
Dynamic Personalized PageRank in

Entity-Relation Graphs

Soumen Chakrabarti
IIT Bombay

http://www.cse.iitb.ac.in/∼soumen

1 / 20

http://www.cse.iitb.ac.in/~soumen

Motivation: Desktop search tasks

“Find expert e from industry to review a submitted paper p”

I p shares important words with papers p′ written by e

I p cites papers p′ written by e

I e works for organization o is-a company

I e and I have exchanged many emails

XML

index

holistic
hasWord hasWord

cites worksFor

wrote
sent

received

wrote
companyisA

2 / 20

Graph conductance queries
I Origin nodes spread activation to target nodes

I Personalized PageRank with teleport to origin nodes

I Parts of graph known only at query time, must compute
PageRank dynamically

I Similar/related to many other graph search paradigms:
I Resistive network, conductance from origin to target nodes
I Random walk with restarts (Tong, Faloutsos, Pan)
I Connection and centerpiece subgraphs (Faloutsos, McCurley,

Tomkins, Tong)

I Naturally combines relevance and prestige

I Automatic “inverse document frequency” (IDF) effect:
"holistic" connects to fewer papers than "index"

3 / 20

Notation
I Graph G = (V , E), each edge (u, v) has a type t(u, v)

I E.g., “person wrote paper”, “person works in company”,
“paper cites paper” etc.

I Edges often bidirectional to ensure activation spread, e.g.,
person wrote paper, paper written-by person

I Edge type t induces an edge weight β(t)

I From edge weight we get edge conductance
C (v , u) = C (u → v) = β(t(u, v))/

∑
(u,w)∈E β(t(u, w))

I From each node, teleport with probability 1− α

I In case of teleport, jump to node u with probability r(u)

I Overall PageRank equation pr = αCpr + (1− α)r

I Teleport to single origin node o denoted r = δo and pδo

denoted PPVo

4 / 20

ObjectRank
I Start with entity nodes, add query word nodes w

I Teleport to word nodes (set r(w) > 0) and compute pr

I Too slow to do this for each query at query time

I Exploit linearity: pr = αCpr + (1− α)r solves to
pr = (1− α)(I− αC)−1r , linear in r

I Therefore pr1 + pr2 = pr1+r2 and pγr = γpr

I Precompute and store pδw = PPVw for all w in vocabulary

I Given multiword query, average PPVw s at query time

Limitations

I Long preprocessing time to compute all word PPVs

I Must truncate word PPVs arbitrarily to limit space

5 / 20

HubRank: ObjectRank with hubs

W N

Active

subgraph

Blocker

Loser

Word

layer

Entities

Active node

NW

R
e

a
c
h
a

b
le

I Choose hub node subset H ⊂ V

I Precompute and store PPVh for all h ∈ H

I Prepare entity graph N offline

I On query submission . . .
I Add word nodes W , link to N
I Quickly identify query-specific

active subgraph boundary
(Active ⊂ Reachable ⊂ N)

I Blockers are nodes in H
whose PPVs have been
precomputed and stored

I Losers are nodes too “far” from word nodes to influence word
PPVs appreciably

6 / 20

Estimating PPVs for active nodes
I Set P̂PVu = δu for losers u

I Load approximate P̂PVu from cache for blockers u

I For active nodes u that are not blockers or losers, update

P̂PVu ← α
∑

(u,v)∈E

C (v , u)P̂PVv + (1− α)δu

until convergence (using Decomposition Theorem)

I Can show PPV convergence similar to Jeh and Widom, even
using fixed approximate P̂PVu for blockers and losers

I Add up word PPVs and report top-k entity nodes

7 / 20

HubRank query processing dynamics

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30PPV iterations

M
ax

 L
1

no
rm

 d
iff

y = 5.6861x0.8596

10

100

1000

10000

10 100 1000numActive |A|

ite
rP

P
V

T
im

e(
m

s)

I PPV convergence fast in practice

I Query time essentially decided by number of active nodes

I ∴ critical to keep active subgraph small . . .

I . . . for typical and frequent queries

8 / 20

Performance issues in designing PPV cache
I Time to select a good H ⊂ V

I Time to precompute PPVs for nodes in H

I Space needed to store the hub cache

I Query processing time given the hub cache

I Query response accuracy wrt full ObjectRank
computation

9 / 20

Hub selection in HubRank

Existing proposals

I Jeh and Widom: Keep large-PageRank nodes in H

I Berkhin: Teleport uniformly to personalized nodes, compute
“H-relative PageRanks”, pick best, update H , repeat

Not applicable because

I Teleports always go to word nodes

I ∴ word nodes have large PageRank

I Too many word nodes, cannot include all in H

I If a query misses a single word PPV, it slows down drastically

10 / 20

Key insights

I Include judicious mix of word and entity nodes in H

I Exploit past query workload statistics to design H

I Limit PPV updates to query-specific active subgraph

I Dynamically degrade PPV resolution to save time

Summary of contributions

I Additional index space typically .1–1× basic text index

I Precomputation much faster (typically 52×) than computing
all word PPVs

I Query time much faster than query-time whole-graph
PageRank (typically 35–450×, gain grows with graph size)

I High ranking accuracy (precision ≈ .91)

11 / 20

Heuristic estimate of hub inclusion merit

1: initialize map meritScore(u) for nodes u ∈ W0 ∪ N
2: for each query word w ∈ W0 do
3: attach node w to the preloaded entity graph
4: let frontier = {w} and priority(w) = P̃r(w)
5: create an empty set of visited nodes
6: while frontier 6= ∅ do
7: remove some u from frontier and mark visited
8: meritScore(u) += priority(u)
9: for each visited neighbor v do

10: meritScore(v) += α priority(u) C (u → u)
11: for each unvisited neighbor v do
12: let priority(v) = α priority(u) C (u → v)
13: add v to frontier
14: sort word and entity nodes by decreasing meritScore(u)

12 / 20

Greedy merit order: Preliminary evaluation

0%

20%

40%

60%

80%

100%

1

50
00

1

10
00

01

15
00

01

20
00

01

|H|-->

entities

words

0

10

20

30

40

50

10000 30000 50000|H|

nu
m

A
ct

iv
e

Entity+Word
WordOnly

I We pick a nontrivial mix of words and a large number of
entities

I Unlike naive application of “large PageRank first” which
picks words almost exclusively

I Allowing well-chosen entities into H significantly reduces
active subgraph size

13 / 20

Replacing PPVs with fingerprints
I Computing full-precision PPVu is overkill if

I All we care about is a top-k entity ranking
I u is far from teleport origins (almost a loser)

I Idea (Fogaras et al.): Compute FPu as follows:

1: sample walk length λ from Pr(λ) = αλ(1− α)
2: repeat
3: start at u, use C to take λ “random surfer” steps,

ending in v
4: until numWalks walks completed
5: compute normalized histogram of end-node counts
6: store 〈P̂PVu(v), v〉 records in decreasing ˆPPVu(v) order

I How to set numWalks for each u ∈ H?

I If meritScore(u) is large, allocate it more numWalks

14 / 20

Loading FPs with dynamic clipping

0

200000

400000

600000

800000

1.E-07 1.E-06 1.E-05
abandonDelta

Fill

FLOPS

I numWalks is based on aggregate query stats

I For a specific query, some P̂PVu may be “too precise”

I When marking active subgraph,
suppose activation score of u is s

I Recall P̂PVu is stored as
〈P̂PVu(v), v〉 records in

decreasing P̂PVu(v) order

I While loading P̂PVu, if
s P̂PVu(v) < δabandon, quit

I Use sparse vectors for Jeh-Widom updates

I Fill is the number of nonzero PPV elements over the active
subgraph upon convergence

I Dramatic reduction in fill and flops

15 / 20

Accuracy indicators

For a fixed query, let Sk be the true top-k sequence and Ŝk be
the sequence returned by the system

Precision at k :
|Sk ∩ Ŝk |

k
Relative aggregate goodness (RAG) at k : Let true score of

v ∈ Sk ∪ Ŝk be Sk(v), then RAG is∑
v∈Ŝk

Sk(v)∑
v∈Sk

Sk(v)

Kendall’s τ : Let system score of v be Ŝk(v). Pair
v , w ∈ Sk ∪ Ŝk is concordant if
(Sk(v)− Sk(w))(Ŝk(v)− Ŝk(w)) > 0, discordant if < 0,
exactTie if Sk(v) = Sk(w), approxTie if Ŝk(v) = Ŝk(w).

τk =
#concordant −#discordant√

(#pairs −#exactTie)(#pairs −#approxTie)
16 / 20

Speed and accuracy of HubRank

0.8

0.85

0.9

0.95

1

1.
E

-0
7

3.
E

-0
7

1.
E

-0
6

3.
E

-0
6

1.
E

-0
5abandon

Delta

ac
cu

ra
cy

0

1000

2000

3000

tim
e

(m
s)

avgPrec
avgRAG
avgKTau
avgHRTime

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12
queryWordstim

e
(m

s)

0

1000

2000

3000

4000

5000

nu
m

Q
ue

ry

HubRank

ObjectRank

numQuery

I As δabandon is increased to 3× 10−6 . . . 10−5, dramatic
reduction in HubRank query processing time

I While accuracy is very mildly degraded

I With |V | = 74223, HubRank is 80×, 74×, 43× faster for
1-, 2- and 3-word queries

I Gap even more striking for a 320000-node test graph

17 / 20

Effect of FP cache size

0

500

1000

1500

2000

50 55 60 65 70 75

FPCacheSize (MB)

Q
u
e
ry

T
im

e
 (

m
s
)

0.82

0.84

0.86

0.88

0.9

0.92

50 55 60 65 70 75

FPCacheSize (MB)

R
a
n
k
D

e
fe

c
ts

defectPrec

defectKTau

I Earlier we had measured active subgraph size as an indirect
indicator of query time

I Here we plot query time and accuracy against physical cache
size on disk

I For reference, a Lucene index is 56MB
I As cache size grows from 50–75MB,

I Query time decreases by almost 4×
I Accuracy degrades by less than 1%

18 / 20

Comparison with Berkhin’s BCA

0

500

1000

1500

2000

9000 10000 11000 12000 13000 14000

HubSetSize

Q
u
e
ry

T
im

e
 (

m
s
)

HubRank

BCA

I “Bookmark coloring algorithm”

I Elegant approach to identify active subgraph and compute
conductance at the same time

I Can exploit hubs like we do

I Does not discuss
workload-driven hub-selection

I Does not discuss fast PPV
approximations via FPs

I 3–4 times slower in our testbed
at around same level of accuracy
and same physical cache size

19 / 20

Summary

I Practical interactive graph conductance search system

I Graceful tradeoff between index space and query time

I Index space comparable to basic text index

I Fast query execution with high ranking accuracy

I Preprocessing time tiny compared to full-vocab
ObjectRank

I Code+data available, call soumen@cse.iitb.ac.in

Ongoing work

I Guaranteed top-k by enhancing BCA

I New hubset choosing algo for top-k BCA

I Hybrid index of PPVs and FPs

I Improved accuracy with reduced index space

20 / 20

	Motivation
	Notation
	ObjectRank
	HubRank
	Hub node inclusion
	Fingerprints
	Performance study
	Conclusion

