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ABSTRACT
In this paper, we propose a novel unsupervised approach to query
segmentation, an important task in Web search. We use a generative
query model to recover a query’s underlying concepts that compose
its original segmented form. The model’s parameters are estimated
using an expectation-maximization (EM) algorithm, optimizing the
minimum description length objective function on a partial corpus
that is specific to the query. To augment this unsupervised learning,
we incorporate evidence from Wikipedia.

Experiments show that our approach dramatically improves per-
formance over the traditional approach that is based on mutual
information, and produces comparable results with a supervised
method. In particular, the basic generative language model con-
tributes a 7.4% improvement over the mutual information based
method (measured by segment F1 on the Intersection test set). EM
optimization further improves the performance by 14.3%. Addi-
tional knowledge from Wikipedia provides another improvement
of 24.3%, adding up to a total of 46% improvement (from 0.530 to
0.774).

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithms

Keywords
Query segmentation, concept discovery

1. INTRODUCTION
A typical search engine of today usually allows a user to sub-

mit a bunch of keywords as a query. This simple user interface
greatly eases use of the search engine, and is sufficient for the tra-
ditional bag-of-words retrieval model, where query and document
are assumed to be composed of individual words neither related nor
ordered. In the quest for higher retrieval accuracy, however, it is
necessary to understand the user’s search intent beyond the simple
bag-of-words query model. At a minimum, we would like to know
whether some words comprise an entity like an organization name,
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which makes it possible to enforce word proximity and ordering
constraints on document matching, among other things.

A partial solution provided by many search engines is that a
user can put double quotes around some query words to mandate
they appear together as an inseparable group in retrieved docu-
ments. Aside from sometimes being overly limiting, this double-
quote proximity operator requires additional efforts from the user.
However, a typical user may be unaware of the syntax, or reluctant
to make this clarification unless really dissatisfied with the results.
It would be desirable if the structural relationship underlying the
query words could be automatically identified.

Query segmentation is one of the first steps in this direction. It
aims to separate query words into segments so that each segment
maps to a semantic component, which we refer as a “concept”. For
example, for the query “new york times subscription”, [new york
times] [subscription] is a good segmentation, while [new] [york
times] [subscription] and [new york] [times subscription] are not,
as segments like [new york] and [york times] greatly deviate from
the intended meaning of the query.

Ideally, each segment should map to exactly one “concept”. For
segments like [new york times subscription], the answer of whether
it should be left intact as a compound concept or further segmented
into multiple atomic concepts depends on the connection strength
of the components (i.e. how strong / often are “new york times”
and ”subscription” associated) and the application (e.g., whether
query segmentation is used for query understanding or document
retrieval). This leaves some ambiguity in query segmentation, as
we will discuss later.

Query segmentation could help a retrieval system to improve its
accuracy, as segments carry implicit word proximity / ordering con-
straints, which may be used to filter documents. For example, we
would expect “new” to be near (and probably just before) “york” in
matching documents. Query segmentation should also be useful in
other query processing tasks such as query rewriting and query log
analysis, where one would be able to work on semantic concepts
instead of individual words [2, 8, 21].

Interestingly, there is little investigation done of query segmenta-
tion, in spite of its importance. To our knowledge, two approaches
have been studied in previous works. The first is based on (point-
wise) mutual information (MI) between pairs of query words. In [23,
14], if the MI value between two adjacent words is below a pre-
defined threshold, a segment boundary is inserted at that position.
The problem with this approach is that MI, by definition, cannot
capture correlations among more than two words, thus it cannot
handle long entities like song names, where MI may be low in cer-
tain positions (e.g., between “heart” and “will” in “my heart will go
on”). Another problem with this approach, which is also true with
most unsupervised learning methods, is its heavy reliance on cor-
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pus statistics. In some cases highly frequent patterns with incom-
plete semantic meaning may be produced. For example, “leader
of the" is a fairly frequent pattern, but it is certainly not a self-
contained semantic concept.

The second approach [4] uses supervised learning. At each word
position, a binary decision is made whether to create a segment
boundary or not. The input features to the decision function are
defined on words within a small window at that position. The fea-
tures include part-of-speech tags, position, web counts, etc., with
their weights learned from labeled training data. Although the win-
dow size is set to 4 to capture a certain degree of long-range de-
pendencies, the segmentation decisions are still local in essence.
Moreover, their features are specifically designed for noun-phrase
queries (queries comprised of multiple noun phrases). For exam-
ple, one feature is the web count of “X and Y ” for two adjacent
words X and Y , which is not helpful for general queries. An-
other problem with this approach, and with all supervised learning
methods, is that it requires a significant number of labeled training
samples and well designed features to achieve good performance.
This makes it hard to adapt to other languages, domains, or tasks.

In this paper, we propose an unsupervised method for query
segmentation that alleviates the shortcomings of the current ap-
proaches. Three characteristics make our approach unique. First,
we use a statistical language modeling approach that captures the
high-level sequence generation process rather than focusing on lo-
cal between-word dependencies as mutual information does. Sec-
ond, in order to avoid running expectation-maximization (EM) al-
gorithm on the whole dataset, which is quite expensive, we propose
an EM algorithm that performs optimization on the fly for incoming
queries. Third, instead of limiting to use query logs, we combine
resources from the Web. In particular, we use Wikipedia to provide
additional evidence for concept discovery, which proves to be quite
successful. In our experiments, we test our method on human an-
notated test sets, and find language modeling, EM optimization and
Wikipedia knowledge each brings improvement to query segmen-
tation performance.

In the rest of the paper, we will first describe other related work
in Section 2. We then in Section 3 describe the generative lan-
guage model for query segmentation. Section 4 discusses the tech-
niques for parameter optimization, including a method for estimat-
ing long n-gram’s frequency and an EM learning algorithm. In Sec-
tion 5, we describe how to incorporate additional knowledge such
as Wikipedia into our segmentation model. Practical system im-
plementation is discussed in in Section 6. We present experiment
results in Section 7 and its discussions in Section 8. Finally, we
conclude the paper in Section 9.

2. RELATED WORK
In natural language processing, there has been a significant amount

of research on text segmentation, such as noun phrase chunking [22],
where the task is to recognize the chunks that consist of noun phrases,
and Chinese word segmentation [5, 18, 25], where the task is to
delimit words by putting boundaries between Chinese characters.
Query segmentation is similar to these problems in the sense that
they all try to identify meaningful semantic units from the input.
However, one may not be able to apply these techniques directly
to query segmentation, because Web search query language is very
different (queries tend to be short, composed of keywords), and
some essential techniques to noun phrase chunking, such as part-
of-speech tagging [6], can not achieve high performance when ap-
plied to queries. Thus, detecting noun phrase for information re-
trieval has been mainly studied in document indexing [3, 11, 26,
24] rather than query processing.

In terms of unsupervised methods for text segmentation, the ex-
pectation maximization (EM) algorithm has been used for Chinese
word segmentation [19] and phoneme discovery [16], where a stan-
dard EM algorithm is applied to the whole corpus. As pointed
out in [19, 16], running EM algorithm over the whole corpus is
very expensive. To avoid this costly procedure, for each incom-
ing query, we run an EM algorithm on the fly over the affected
sub-corpus only. Since a query is normally short and the sub-
corpus relevant to it is also quite small, this online procedure is
very fast. A second difference is that we augment unsupervised
learning with Wikipedia as external knowledge, which dramatically
improves query segmentation performance. We combine multiple
evidence using the minimum description length principle (MDL),
which has been applied widely to problems such as grammar in-
duction [13] and word clustering [15]. To some extent, utilizing
external knowledge is similar to having some seed labeled data for
unsupervised learning as used in [1], only that Wikipedia is readily
available.

Wikipedia has been used in many applications in NLP, including
named entity disambiguation [7, 9], question answering [10], text
categorization [12], and conference resolution [20]. To our knowl-
edge, this is the first time that it is used in query segmentation.

3. A GENERATIVE MODEL FOR QUERY
SEGMENTATION

When a query is being formulated in people’s mind, it is natural
to believe that the building blocks in the thinking process are “con-
cepts” (possibly multi-word), rather than single words. For exam-
ple, with the query “new york”, the two words must have popped
into one’s brain together; if they were come up separately, the in-
tended meaning would be vastly different. It is when the query is
uttered (e.g., typed into a search box) that the concepts are “seri-
alized” into a sequence of words, with their boundaries dissolved.
The task of query segmentation is to recover the boundaries which
separate the concepts.

Given that the basic units in query generation are concepts, we
make the further assumption that they are independent and identically-
distributed (I.I.D.). In other words, there is a probability distri-
bution PC of concepts, which is sampled repeatedly, to produce
mutually-independent concepts that construct a query. This is es-
sentially a unigram language model, with a "gram" being not a
word, but a concept / segment.

The above I.I.D. assumption carries several limitations. First,
concepts are not really independent of each other. For example,
we are more likely to observe “travel guide” after “new york” than
“new york times”. Second, the probability of a concept may vary by
its position in the text. For example, we expect to see “travel guide”
more often at the end of a query than at the beginning. We could
tackle the above problems by using a higher-order model (e.g., the
bigram model) and adding a position variable, but this will dramati-
cally increase the number of parameters that are needed to describe
the model. Thus for simplicity the unigram model is used, and it
proves to work reasonably well for the query segmentation task.

Let T = w1w2 · · ·wn be a piece of text of n words, and ST =
s1s2 · · · sm be a possible segmentation consisting of m segments,
where si = wkiwki+1 · · ·wki+1−1, 1=k1<k2<···<km+1=n+1

For a given query Q, if it is produced by the above generative
language model, with concepts repeatedly sampled from distribu-
tion PC until the desired query is obtained, then the probability of
it being generated according to an underlying sequence of concepts
(i.e., a segmentation of the query) SQ is

P (SQ) = P (s1)P (s2|s1) · · ·P (sm|s1s2 · · · sm−1)
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The unigram model says

P (si|s1s2 · · · si−1) = PC(si)

Thus we have

P (SQ) =
∏

si∈SQ

PC(si)

And the cumulative probability of generating Q is

P (Q) =
∑
SQ

P (SQ)

where SQ is one of 2n−1 different segmentations, with n being the
number of query words.

For two segmentations ST
1 and ST

2 of the same piece of text T ,
suppose they differ at only one segment boundary, i.e.,

ST
1 = s1s2 · · · sk−1sksk+1sk+2 · · · sm

ST
2 = s1s2 · · · sk−1s′ksk+2 · · · sm

where s′k = (sksk+1) is the concatenation of sk and sk+1.
Naturally, we will favor segmentations with higher probability

of generating the query. In the above case, P (ST
1 ) > P (ST

2 ) (thus
is preferred) if and only if Pc(sk)Pc(sk+1) > Pc(s

′
k), i.e., when

sk and sk+1 are negatively correlated. In other words, a segment
boundary is justified if and only if the pointwise mutual information
between the two segments resulting from the split is negative:

MI(sk, sk+1) = log
Pc(s

′
k)

Pc(sk)Pc(sk+1)
< 0

Note that this is fundamentally different from the MI-based ap-
proach in [14]. MI as computed above is between adjacent seg-
ments, rather than words. More importantly, the segmentation de-
cision is non-local (i.e., involving a context beyond the words near
the segment boundary of concern): whether sk and sk+1 should be
joined or split depends on the positions of sk’s left boundary and
sk+1’s right boundary, which in turn involve other segment deci-
sions.

If we enumerate all possible segmentations, the “best” segmen-
tation will be the one with the highest likelihood to generate the
query. We can also rank them by likelihood and output the top k.
Having multiple possibly correct segmentations is desirable if the
correct segmentation cannot be easily determined at query prepro-
cessing time: with a small number of candidates one can afford to
ask the user for feedback, or re-score them by inspecting retrieved
documents.

In practice, segmentation enumeration is infeasible except for
short queries, as the number of possible segmentations grows ex-
ponentially with query length. However, the I.I.D. nature of the un-
igram model makes it possible to use dynamic programming (Algo-
rithm 1) for computing top k best segmentations. The complexity is
O

(
n k m log(k m)

)
, where n is query length, and m is maximum

allowed segment length.

4. PARAMETER ESTIMATION
The central question that needs to be addressed is: how to de-

termine the parameters of our unigram language model, i.e., the
probability of the concepts, which take the form of variable-length
n-grams. As this work focuses on unsupervised learning, we would
like the parameters to be estimated automatically from provided
textual data.

The primary source of data we use is a text corpus consisting
of a 1% sample of the web pages crawled by the Yahoo! search
engine. We count the frequency of all possible n-grams up to a

Input: query w1w2 · · ·wn, concept probability distribution Pc

Output: top k segmentations with highest likelihood

B[i]: top k segmentations for sub-text w1w2 · · ·wi

For each segmentation b ∈ B[i], segs denotes the segments and
prob denotes the likelihood of the sub-text given this segmenta-
tion

for i in [1..n]
s← w1w2 · · ·wi

if PC(s) > 0
a← new segmentation
a.segs← {s}
a.prob← PC(s)
B[i]← {a}

for j in [1..i− 1]
for b in B[j]

s← wjwj+1 · · ·wi

if PC(s) > 0
a← new segmentation
a.segs← b.segs ∪ {s}
a.prob← b.prob× PC(s)
B[i]← B[i] ∪ {a}

sort B[i] by prob
truncate B[i] to size k

return B[n]

Algorithm 1: Dynamic programming algorithm to compute top
k segmentations

certain length (n = 1, 2, · · · , 5) that occur at least once in the cor-
pus. It is usually impractical to do this for longer n-grams, as their
number grows exponentially with n, posing difficulties for storage
space and access time. However, for long n-grams (n > 5) that are
also frequent in the corpus, it is often possible to approximate their
counts using those of shorter n-grams.

4.1 Frequency lower bounds for long n-grams
We compute lower bounds of long n-gram counts using set in-

equalities, and take them as approximation to the real counts. For
example, the frequency for “harry potter and the goblet of fire”
can be determined to lie in the reasonably narrow range of [5783,
6399], and we just use 5783 as an estimate for its true frequency. A
dynamic programming algorithm is given next.

If we have frequencies of occurrence in a text corpus for all n-
grams up to a given length, then we can infer lower bounds of fre-
quencies for longer n-grams, whose real frequencies are unknown.
The lower bound is in the sense that any smaller number would
cause contradictions with known frequencies.

Let #(x) denote n-gram x’s frequency. Let A,B, C be arbi-
trary n-grams, and AB, BC, ABC be their concatenations. Let
#(AB ∨ BC) denote the number of times B follows A or is fol-
lowed by C in the corpus. We have

#(ABC) = #(AB) + #(BC)−#(AB ∨BC) (1)

≥ #(AB) + #(BC)−#(B) (2)

(1) follows directly from a basic equation on set cardinality:

|X ∩ Y| = |X|+ |Y| − |X ∪ Y|
where X is the set of occurrences of B where B follows A and Y is
the set of occurrences of B where B is followed by C.
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Since #(B) ≥ #(AB ∨BC), (2) holds.
Therefore, for any n-gram x = w1w2 · · ·wn (n ≥ 3), if we

define

fi,j(x) def
= #(w1 · · ·wj) + #(wi · · ·wn)−#(wi · · ·wj)

we have

#(x) ≥ max
1<i<j<n

fi,j(x) (3)

(3) allows us to compute the frequency lower bound for x us-
ing frequencies for sub-n-grams of x, i.e., compute a lower bound
for all possible pairs of (i, j), and choose their maximum. In case
#(w1 · · ·wj) or #(wi · · ·wn) is unknown, their lower bounds,
which are obtained in an recursive manner, can be used instead.
Note that what we obtain are not necessarily greatest lower bounds,
if all possible frequency constraints are to be taken into account.
Rather, they are best-effort estimates using the above set inequali-
ties.

In reality, not all (i, j) pairs need to be enumerated: if i ≤ i′ <
j′ ≤ j, then

fi,j(x) ≥ fi′,j′(x) (4)

because:
(

#(i, j) def
= #(wiwi+1 · · ·wj)

)

fi,j(x)

= #(1, j) + #(i, n)−#(i, j)

≥
(
#(1, j′) + #(i, j)−#(i, j′)

)
+ #(i, n) −#(i, j)

= #(1, j′) + #(i, n)−#(i, j′)

≥ #(1, j′) +
(
#(i′, n) + #(i, j′)−#(i′, j′)

)
−#(i, j′)

= #(1, j′) + #(i′, n) −#(i′, j′)

= fi′,j′(x)

where the inequalities are obtained using (2).
(4) means that there is no need to consider fi′,j′(x) in the com-

putation of (3) if there is a sub-ngram wi · · ·wj longer than wi′ · · ·wj′
with known frequency. This can save a lot of computation.

Algorithm 2 gives the frequency lower bounds for all n-grams in
a given query, with complexity O(n2m), where m is the maximum
length of n-grams whose frequencies we have counted (5, in our
case).

Next we explore several possible ways to estimate the n-gram
probabilities given that their frequencies are known to us.

4.2 Estimation with raw frequencies
With the bag-of-words assumption that word occurrences are

I.I.D., word frequencies in a piece of text follow a multinomial dis-
tribution. Given a set of word frequencies, the Maximum Likeli-
hood Estimate (MLE) for the words’ probabilities (parameterizing
the multinomial distribution) is

P (w) =
#(w)∑

w′∈V #(w′)

where #(w) is word w’s frequency, and V is the vocabulary of all
words.

It is easy to adapt the above equation to compute n-gram proba-
bilities in the concept distribution:

PC(x) =
#(x)∑

x′∈V #(x′)
(5)

where #(x) is the “raw” frequency for n-gram x in the text corpus.

Input: query w1w2 · · ·wn, frequencies for all n-grams not
longer than m
Output: frequencies (or their lower bounds) for all n-grams in
the query

C[i, j]: frequency (or its lower bound) for n-gram wi · · ·wj

for l in [1..n]
for i in [1..n − l + 1]

j ← i + l − 1
if #(wi · · ·wj) is known

C[i, j]← #(wi · · ·wj)
else

C[i, j]← 0
for k in [i + 1..j −m]

C[i, j]← max
(
C[i, j], C[i, k + m− 1]

+C[k, j]−C[k, k + m− 1]
)

return C

Algorithm 2: Dynamic programming algorithm to compute
lower bounds for n-gram frequencies

There are two serious problems with this approach, however.
First, it is unclear what should be included in V , the set of n-grams
whose frequency sum is used for normalization (so that probabil-
ities sum up to 1). Obviously, we cannot include arbitrarily long
n-grams, as there is an astronomical number of them. One way is
to limit to n-grams up to a certain length, for example, all n-grams
whose exact frequencies have been counted (in our case, n ≤ 5).
But it is hard to justify why the other n-grams should be excluded
from the normalization sum.

More importantly, the probability of an n-gram in the concept
distribution should describe how likely the n-gram is to appear in a
piece of text as an independent concept. However, this cannot be
captured by the raw frequencies. For example, since it is always
true

#(york times) ≥ #(new york times)

MLE will infer

PC(york times) ≥ PC(new york times)

but obviously “york times” is unlikely to appear alone; PC(york times)
should be very small. This inherent drawback of using raw n-gram
frequencies with MLE leads us to look for alternative methods that
preserve some form of concept intactness.

4.3 Estimation with EM Optimization
Suppose we have already segmented the entire text corpus into

concepts in a preprocessing step. We can then use (5) without any
problem: the frequency of an n-gram will be the number of times
it appears in the corpus as a whole segment. For example, in a
correctly segmented corpus, there will be very few “york times”
segments (most “york times” occurrences will be in the “new york
times” segments), resulting in a small value of PC(york times),
which makes sense. However, having people manually segment
the documents is only feasible on small datasets; on a large corpus
it will be too costly.

An alternative is unsupervised learning, which does not need
human-labeled segmented data, but uses large amount of unseg-
mented data instead to learn a segmentation model. Expectation
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maximization (EM) is an optimization method that is commonly
used in unsupervised learning, and it has already been applied to
text segmentation [16, 19]. The EM algorithm goes like this: In
the E-step, the unsegmented data is automatically segmented using
the current set of estimated parameter values, and in the M-step, a
new set of parameter values are calculated to maximize the com-
plete likelihood of the data which is augmented with segmentation
information. The two steps alternate until a termination condition
is reached (e.g. convergence).

The major difficulty is that, when the corpus size is very large (in
our case, 1% of crawled web), it will still be too expensive to run
these algorithms, which usually require many passes over the cor-
pus and very large data storage to remember all extracted patterns.

To avoid running the EM algorithm over the whole corpus, we
propose an alternative: running EM algorithm on the fly, only on
a partial corpus that is specific to a query. More specifically, when
a new query arrives, we extract parts of the corpus that overlap
with it (we call this the query-relevant partial corpus), which are
then segmented into concepts, so that probabilities for n-grams in
the query can be computed. All non-relevant parts unrelated to
the query of concern are disregarded, thus the computation cost is
dramatically reduced.

We can construct the query-relevant partial corpus in a proce-
dure as follows. First we locate all words in the corpus that appear
in the query. We then join these words into longer n-grams if the
words are adjacent to each other in the corpus, so that the result-
ing n-grams become longest matches with the query. For example,
for the query “new york times subscription”, if the corpus contains
“new york times” somewhere, then the longest match at that po-
sition is “new york times”, not “new york” or “york times”. This
longest match requirement is effective against incomplete concepts,
which is a problem for the raw frequency approach as previously
mentioned. Note that there is no segmentation information associ-
ated with the longest matches; the algorithm has no obligation to
keep the longest matches as complete segments. For example, it
can split “new york times” in the above case to “new york” and
“times” if corpus statistics make it more reasonable to do so. How-
ever, there are still two artificial segment boundaries created at each
end of a longest match (which means, e.g., “times” cannot associate
with the word “square” following it but not included in the query).
This is a drawback of our query-specific partial-corpus approach.

Because all non-query-words are disregarded, there is no need to
keep track of the matching positions in the corpus. Therefore, the
query-relevant partial corpus can be represented as a list of n-grams
from the query, associated with their longest match counts:

D = {(x, c(x)
)|x ∈ Q}

where x is an n-gram in query Q, and c(x) is its longest match
count.

The partial corpus represents frequency information that is most
directly related to the current query. We can think of it as a distilled
version of the original corpus, in the form of a concatenation of
all n-grams from the query, each repeated for the number of times
equal to their longest match counts, with other words in the corpus
all substituted by a wildcard:

x1x1 · · ·x1︸ ︷︷ ︸
c(x1)

x2x2 · · ·x2︸ ︷︷ ︸
c(x2)

· · · xkxk · · ·xk︸ ︷︷ ︸
c(xk)

ww · · ·w︸ ︷︷ ︸
N−∑

i c(xi)|xi|

(6)

where x1, x2, · · · , xk are all n-grams in the query, w is a wildcard
word representing words not present in the query, and N is the cor-
pus length. We denote n-gram x’s size by |x|, so N−∑

i c(xi)|xi|
is the length of the non-overlapping part of the corpus.

Practically, the longest match counts can be computed from raw
frequencies efficiently, which we have either counted or approxi-
mated using lower bounds. The procedure is described below:

Given query Q, let x be an n-gram in Q, L(x) be the set of
words that precede x in Q, and R(x) be the set of words that
follow x in Q. For example, if Q is “new york times new sub-
scription”, and x is “new”, then L(x) = {times} and R(x) =
{york, subscription}.

The longest match count for x is essentially the number of oc-
currences of x in the corpus not preceded by any word from L(x)
and not followed by any word from R(x), which we denote as a.

Let b be the total number of occurrences of x, i.e., #(x).
Let c be the number of occurrences of x preceded by any word

from L(x).
Let d be the number of occurrences of x followed by any word

from R(x).
Let e be the number of occurrences of x preceded by any word

from L(x) and at the same time followed by any word from R(x).
Then it is easy to see a = b− c− d + e
Algorithm 3 computes the longest match count. Its complexity

is O(l2), where l is the query length.

Input: query Q, n-gram x, frequencies for all n-grams in Q
Output: longest match count for x

c(x)← #(x)
for l ∈ L(x)

c(x)← c(x)−#(lx)
for r ∈ R(x)

c(x)← c(x)−#(xr)
for l ∈ L(x)

for r ∈ R(x)
c(x)← c(x) + #(lxr)

return c(x)

Algorithm 3: Algorithm to compute n-gram longest match
counts

If we treat the query-relevant partial corpus D as a source of tex-
tual evidence, we can use maximum a posteriori estimation (MAP),
choosing parameters θ (the set of concept probabilities) to maxi-
mize the posterior likelihood given the observed evidence:

θ = arg maxP (D|θ)P (θ)

where P (θ) is the prior likelihood of θ.
The above equation can also be written as

θ = arg min
(
− log P (D|θ)− log P (θ)

)

where − log P (D|θ) is the description length of the corpus, and
− log P (θ) is the description length of the parameters. The first
part prefers parameters that are more likely to generate the evi-
dence, while the second part disfavors parameters that are complex
to be described. The goal is to reach a balance between the two by
minimizing the combined description length.

For the corpus description length, we have the following accord-
ing to the distilled corpus representation in (6):

log P (D|θ) =
∑
x∈Q

log P (x|θ) · c(x) +

log
(
1−

∑
x∈Q

P (x|θ)) · (N −∑
x∈Q

c(x)|x|)
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where x is an n-gram in query Q, c(x) is its longest match count,
|x| is the n-gram length, N is the corpus length, and P (x|θ) is the
probability of the parameterized concept distribution generating x
as a piece of text. The second part of the equation is necessary, as
it keeps the probability sum for n-grams in the query in proportion
to the partial corpus size.

The probability of text x being generated can be summed over
all of its possible segmentations:

P (x|θ) =
∑
Sx

P (Sx|θ)

where Sx is a segmentation of n-gram x. Note that Sx are hidden
variables in our optimization problem.

For the description length of prior parameters θ, we compute it
as

log P (θ) = α
∑
x∈θ

log P (x|θ)

where α is a predefined weight, x ∈ θ means the concept distribu-
tion has a non-zero probability for x, and P (x|θ) is computed as
above. This is equivalent to adding α to the longest match counts
for all n-grams in the lexicon θ. Thus, the inclusion of long yet
infrequent n-grams in the lexicon is penalized for the resulting in-
crease in parameter description length.

To estimate the n-gram probabilities with the above minimum
description length set-up, we use the variant Baum-Welch algo-
rithm from [16]. We also follow [16] to delete from the lexicon all
n-grams that reduce the total description length when deleted. The
complexity of the algorithm is O(kl), where k is the number of dif-
ferent n-grams in the partial corpus, and l is the number of deletion
phases (usually quite small). In practice, the above EM algorithm
converges quickly and can be done without user’s awareness.

5. USE OF WIKIPEDIA
The main problem with the above minimum description length

approach is that it only tries to optimize the statistical aspects of the
concepts; there is no linguistic consideration involved to guarantee
that the output concepts are well-formed ones. For example, for
the query “history of the web search engine”, the best segmenta-
tion is [history of the][web search engine]. This is because “history
of the” is a relatively frequent pattern in the corpus, helping to re-
duce the corpus description length quite much when it is assigned a
high probability. Clearly we need to resort to some external knowl-
edge to make sure that the output segments are well-formed con-
cepts, not just frequent patterns. Many such knowledge resources
are available from the NLP works, for example, named entity rec-
ognizer and noun phrase models, each shedding unique insight on
what a well-formed concept should look like. In this paper, we
explore a new approach, using Wikipedia to guide query segmen-
tation.

Wikipedia, the largest encyclopedia on the Internet, is known for
its high-quality collaboratively edited page contents. We find the
Wikipedia article titles particularly suitable to our needs: First,
the articles span a huge number of topics with extremely wide
coverage, ranging from persons to locations, from movies to sci-
entific theorems, able to match the great diversity of web search
queries. Second, most articles are about well-established topics
that are known to a reasonably-sized community, thus we can avoid
dealing with large numbers of infrequently used concepts (e.g. the
name of a local business, which is more easily handled by a spe-
cialized name identifier). Third, the articles are updated very fast,
thus one can keep the concept dictionary up with the latest trend.

There are two difficulties with Wikipedia titles. First, the titles
are mostly canonicalized. For example, plural form of nouns are
rarely seen in titles. To allow other forms to be used, we include
anchor texts / aliases pointing to a page as alternatives to its title,
if the frequency is not low. For example, our vocabulary includes
both “U.S.A” and “United States”, despite that only the latter is an
article title. Second, some pages are about topic involving multi-
ple entities, e.g., “magical objects in harry potter”. In this case, we
set a threshold on the number of in-links (eliminating those pages
whose counts are beneath it, which tend to be discussing rare top-
ics) and allow long titles to be segmented into shorter concepts. For
example, we can get two concepts, “magical objects” and “harry
potter” from the previous title. In August 2007, we extract a total
of 2.3 million “concepts” from 1.95 million articles in the English
Wikipedia.

To use Wikipedia titles, we introduce a third term in our descrip-
tion length minimization scheme:

β
∑
x∈W

log P (x|θ)#W(x)

where β is a predefined weight, W is the collection of Wikipedia
concepts, and #W(x) the count of x in titles and links. This way,
we will prefer to have large probabilities for concepts that occur
frequently as Wikipedia titles (or anchor texts).

6. SYSTEM ARCHITECTURE
To use the parameter estimation algorithms for query segmen-

tation, which is a task usually demanding real-time response, it is
critical to have fast access to arbitrary n-grams’ frequencies. Ac-
cording to Algorithm 2, long n-grams’ frequencies can often be
approximated using those of shorter ones, but there are still a lot
of n-grams whose frequencies need to be maintained. In our case,
we count frequencies for all n-grams with length up to 5 and non-
zero occurrences in the web corpus. Due to the huge corpus size
(33 billion words in length), we choose to accumulate counts us-
ing a simple map-reduce procedure that is run on a Hadoop1 clus-
ter. The resulting ngram number is 464 million, which makes it
almost impossible to store the entire ngram-to-frequency dictio-
nary in memory. We tackle this using Berkeley DB2, which is a
high-performance storage engine for key/value pairs. Berkeley DB
enables us to maintain an in-memory cache, from which the most
frequent n-grams can be looked up quickly (without reading from
disk). We use BTree as the access method. We sort the ngram-
frequency pairs before inserting them into DB, so that the resulting
database file is highly compact. The cache size is set to 1GB.

Figure 1 illustrates the architecture of our system. With such an
implementation, our system can segment 500 queries per second on
a single machine.

7. EXPERIMENTATION

7.1 Data sets
We experiment on the data sets previously used by [4] for su-

pervised query segmentation, so that it is easy to make perfor-
mance comparison between our work and theirs. According to [4],
the queries were sampled from the AOL search logs [17], each of
length four or greater, with only determiners, adjectives and nouns
as query words, and having at least one clicked results.

There are three sets, each containing 500 queries, one for train-
ing, one for validation, and another for testing. One annotator (we
1http://lucene.apache.org/hadoop
2http://www.oracle.com/database/berkeley-db
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Figure 1: System architecture

call him/her A) manually segmented all three sets, and two addi-
tional annotators (B and C) segmented the testing set to provide
alternative judgments. Since our work is unsupervised query seg-
mentation, we have no need for the training set, and we are able to
test against all three annotators. We use the combined training and
validation sets for parameter tuning, and evaluate on the testing set.

As will be discussed later, the inter-annotator agreement is found
to be quite low. For example, A gives an identical segmentation
only to 58% of all queries when checking with B, and 61% with C.
This vast inconsistency arises largely from the difficulty in appro-
priately defining a segment. For example, one might think “bank
manager” should be kept in a single segment, but when retrieving
documents, it is advantageous to separate them to two segments,
to match such text as “manager of ABC bank”. We evaluate our
results against all three annotators as a result of this segmentation
ambiguity. As in [4], we pick out all queries for which the three an-
notators make a unanimous segmentation decision. This set of 219
queries is referred as Intersection. We make another derived test
set called Conjunction, on which it is considered correct when a
segmentation matches what is given by any of the three annotators.

7.2 Evaluation Metrics
We adopt three different evaluation metrics:

1. Classification accuracy

Bergsma and Wang [4] view query segmentation as a clas-
sification problem: at each position between two words, one
makes a binary decision on whether to insert a segment bound-
ary or not. Thus one can measure the accuracy of the classi-
fication decisions. The metric is known as Seg-Acc in [4].

2. Segment accuracy

If we treat the human-annotated segmentation as a set of “rel-
evant” segments, we can measure how well the predicted
segmentation recovers these segments. Using Information
Retrieval terminology, we compute precision (percentage of
segments in the predicted segmentation that are relevant), re-
call (percentage of relevant segments that are found in the

predicted segmentation) and F measure ( 2 × precision ×
recall / ( precision + recall ) ).

3. Query accuracy

This is the percentage of queries for which the predicted seg-
mentation matches the human-annotated one completely. It
is the same as Qry-Acc in [4].

We see that from classification accuracy to segment accuracy, to
query accuracy, the metrics become more strict in judging how well
the predicted segmentation matches the human-annotated one.

7.3 Results
We use mutual information based segmentation as our baseline

(referred as MI), whose parameters are tuned on the training + val-
idation query set. Our methods include the language modelling
approach using MLE on raw n-gram frequencies (referred as LM),
LM approach optimized by the EM algorithm (EM), LM approach
augmented by Wikipedia knowledge (LM+Wiki), and EM approach
augmented by Wikipedia knowledge (EM+Wiki).

We set α (weight on parameter description length) to 10, and β
(weight on Wikipedia knowledge) to 100000. Both are tuned on
the training + validation set.

Table 1 presents the evaluation results of different query seg-
mentation algorithms on the test sets, with the best performance
of segment F on each dataset in bold. There are some interesting
observations from Table 1. The first thing to note is that all three
types of segmentation accuracy are highly consistent: the Pearson’s
linear correlation coefficients is 0.91 between segment F and classi-
fication accuracy, and 0.89 between segment F and query accuracy.

For web search, it is particularly important to be able to identify
query concepts, which is directly measured by segment accuracy.
Thus we place special emphasis on this metric in the following dis-
cussion. We also draw a bar chart (Figure 2) comparing segment F
of different algorithms across the test sets.
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Figure 2: Segment F of different query segmentation algorithms

From Table 1 (or Figure 2), we observe a consistent trend of
segment F increasing from left to right, with the only exception on
dataset A, where there is a slight decrease from MI (0.499) to LM
(0.487) (statistically insignificant with p-value of t-test being 0.47).

Comparing LM with MI, LM has much higher query accuracy
(increases range from 30% (on A) to 78% (on B)) and classifica-
tion accuracy (increases range from 7% (on A) to 22% (on B)),
with all increases being statistically significant (p-value of t-test is
close to 0). For segment accuracy, LM tends to have balanced pre-
cision and recall, while MI tends to have higher recall than preci-
sion. This is because MI, being a local model that does not capture
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Table 1: Performance of different query segmentation algorithms

MI LM EM LM+Wiki EM+Wiki

Annotator A query accuracy 0.274 0.356 0.414 0.500 0.526
classification accuracy 0.693 0.741 0.762 0.801 0.810
segment precision 0.469 0.502 0.562 0.631 0.657
segment recall 0.534 0.473 0.555 0.608 0.657
segment F 0.499 0.487 0.558 0.619 0.657

Annotator B query accuracy 0.244 0.436 0.440 0.508 0.494
classification accuracy 0.634 0.776 0.774 0.807 0.802
segment precision 0.408 0.552 0.568 0.625 0.623
segment recall 0.472 0.539 0.578 0.619 0.640
segment F 0.438 0.545 0.573 0.622 0.631

Annotator C query accuracy 0.264 0.394 0.416 0.492 0.494
classification accuracy 0.666 0.754 0.759 0.797 0.796
segment precision 0.451 0.528 0.558 0.622 0.634
segment recall 0.519 0.507 0.561 0.608 0.642
segment F 0.483 0.517 0.559 0.615 0.638

Intersection query accuracy 0.343 0.468 0.528 0.652 0.671
classification accuracy 0.728 0.794 0.815 0.867 0.871
segment precision 0.510 0.580 0.640 0.744 0.767
segment recall 0.550 0.560 0.650 0.733 0.782
segment F 0.530 0.569 0.645 0.738 0.774

Conjunction query accuracy 0.381 0.570 0.597 0.687 0.692
classification accuracy 0.758 0.846 0.856 0.890 0.891
segment precision 0.582 0.680 0.715 0.787 0.797
segment recall 0.654 0.663 0.721 0.775 0.807
segment F 0.616 0.671 0.718 0.781 0.801

long dependencies, tends to create more segments, thus producing
high recall yet low precision. Overall (with the F measure), the LM
model achieves higher segment accuracy, up to a 24% increase (on
B). The fact that the language modeling approach performs sig-
nificantly better than the mutual information approach shows the
advantage of modeling query structure with the concept generation
process.

The performance of LM is further improved with EM optimiza-
tion. Comparing to LM, segment F has an additional improvement
of 5% - 15% on different datasets. This confirms the benefit of the
iterative optimization algorithm to produce more accurate concept
probabilities.

With the addition of Wikipedia knowledge, segmentation perfor-
mance is dramatically improved. Comparing LM+Wiki with LM,
segment F increases significantly from 14% to 30% on different
datasets. Comparing EM+Wiki with EM, there is also a segment
F increase from 10% to 20% on different datasets. The merit of
Wikipedia being a high-quality repository of concepts is also seen
in the fact that its weight β is tuned to a large number 100000 on the
training + validation sets (which means that any n-gram found as a
concept in Wikipedia would receive 100000 “bonus” frequency in
corpus). The effect of Wikipedia even overshadows that of the EM
algorithm: the segment F improvement from LM+Wiki to EM+Wiki
is in the range of only 1.4% to 6%.

The effectiveness of Wikipedia data makes us to wonder if such
a good resource will render our language model unnecessary. We
have tried a simple longest string match segmentation algorithm
using Wikipedia as the dictionary. The result is summarized in Ta-
ble 2 for the Intersection dataset, which turns out to be rather poor.
Therefore, Wikipedia knowledge is not the only contributor to the
good performance we have obtained; language modeling and the
EM optimization algorithm are also very important.

Table 2: Segmentation performance from longest string match with
Wikipedia title dictionary

query accuracy 0.259
classification accuracy 0.667
segment precision 0.444
segment recall 0.525
segment F 0.481

The supervised method [4] reported 0.892 of classification ac-
curacy and 0.717 of query accuracy on the Intersection dataset.
Segment accuracy was not measured. In comparison, we obtain
a 0.871 classification accuracy and a 0.671 query accuracy on this
dataset using EM+Wiki. Since we do not have the segmentation
output of the supervised method, we can not perform significance
test on the performance difference. On the other hand, it is diffi-
cult to have a head to head comparison between the supervised and
unsupervised methods because different resources and methods are
used. Their method relies on a good POS tagger and the features
are specifically designed for noun phrase queries (many of those
features would be of little use to other types of queries). On the
other hand, our method makes no such assumptions. Also, their
classifier was specifically tuned to the peculiarities of annotator A;
it was mentioned that “results are lower” for the other two annota-
tors, while our unsupervised method produces similar performance
with different annotators.

8. DISCUSSIONS AND ERROR ANALYSIS
One of the major reasons why query segmentation is difficult is

its inherent ambiguity. Among the 500 queries, there are only 219
queries for which the 3 annotators give identical segmentation. Ta-
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ble 3 reports the inter-agreement among the annotators, evaluating
the segmentations by one annotator against those of another. A and
C has the highest agreement, yet still it is poor: using A as the
golden truth, C has only query accuracy of 0.606, classification ac-
curacy of 0.847, and segment accuracy of 0.718. Considering this
intrinsic difficulty, our segmentation accuracy is quite encouraging:
our performance on Conjunction is as high as 0.801 for segment F,
which means we can correctly identify more than 80% of the con-
cepts from the queries. Comparing to the baseline MI with segment
F of 0.616, our approach achieves 30% improvement.

Table 3: Segmentation annotation inter-agreement

A B C

Annotator A query accuracy 0.580 0.606
classification accuracy 0.842 0.847
segment precision 0.698 0.723
segment recall 0.676 0.713
segment F 0.687 0.718

Annotator B query accuracy 0.580 0.604
classification accuracy 0.842 0.842
segment precision 0.677 0.691
segment recall 0.699 0.701
segment F 0.688 0.696

Annotator C query accuracy 0.610 0.604
classification accuracy 0.849 0.842
segment precision 0.716 0.701
segment recall 0.725 0.691
segment F 0.720 0.696

The biggest limitation to the current dataset provided by [4] is
that the queries only contain noun phrases. But general web search
queries has many other types, and a method specifically tailored
to noun phrase queries would not work for an arbitrary query. To
test our unsupervised method, we internally sampled a small ran-
dom set of 160 queries and manually segmented them. Experiments
(details not reported) confirm the high performance of our approach
compared to the mutual information based one.

We have performed an error analysis of the segmentations from
the EM + Wiki method that do not agree with Intersection, and
categorize them as follows:

1. Ambiguous (segmentation-wise) noun phrase

There are many phrases composed of nouns, which can be ei-
ther treated as composite concepts, or segmented into smaller
ones. Examples include “NCAA bracket”, “salt deficiency”
and “dirt bike parts”. Both ways of doing segmentation are
reasonable when a phrase is the combination of its compo-
nents without much altering in meaning. A composite con-
cept may be more useful for query understanding (as com-
ponent words are grouped together), while separate smaller
concepts are more flexible in retrieval (as component words
do not have to appear adjacent to each other in a matching
document). These constitute the largest proportion of dis-
agreements. A good solution to this problem, which we are
considering as a future extension to this work, is to build a
concept hierarchy or graph that models the dependency be-
tween concepts.

2. Incorrect frequent patterns

These are patterns that occur so frequently in the corpus that
our method choose to keep them in segments, even if they

are not good concepts. For example, for “lighted outdoor
palm tree”, our method puts the first two words in a segment,
since they are highly correlated in the corpus. Some form
of linguistic analysis is needed to identify and correct these
cases.

3. Interference from Wikipedia

When a part of the query happens to match in Wikipedia,
the result can sometimes be undesirable. For example, for
“the bang bang gang” (a movie title), we mistakenly make
“bang bang“ a segment, which is a title of a Wikipedia article.
The mistake wouldn’t have happened, however, if the correct
segment were frequent enough in the corpus.

4. High-order dependence

For the query “hardy county virginia genealogy”, our in-
correct segmentation is [hardy county][virginia genealogy].
[virginia genealogy] may be an acceptable segmentation for
a query containing just these two words, but certainly not
for the current query, where “genealogy” is about “hardy
county”. To solve this, we need a higher-order model which
can capture the dependence between the non-adjacent [hardy
county] and [genealogy].

9. CONCLUSIONS AND FUTURE
RESEARCH

We have proposed a novel unsupervised approach to query seg-
mentation based on a generative language model. To estimate the
parameters (concept probabilities) efficiently, we use a novel method
to estimate frequencies of long n-grams, and an EM algorithm that
does optimization on the fly. We also explore additional evidence
from Wikipedia to augment unsupervised learning. Experiments
demonstrate the effectiveness and efficiency of our approach, with
segment accuracy increasing to 0.774 from 0.530 of the traditional
mutual information based approach.

For the future work, the first thing to explore is higher order lan-
guage models. Currently we only use the unigram language model,
and we expect a higher order language model would capture depen-
dencies in long queries better.

Second, since our minimum description length framework al-
lows additional knowledge to be incorporated easily, we would like
to use more resources, especially noun phrase and named entity
models. We are not going to directly apply noun phrase chunking
to queries, as this would not work well for general queries. Instead,
we can run a noun phrase chunker on the Web documents, and col-
lect all extracted noun phrases, which we can then use to estimate
the probability of a segment being a noun phrase.

Finally, we want to evaluate our methods in the context of Web
search, to see how well they can be used to improve proximity
matching and query expansion. After all, improving Web search
is our major motivation of developing better query segmentation
techniques and thus the ultimate evaluation standard.
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