Dynamic Personalized PageRank in Entity-Relation Graphs

Soumen Chakrabarti IIT Bombay http://www.cse.iitb.ac.in/~soumen

Motivation: Desktop search tasks

"Find expert e from industry to review a submitted paper p"

- p shares important words with papers p' written by e
- p cites papers p' written by e
- e works for organization o is-a company
- e and I have exchanged many emails

Graph conductance queries

- Origin nodes spread activation to target nodes
- Personalized PageRank with teleport to origin nodes
- Parts of graph known only at query time, must compute PageRank dynamically
- Similar/related to many other graph search paradigms:
 - Resistive network, conductance from origin to target nodes
 - Random walk with restarts (Tong, Faloutsos, Pan)
 - Connection and centerpiece subgraphs (Faloutsos, McCurley, Tomkins, Tong)
- Naturally combines relevance and prestige
- Automatic "inverse document frequency" (IDF) effect: "holistic" connects to fewer papers than "index"

Notation

- Graph G = (V, E), each edge (u, v) has a type t(u, v)
- E.g., "person wrote paper", "person works in company", "paper cites paper" etc.
- Edges often bidirectional to ensure activation spread, e.g., person wrote paper, paper written-by person
- Edge type t induces an edge weight $\beta(t)$
- From edge weight we get edge conductance $C(v, u) = C(u \rightarrow v) = \beta(t(u, v)) / \sum_{(u,w) \in E} \beta(t(u, w))$
- \blacktriangleright From each node, teleport with probability $1-\alpha$
- ▶ In case of teleport, jump to node u with probability r(u)
- Overall PageRank equation $p_r = \alpha C p_r + (1 \alpha) r$
- Teleport to single origin node *o* denoted *r* = δ_o and *p*_{δo} denoted PPV_o

ObjectRank

- Start with entity nodes, add query word nodes w
- Teleport to word nodes (set r(w) > 0) and compute p_r
- Too slow to do this for each query at query time
- Exploit linearity: p_r = αCp_r + (1 − α)r solves to p_r = (1 − α)(I − αC)⁻¹r, linear in r
- Therefore $p_{r_1} + p_{r_2} = p_{r_1+r_2}$ and $p_{\gamma r} = \gamma p_r$
- Precompute and store $p_{\delta_w} = \mathsf{PPV}_w$ for all w in vocabulary
- ▶ Given multiword query, average PPV_ws at query time

Limitations

- Long preprocessing time to compute all word PPVs
- Must truncate word PPVs arbitrarily to limit space

$\operatorname{HubRank}$: $\operatorname{ObjectRank}$ with hubs

- Choose hub node subset $H \subset V$
- Precompute and store PPV_h for all $h \in H$
- Prepare entity graph N offline
- On query submission . . .
 - Add word nodes W, link to N
 - Quickly identify query-specific active subgraph boundary (Active ⊂ Reachable ⊂ N)
- Blockers are nodes in H whose PPVs have been precomputed and stored

 Losers are nodes too "far" from word nodes to influence word PPVs appreciably

Estimating PPVs for active nodes

- Set $\widehat{\mathsf{PPV}}_u = \delta_u$ for losers u
- Load approximate PPV_u from cache for blockers u
- ▶ For active nodes *u* that are not blockers or losers, update

$$\widehat{\mathsf{PPV}}_u \leftarrow \alpha \sum_{(u,v)\in E} C(v,u) \widehat{\mathsf{PPV}}_v + (1-\alpha)\delta_u$$

until convergence (using Decomposition Theorem)

- Can show PPV convergence similar to Jeh and Widom, even using fixed approximate PPV_u for blockers and losers
- ► Add up word PPVs and report top-*k* entity nodes

$\operatorname{HubRank}$ query processing dynamics

- PPV convergence fast in practice
- Query time essentially decided by number of active nodes
- ▶ ∴ critical to keep active subgraph small ...
- ... for typical and frequent queries

Performance issues in designing PPV cache

- Time to select a good $H \subset V$
- Time to precompute PPVs for nodes in H
- Space needed to store the hub cache
- Query processing time given the hub cache
- Query response accuracy wrt full OBJECTRANK computation

Hub selection in $\operatorname{HubRank}$

Existing proposals

- ▶ Jeh and Widom: Keep large-PageRank nodes in H
- Berkhin: Teleport uniformly to personalized nodes, compute "H-relative PageRanks", pick best, update H, repeat

Not applicable because

- Teleports always go to word nodes
- ▶ ∴ word nodes have large PageRank
- ► Too many word nodes, cannot include all in *H*
- ► If a query misses a single word PPV, it slows down drastically

Key insights

- ► Include judicious mix of word and entity nodes in *H*
- Exploit past query workload statistics to design H
- Limit PPV updates to query-specific active subgraph
- Dynamically degrade PPV resolution to save time

Summary of contributions

- \blacktriangleright Additional index space typically .1–1 \times basic text index
- Precomputation much faster (typically 52×) than computing all word PPVs
- Query time much faster than query-time whole-graph
 PageRank (typically 35–450×, gain grows with graph size)
- High ranking accuracy (precision \approx .91)

Heuristic estimate of hub inclusion merit

- 1: initialize map meritScore(u) for nodes $u \in W_0 \cup N$
- 2: for each query word $w \in W_0$ do
- 3: attach node w to the preloaded entity graph

4: let frontier =
$$\{w\}$$
 and priority $(w) = \widetilde{Pr}(w)$

5: create an empty set of visited nodes

6: while frontier
$$\neq \emptyset$$
 do

- 7: remove some *u* from *frontier* and mark visited
- 8: meritScore(u) += priority(u)
- 9: **for** each visited neighbor v **do**
- 10: $meritScore(v) += \alpha priority(u) C(u \rightarrow u)$
- 11: **for** each unvisited neighbor *v* **do**
- 12: let priority(v) = α priority(u) $C(u \rightarrow v)$
- 13: add v to frontier
- 14: sort word and entity nodes by decreasing meritScore(u)

Greedy merit order: Preliminary evaluation

- We pick a nontrivial mix of words and a large number of entities
- Unlike naive application of "large PageRank first" which picks words almost exclusively
- Allowing well-chosen entities into H significantly reduces active subgraph size

Replacing PPVs with fingerprints

- Computing full-precision PPV_u is overkill if
 - All we care about is a top-k entity ranking
 - u is far from teleport origins (almost a loser)
- ▶ Idea (Fogaras *et al.*): Compute FP_u as follows:
 - 1: sample walk length λ from $\Pr(\lambda) = \alpha^{\lambda}(1 \alpha)$
 - 2: repeat
 - 3: start at u, use C to take λ "random surfer" steps, ending in v
 - 4: until numWalks walks completed
 - 5: compute normalized histogram of end-node counts
 - 6: store $\langle \widehat{PPV}_u(v), v \rangle$ records in decreasing $\widehat{PPV}_u(v)$ order
- How to set numWalks for each $u \in H$?
- ▶ If *meritScore*(*u*) is large, allocate it more numWalks

Loading FPs with dynamic clipping

- numWalks is based on aggregate query stats
- For a specific query, some \widehat{PPV}_u may be "too precise"
- When marking active subgraph, suppose activation score of u is s
- Recall \widehat{PPV}_u is stored as $\langle \widehat{PPV}_u(v), v \rangle$ records in decreasing $\widehat{PPV}_u(v)$ order
- While loading \overrightarrow{PPV}_{u} , if $s \, \overrightarrow{PPV}_{u}(v) < \delta_{abandon}$, quit

- Use sparse vectors for Jeh-Widom updates
- Fill is the number of nonzero PPV elements over the active subgraph upon convergence
- Dramatic reduction in fill and flops

Accuracy indicators

For a fixed query, let S_k be the true top-k sequence and \hat{S}_k be the sequence returned by the system

Precision at k: $\frac{|S_k \cap \hat{S}_k|}{k}$ Relative aggregate goodness (RAG) at k: Let true score of $v \in S_k \cup \hat{S}_k$ be $S_k(v)$, then RAG is

$$\frac{\sum_{v\in \hat{S}_k}S_k(v)}{\sum_{v\in S_k}S_k(v)}$$

Kendall's τ : Let system score of v be $\hat{S}_k(v)$. Pair $v, w \in S_k \cup \hat{S}_k$ is concordant if $(S_k(v) - S_k(w))(\hat{S}_k(v) - \hat{S}_k(w)) > 0$, discordant if < 0, exactTie if $S_k(v) = S_k(w)$, approxTie if $\hat{S}_k(v) = \hat{S}_k(w)$. $\tau_k = \frac{\# concordant - \# discordant}{\sqrt{(\# pairs - \# exactTie)(\# pairs - \# approxTie)}}$

Speed and accuracy of $\operatorname{HubRank}$

- As δ_{abandon} is increased to 3 × 10⁻⁶ ... 10⁻⁵, dramatic reduction in HUBRANK query processing time
- While accuracy is very mildly degraded
- ▶ With |V| = 74223, HUBRANK is 80×, 74×, 43× faster for 1-, 2- and 3-word queries
- ► Gap even more striking for a 320000-node test graph

Effect of FP cache size

- Earlier we had measured active subgraph size as an indirect indicator of query time
- Here we plot query time and accuracy against physical cache size on disk
- ► For reference, a Lucene index is 56 MB
- As cache size grows from 50–75 MB,
 - Query time decreases by almost $4 \times$
 - Accuracy degrades by less than 1%

Comparison with Berkhin's BCA

- "Bookmark coloring algorithm"
- Elegant approach to identify active subgraph and compute conductance at the same time
- Can exploit hubs like we do
- Does not discuss workload-driven hub-selection
- Does not discuss fast PPV approximations via FPs
- 3–4 times slower in our testbed at around same level of accuracy and same physical cache size

Summary

- Practical interactive graph conductance search system
- Graceful tradeoff between index space and query time
- Index space comparable to basic text index
- Fast query execution with high ranking accuracy
- Preprocessing time tiny compared to full-vocab OBJECTRANK
- Code+data available, call soumen@cse.iitb.ac.in

Ongoing work

- Guaranteed top-k by enhancing BCA
- New hubset choosing algo for top-k BCA
- Hybrid index of PPVs and FPs
- Improved accuracy with reduced index space