
 57

COMPUTER SCIENCE (71)

CLASS IX

There will be one paper of two hours duration

carrying 80 Marks and Internal Assessment of

20 marks.

The paper will be divided into two Sections A and B.

Section A (20 marks): This section will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to

elementary/fundamental aspects of the entire syllabus.

Section B (60 marks): This section will consist of

questions based on programming. There will be a

choice of questions and candidates will be required to

answer four questions from this section.

PART I -THEORY

1. Computer hardware: parts of a computer and

their functions

CPU, the clock, cache memory, primary memory,

secondary memory, input and output devices,

communication devices (the aim is not to

describe/discuss an exhaustive list of devices but

to understand what parts are present in a typical

computer and what the function of each part is).

Teachers can open a computer and show the

various parts; explain how the motherboard

becomes a kind of 'central coordinator' where all

the others link up; point out the various chips on

the motherboard that are responsible for the

different functions - CPU, memory, clock, boot

ROM, etc.

Similarly, it is good to show students a floppy

disk and hard disk from the inside (an old

non-functional disk can be used for this purpose).

Peripheral devices should also be shown from the

'inside', if possible.

2. Data representation and internal computer

structure

(i) Number systems, base of a number system -

decimal, binary, octal, hexadecimal

representation, conversion between various

representations, character representations

(ASCII, ISCII, Unicode).

(ii) Representations for integers, real numbers,

limitations of finite representations.

(iii) Internal structure of a computer, a simple

decimal load and store computer and its

machine language, instruction format,

registers, program counter, instruction

register; register addressing modes,

instruction cycle, assembly language for the

same computer, simple algorithms in

assembly language.

The teachers must review the place notation for

decimal numbers, then make students count and

do arithmetic (addition and subtraction) with base

2 and 8. This develops intuition for conversion of

numbers from one base to another. Emphasize the

finiteness of representations when only limited

space is available - a bit, byte and word can be

introduced at this stage to talk about sizes. Give

examples to enable students to understand the

maximum and minimum sized numbers that can

be represented in a given number of bits. Students

can write simple programs to keep increasing the

value of an integer till it overflows and determine

the number of bits to store numbers of that type.

Discuss different ways to represent negative

numbers (signed magnitude, ones complement

and twos complement). Introduce sign, mantissa,

radix, exponent notation and how real

numbers can be represented (sign * mantissa *

radix
exponent

). Discuss normalized and

non-normalized representations, 32-bit and 64-bit

representations. In (i) it is useful to introduce

coding systems for other languages - like ISCII

(for Indian languages) and Unicode as a standard

for all languages of the world. In (iii) a simple

decimal computer simulator can be used which

has load, store, arithmetic, simple conditional

jumps, jump instructions, simple input output. The

idea is to give a clear understanding of how a

typical computer works, without going into too

much detail. The student can write simple

programs using the instruction set of the machine

so that they understand the need for high level

languages. This will also clarify the basic idea of a

stored program where program is treated as data.

 58

3. Computer software

The boot process, operating system (resource

management and command processor), file

system.

(i) Boot process, operating systems - resource

management, command processing.

(ii) Directories, files and hierarchical file system.

(iii) Programming languages (machine language,

assembly language, high level language).

(iv) Compilers and interpreters.

(v) Application software.

One natural way to visualize an OS is as a

software layer which creates a virtual machine

that is much more useable than the bare machine.

This involves giving the user a high level

command interface and the management of the

raw machine resources (like memory, CPU etc.)

so that they can be used efficiently. The languages

at different levels (machine, assembly, higher) can

be motivated by a discussion based on the

contents of 2 (iii) above and topic 6 below.

Application software is best introduced through

application software that the student will be using

like browsers, spreadsheets, word processing etc.,

this can be integrated with the discussion in

topic 7.

4. Social context of computing and ethical issues

(i) Intellectual property and corresponding laws

and rights, software as intellectual property.

(ii) Software patents, copyrights, and trademarks,

software licensing and piracy.

(iii) Free software foundation and its position on

software, open source software.

(iv) Privacy, email etiquette.

There can be very interesting discussions in the

class regarding the ethical issues. There can be

discussions on copyright, fair use, a program as

free speech and Digital Millennium Copyright

Act. The students can gather more information

from the net. The stress should be on following

good etiquette and ethical practices.

5. Algorithms

(i) Concept of an algorithm.

(ii) Properties of an algorithm (finite, definite,

terminating, precise).

(iii) Basic ideas of the complexity of an algorithm

- space complexity, time complexity.

A number of problems should be introduced to

familiarize the student with the idea of various

ways in which operations on data yield solutions

to problems. (Please refer to topic 6).

The problems should use different forms of data -

numeric, nonnumeric, structured.

Students should be asked to focus upon what are

the outputs required, the inputs needed and work

out the solutions to the problems.

Informal structured English can be used to write

the solutions.

Students should be asked to visualize sample data

for the problem especially for the extreme cases.

They should be asked to trace the algorithms to

see if the expected output is obtained.

This would help stabilize the concept of

algorithms.

Simple algorithms for number problems can be

discussed here. These can be coded in the

programming language that is covered as part of

topic 6. Simple concrete complexity can be

discussed so that students understand that not all

algorithms are the same with respect to time and

space complexity. Also, briefly discuss space-time

tradeoffs.

6. Programming Using a High Level Language

The programming element in the syllabus is aimed

at problem solving and not on merely rote

learning of the commands and syntax of

particular programming languages. Students have

the option to use either BASIC or C++ in order to

implement the high level language concepts and

algorithms and to use them for solving problems.

While choosing BASIC care must be taken to

choose a standard version that has “block if

structures”, “functions through which parameters

may be passed and values returned”. Very old

 59

versions using “goto statements” must not be
used. Care must be taken that ‘standard and

recent’ versions of the languages are used on the

computer. It is recommended that students

mention the version of the language being used

while writing answers in order to avoid

ambiguity. For example, software such as

Microsoft Quick BASIC, Borland Turbo C++,

Visual C++ or GNU C++ on Linux can be used.

The emphasis here should be on problem solving.

The design approach here may vary. The users of

QBASIC should use the structured programming

approach while C++ users may use the object-

oriented approach.

It must be remembered that the language

(QBASIC/ C++) is just a vehicle for expressing

solutions.

The object-oriented techniques are recommended

as students learn these very naturally and quickly.

Once learnt they are very easy to use.

Simple demonstration programs can be executed

on the computer to illustrate various concepts as

they are introduced.

(i) Primitive data types supported by the

language (integers, floating point numbers,

characters, booleans etc. - will depend on the

language), variables (and their declaration -

based on language), assignment, difference

between the left-hand side and right-hand side

of an assignment.

(ii) Expressions - arithmetic and logical,

evaluation of expressions, type of an

expression (depends on language). Operators,

associativity and precedence of operators.

(iii) Statements, blocks (where relevant), scope

and visibility of variables.

(iv) Conditional statements (if and if-then-else),

switch, break, default.

(v) Loops (for, while-do, do-while).

(vi) Simple input/output using standard

input/output.

The teachers should introduce problem solving

through numerous examples and informally

familiarize the students with the idea of various

ways in which operations on data yield solutions

to problems. The examples should use different

forms of data (numeric, non-numeric, structured).

In the beginning the solutions should be written in

a freely invented structured form of English. The

informal structured English constructs should not

be too high level – they should be at a level where

they can be unambiguously carried out – which

means they are at par with programming language

constructs. For example, primitive constructs like

minimum or maximum of a set of numbers, sort

etc. should not be allowed (see examples below).

Such compound constructs should be introduced

as abstractions, that is as functions or procedures.

In the process of writing the solutions, motivate

and informally introduce:

- How the real world presents us with different

types of data (numeric, non-numeric, boolean,

structured).

- The notion of using a variable to hold data.

- How the assignment operation is used to

change the data a variable denotes.

- How operations on the variable actually

operate on the data.

- How input and output are needed.

- How the sequence of operations on data can

be abstracted out (as an algorithm) and be

repeated on different data sets.

- The concept of a processor (the teacher) and a

store (the blackboard) by mechanically

tracing/executing the solutions.

- How the same kind of repetitive operation

sequences seem to appear again and again in

the solutions (conditionals, loops).

- How some solutions can be reused in solving

other problems.

Throughout this topic the informal structured

English constructs of algorithms should be shown

to correspond to similar constructs in the

language. Programs should be written for all the

examples. Students should run all the programs

discussed in class in the lab. Some of these

programs will be done only after the necessary

concepts have been introduced.

Sample examples:

a) Multiplication as repeated addition.

b) Finding if a number is a prime number.

c) Find the maximum or minimum of 3 numbers,

10 numbers, a given set of n numbers

(requires input/output).

 60

d) Ordering (ascending or descending) a set of 3

numbers; a set of 10 numbers; a given set of n

numbers. Try to reuse what is done in c).

e) Finding the number of vowels in a given

sentence (composite data, non-numeric data).

f) Finding the number of words in a given

sentence.

g) Finding out who has got the maximum

aggregate marks in the class after an exam in

all the subjects (structured data, accessing

elements within structured data).

7. Computers in everyday life

(i) Familiarity with software for word

processing, databases, spreadsheets, making

presentations.

(ii) Basic introduction to the Internet, browsing,

email.

Students should be encouraged to use computers

to write the assignments, project reports, create

banners and placards for school events. They will

automatically learn to use the word processors and

spreadsheets, etc.

Students should be encouraged to log on to the

Internet to gather material for their projects.

A number of interesting assignments can also be

given in this section.

CLASS X

There will be one paper of two hours duration

carrying 80 Marks and Internal Assessment of

20 marks.

The paper will be divided into two Sections A and B.

Section A (20 marks): This section will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to

elementary/fundamental aspects of the entire syllabus.

Section B (60 marks): This section will consist of

questions based on programming. There will be a

choice of questions and candidates will be required to

answer four questions from this section.

PART I -THEORY

1. Computer Structure

(i) Logic gates (NOT, AND, OR, XOR) and their

use in computers.

(ii) Review of number systems (binary, decimal,

octal, hexadecimal), representation for

different types - integers, float, characters.

(iii) Simple binary arithmetic, including addition,

subtraction, multiplication and division.

(iv) Computer logic, Boolean operations, logical

operators (NOT, AND, OR, XOR) and their

truth tables.

The following points should be discussed:

a. Some interesting real life examples can be

taken to introduce propositional logic and

fundamental Boolean operations.

b. These can be connected to problem solving

and programming.

c. Verification of fundamental laws of Boolean

algebra using truth tables.

d. Writing inputs and outputs for a circuit like

half adder and writing the SOP expression.

e. Using Boolean algebra to reduce expressions.

f. Drawing logic gate diagrams for the given

expression.

g. The finiteness of representations should be

emphasized to show that real numbers and

fractions (that is rational numbers) are only

approximated and cannot be represented

exactly in some cases. For example, consider

not terminating decimal representations of

fractions and representations of irrational

numbers like π.

 61

2. Review of Programming

Review of programming in BASIC or in C++ from

Class IX.

(i) Primitive data types supported by the

language (integers, floating point numbers,

characters, booleans etc. - will depend on the

language), variables (and their declaration -

based on language), assignment, difference

between the left-hand side and right-hand side

of an assignment.

(ii) Expressions - arithmetic and logical,

evaluation of expressions, type of an

expression (depends on language). Operators,

associativity and precedence of operators.

(iii) Statements, blocks (where relevant), scope

and visibility of variables.

(iv) Conditional statements (if and if-then-else),

switch, break, default.

(v) Loops (for, while-do, do-while).

(vi) Simple input/output using standard

input/output.

Topics 5 and 6 of Class IX syllabus should be

revised briefly. By now, students should be

reasonably adept at problem solving using

QBASIC/C++.

3. Advanced Programming

The programming element in the syllabus is aimed

at problem solving and not on merely rote

learning of the commands and syntax of

particular programming languages. Students have

the option to use either BASIC or C++ in order to

implement algorithms and to use them for solving

problems. While choosing BASIC, care must be

taken to choose a standard version that has

“block if structures”, “functions through which

parameters may be passed and values returned”.

Very old versions using “goto statements” must
not be used. Care must be taken that ‘standard

and recent’ versions of the languages are used on

the computer - it is recommended that students

mention the version of the language being used

while writing answers in order to avoid

ambiguity. For example, software such as

Microsoft Quick BASIC, Borland Turbo C++,

Visual C++ or GNU C++ on Linux can be used.

(i) Functions / subroutines as procedural

abstractions. Using functions/subroutines in

programs.

(ii) Arguments and argument passing in

functions/subroutines.

(iii) Scope of variables.

The concepts to be emphasized are:

• How functions/subroutines help in solving

larger and complex problems.

• How the same code can be reused from

various points in a program.

• Parameter passing (pass by value/pass by

reference).

• Return values.

• Scope and visibility of variables.

• The examples done in Class IX can be used to

motivate the need for abstracting out and

capturing functionality used repeatedly in

multiple places. In each example, the

complexity of actually executing the function

should be analyzed - what happens in the

worst case and what happens on average.

Students should run the algorithms on

multiple instances of random data to convince

themselves that the analytical approach

matches what they observe.

Examples:

a) Use minimum and maximum functions of n

numbers to arrange n numbers in

ascending/descending order.

b) Use a search function for a given search

element from a given point to solve problems

like finding number of vowels in a sentence,

number of words in a sentence etc.

Those using object oriented program can

introduce classes and member functions at this

point.

(iv) Structured types, arrays as an example of a

structured type. Use of arrays in sorting and

searching. Two-dimensional arrays. Use of

two-dimensional arrays to represent matrices.

Matrix arithmetic using arrays. Use of arrays

to solve linear equations (Gauss elimination

method).

 62

The concepts involved are:

• How a large amount of data of the same

type can be stored and accessed by using

one variable name and a subscript.

• How complex problems can be solved

easily with the help of arrays. e.g.

 Frequency counts

 Selection sort

 Linear search

 Binary search

• School timetable and matrices can be used

to introduce two-dimensional arrays.

To begin with, some simple examples can be

used:

• Finding sum/difference of two matrices.

• Finding the sum of the elements of rows and

columns of a matrix.

(v) Review of input/output using standard input

and standard output from Class IX.

Input/output using sequential files. Opening,

closing files. Creating and deleting files.

Formatting output. Concept of a token and

separator. Extracting tokens from the input.

Only sequential file programs need to be done

in QBASIC. In C++ formatted data may be

written on to the streams. Programs for

creating files, reading them, updating them

and manipulating them should be done.

(vi) Characters, ASCII representation, strings as a

composite data type; functions on strings

(ex. length, substring, concatenate, equality,

accessing individual characters in a string,

inserting a string in another string at a given

location).

(vii)Simple type casting for primitive types;

inter-conversion between character/string

types and numeric types.

The students should understand why the

ASCII code is needed.

In QBASIC there are library functions for

inter conversion but in C++ simple

assignment from char to int and vice-versa

will do the job. Simple string and text

processing problems like: substring problems,

search problems in a text, frequency problems

in text can be used for motivation.

(viii)Distinction between compile time and run

time errors. Run time errors due to finite

representations - overflow, underflow. Other

run time errors.

Self-explanatory.

(ix) Basic ideas about linking, loading, execution.

 Self-explanatory.

4. Documentation of programs

Need for good documentation; good

documentation practices; standards and naming

conventions.

The teachers can show an undocumented program

and then the same program properly documented,

with good naming conventions. Experiments can

be done on how much time it takes for making

changes to the program (so that it does something

extra) and trying to understand the program.

5. Practical Work

Regular programming in labs. should supplement

every topic that is taught in the classroom. The

students will be expected to invent algorithmic

solutions expressed in C++ or Basic to solve

problems and then actually implement and run the

program to get answers.

The student will also be required to do a project

that involves significant programming effort.

Self-explanatory.

