library (computing), a collection of subprograms...
Library (Windows 7), virtual folder that aggregates...
Library (electronics), a collection of cells, macros...
Library (biology), a collection of molecules...
Library Records, a record label
"The Library" (Seinfeld)
Library (UTA station), a transit station...
Library of Congress

… the New York Times reported on school library budgets …

Wikipedia:
2.5M entities
2.8M “lemmas”
7M lemma tokens
IDF, prefix/exact match, case, …



Disambiguation

• s is a spot with a mention of some entity

• Γs is the set of candidate entities for s
• γ ∈ Γs is one candidate entity for s
• s may be best left unconnected to any 

entity in the catalog (“no attachment”, NA)
– Most people mentioned on the Web

• Generalization of WSD in NLP
• SemTag/Seeker, Wikify!, Bunescu+Pasca, 

Cucerzan, Milne+Witten, [KSRC2009]



Local context signal

On first getting into the 
2009 Jaguar XF, it 
seems like the ultimate 
in automotive tech. A 
red backlight on the 
engine start button
pulses with a 
heartbeat cadence.

Jacksonville Jaguars

Jaguar (Car) ➼
Jaguar (Animal)



Encoding local compatibility

• fs(γ) is a vector of features
• Each feature is a function of s and  

metadata associated with γ
• Learn w from

training data
• Choose

• Better than
heuristics

)(maxarg γγ s
T fw



Exploiting collective info

• Let ys ∈ Γs ∪ NA be the variable representing 
entity label for spot s

• Pick all ys together optimizing global objective



Collective formulation

• Embed entities as vector g(γ) in feature space
• Maximize local compatibility + global coherence
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Collective model validation

• Local hill-climbing to improve collective obj
• Get F1 accuracy using ground truth annotations
• Very high positive correlation



Collective accuracy

• ~20,000 spots manually labeled in Web docs
• Local=training w
• Prior=bias objective using Wikipedia distribution
• LP1=relaxing collective integer program



Loose ends

• Learn not only w but embedding g(γ) and 
similarity between entity pairs
– Applying the model should remain fast

• CPU cost of spotting + disambiguation 
compared to basic indexing
– Use coarse page/site features to prune 

candidates?

• Training and evaluation at Web scale
– Active learning framework
– Exploit social tagging?
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InContext subqueries

• Scientist who studied whales
– ?s ∈∈∈∈ Category:Scientist
– ?s ∈∈∈∈ Category:MarineBiologist
– InContext(?c, ?s, study studied whale whales)

• Query expansion
– Did Einstein, Bohr, Rutherford...study whales?
– WordNet knows 650 scientiest, 860 cities
– Wikipedia?
– Impractical query times



Indexing for InContext queries

• Index expansion
– Costeau�scientist�person�organism�

living_thing�…�entity
– Pretend all these tokens appear wherever 

Cousteau does, and index these

• Works ok for small type sets (5—10 broad 
types), but
– WordNet: 15k internal, 80k total noun types
– Wikipedia: 250k categories

• Index size explosion unacceptable
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Pre-generalize
• Index a subset R⊂A
• Query type a∉R
• Want k answers
• Probe index with g, 

ask for k’ > k answers

Post-filter
• Fetch k’ high-scoring (mentions of) entities w∈+g
• Check if w∈+a as well (using forward and 

reachability index); if not, discard
• If < k survive, restart with larger k (expensive!)



Cost-benefit considerations

• How much space saved by indexing R
instead of the whole of A?
– Cannot afford to try out many Rs, need quick 

estimate

• What is the average query slowdown 
owing to a → g pre-generalize and post-
filter?
– Depends on query workload
– Cannot afford to test on too many queries

• [CPD2006]



Index size vs. query slowdown

• Annotated TREC corpus
• Space = 520MB < 

inverted index = 910MB

• Query slowdown ≈ 1.8
• From TREC to Web?
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How to score and aggregate

• Literals in query match tokens in context
• Context is a candidate because it mentions an 

entity of the target type
• What is the score of a context?
• How should context scores be aggregated into 

entity evidence?

Query
Type Words

e1

e2



Scoring a context
• Rarity of matches
• Distance from

candidate position
to matches

• Many occurrences
of one match
– Closest is good

• Combining scores
from many
selectors
– Sum is good
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Laplacian scoring

• Represent snippet using feature vector zi

• Local score of snippet is  wTzi

• Affinity aij between (mentions in) snippets
– “Andrew McCallum” vs. “A. K. McCallum”
– “18 feet”, “19 ft”, “3—4 meters”

• Global score fi

• During training fit w using partial order on f

( ) ( )∑ ∑ −+−
i ji

jiiji
T

i
f

ffaCzwf
i ,

22

}{
min



Local scores unreliable

• Confounding candidates with correct units/type
• Can aggregation over snippets help
• Avoid deep NLP?
• Here we focus on quantity answers



Snippet score-quantity scatter

• Both axes scaled to [0, 1] for clarity
• Relevant/good snippets = +, irrelevant/bad = ◦
• Ideal w  ⇒ horizontal line separating + from ◦
• No such w for any query in our experiments
• Rectangles densely packed with many +, few ◦

– Possibly > 1 rectangles for some queries



Consensus rectangles

• Relevant rectangle/s in sea of irrelevant snippets
• Many low-scoring relevant snippets
• How to detect and rank consensus rectangles?
• Position and shape varies across queries

– Cannot use standard nonlinear discriminants



Interval-hunting

• RankSVM: Independent snippet comparison
• IntervalMerit

– Scan for all interval narrower than 1:(1+tolerace/100)
– Compare snippets inside interval to those outside

• IntervalRank: Exploit collective features



Summary
• How to open up new info pathways across 

docs and semistructured knowledge bases
• Propose new access methods into this 

richer info network
• Evolve into a practical search API?

– Panel at WWW 2009
– Prototype with .5B pages, 40x8 CPUs

• What will end-users adopt today? Vs.
• How can they take advantage of the new 

type-entity-snippet composite data model?
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