
A Model
Curriculum

for K–12
Computer
Science:

A Model
Curriculum

for K–12
Computer
Science:

Final Report
of the

ACM K–12
Task Force
Curriculum
Committee

Second Edition

Realizing its commitment to K-12 education

 Computer
 Science
 Teachers
 Association

A Model Curriculum for K–12
Computer Science

Final Report of the
ACM K–12 Task Force Curriculum Committee

October 2003

Allen Tucker
Bowdoin College

Chair
ACM K-12 Task Force Curriculum Committee

Committee Members

Fadi Deek
New Jersey Institute of Technology

Jill Jones
Carl Hayden High School

Dennis McCowan
Weston Public Schools

Chris Stephenson
Executive Director

CSTA

Anita Verno
Bergen Community College

Computer Science Teachers Association
Association for Computing Machinery

2 Penn Plaza, Suite 701
New York, New York 10121-0071

Copyright ©2006 by the Association for Computing Machinery, Inc. (ACM). Permission
to make digital or hard copies of portions of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permission to republish from: Publications
Dept. ACM, Inc. Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page,
copying is permitted provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

ACM ISBN: # 59593-596-7
ACM Order Number: # 104063

Cost: $15.00

Additional copies may be ordered prepaid from:

ACM Order Department Phone: 1-800-342-6626
General Post Office (U.S.A. and Canada)
P.O. Box 30777 +1-212-626-0500
New York, NY 10087-0777 (All other countries)

Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

Acknowledgments

The design of this curriculum model has been

developed with feedback and advice from many

persons and groups. We would like to thank the

following persons and groups for their valuable

contributions and support for the development of this

model: Bob Aiken, Moti Ben Ari, Tim Bell, Suzanne

Buchelle, Craig Collins, Nancy Head, Peter Henderson,

Howard Kimmel, Joe Kmoch, Rich Lamb, NJECC

Teachers, Oregon CSTA Teachers, Nick Ourusoff,

Seymour Papert, Steve Seidman, Ron Tenison.

We would also like to thank Anne Condon, Dan Frost,

Mark Guzdial, Klaus Sutner, and Laurie Williams for

creating a new foreword to set this document in the

context of important considerations relating to why

and how computer science should be taught.

Since its release three years ago, the ACM Model

Curriculum for K-12 Computer Science has made a sig-

nificant contribution to computer science education,

providing a practical guideline for educators seeking to

ensure that students acquire the skills they need to suc-

ceed in an increasingly technology-imbued and globally

competitive world and informing the national discourse

about the nature of computer science education. To cele-

brate this second edition, we asked five scholars whose

thoughts and work are transforming how computer sci-

ence is taught to help set the context for this publication.

Education is a complicated undertaking, and edu-

cation in a fast-moving field like computer science

is particularly complicated. So many issues vie for

our immediate attention that sometimes it is diffi-

cult to find the time or energy to think about one

more thing. When Allen Tucker and the members

of the ACM K-12 Task Force wrote the ACM Model

Curriculum for K-12 Computer Science in 2003 it was

intended to provide a flexible model for teaching

computer science in K-12 that would outline the

core concepts and provide appropriate scaffolding

for each stage in the learning process.

The Model Curriculum has been widely read and

is influencing the computer science curriculum in

many U.S. states and Canadian provinces. We have

since realized, however, that there are other ques-

tions that need to be answered and stories that

need to be told. The many misconceptions about

computer science, its nature, and the opportunities

it provides, motivate us to share our insights about

why computer science is one of the most important

and relevant academic disciplines.

Computer science has an immense impact on

modern life. The job prospects are excellent and

the field is rigorous, intellectually vibrant, and

multi-faceted. Yet, computer science is in perpetu-

al danger of disappearing from schools. The

authors of this section have a wide variety of

experiences teaching computer science in the spir-

it of the Model Curriculum. We hope that in sharing

our experiences with you, we can help you to

understand and advocate for computer science as

an essential component of a well-rounded educa-

tion and a key factor in ensuring that our students

have the skills needed, not just to survive, but to

thrive in this increasingly technological and glob-

al economy.

It is not an exaggeration to say that our lives

depend upon computer systems and the people

who maintain them to keep us safe on the road

and in air, help physicians diagnose and treat

health care problems, and play a critical role in the

design of new drug therapies. A fundamental

understanding of computer science enables stu-

dents to be not just educated users of technology,

Foreword to the ACM Model Curriculum

Anne Condon, University of British Columbia

Dan Frost, University of California, Irvine

Mark Guzdial, Georgia Institute of Technology

Klaus Sutner, Carnegie Mellon University

Laurie Williams, North Carolina State University

I

but the innovators capable of using computers to

improve the quality of life for everyone.

We have observed that children of all ages love com-

puters. When given the opportunity, even young

students enjoy the sense of mastery and magic that

programming provides. Older students are drawn

to the combination of art, narrative, design, pro-

gramming, and sheer fun that comes from creating

their own virtual worlds. Blending computer sci-

ence with other interests also provides rich opportu-

nities for learning. Students with an interest in

music, for example, can learn about digital music

and audio, a field that integrates electronics; several

kinds of math; music theory; computer program-

ming; and a keen ear for what sounds beautiful,

harmonious, or just plain interesting.

We understand that many obstacles lie in the way

of the ideal of a K-12 computer science education

for all students. How will room be found in the

jam-packed curriculum? How will qualified

teachers be recruited, trained, and credentialed?

In the world of standards-centric evaluation of

schools, should computer science support existing

standards, or should new ones be designed for

computer science? These and other questions and

challenges are significant, but so are the benefits—

to students and to society—of computer science

becoming as much a part of a high-quality educa-

tion as biology or physics. The following sections

explore some of those benefits.

Computer Science is Important
Intellectually

The invention of the computer in the 20th century

is a “once in a millennium” event, comparable in

importance to the development of writing or the

printing press. Computers are fundamentally dif-

ferent from other technological inventions in the

past in that they directly augment human

thought, rather than, say, the functions of our

muscles or our senses. Computers have already

had enormous impact on the way we live, think,

and act. Yet it is hard to overestimate their impor-

tance in the future. In fact, many believe that the

true computer revolution will not happen until

everyone can understand the technology well

enough to use it in truly innovative ways.

So why is it important to study computer science?

We live in a digitized, computerized, programma-

ble world, and to make sense of it, we need com-

puter science. An engineer using a computer to

design a bridge must understand how the maxi-

mum capacity estimates were computed and how

reliable they are. An educated citizen using a vot-

ing machine or bidding in an eBay auction should

have a basic understanding of the underlying

algorithms of such conveniences, as well as the

security and privacy issues that arise when infor-

mation is transmitted and stored digitally.

Computer science students learn logical reason-

ing, algorithmic thinking, design and structured

problem solving—all concepts and skills that are

valuable well beyond the computer science class-

room. Students gain awareness of the resources

required to implement and deploy a solution and

how to deal with real-world constraints. These

skills are applicable in many contexts, from sci-

ence and engineering to the humanities and busi-

ness, and have already led to deeper understand-

ing in many areas. Computer simulations are

essential to the discovery and understanding of

the fundamental rules that govern a wide variety

of systems from how ants gather food to how

II

stock markets behave. Computer science is also

one of the leading disciplines helping us under-

stand how the human mind works, one of the

great intellectual questions of all time. There is

much exciting work that lies ahead of us.

Computer Science Leads to Multiple
Career Paths

The vast majority of careers in the 21st century will

require an understanding of computer science.

Many jobs that today’s students will have in 10 to

20 years haven’t been invented yet. Professionals in

every discipline—from art and entertainment, to

communications and health care, to factory work-

ers, small business owners, and retail store staff—

need to understand computing to be globally com-

petitive in their fields. Thomas Friedman, in his

best-selling book The World is Flat, (2006) argues

that our economy most needs “Versatilists,” people

who have expertise in some domain and in technol-

ogy. Computer science is the glue that makes it pos-

sible for these Versatilists to work together.

There is an unmistakable link between success,

innovation, and computer science. Movies like The

Incredibles and Lord of the Rings required the devel-

opment of new computing techniques. Progress

on understanding the genetics of disease or of cre-

ating an AIDS vaccine requires professionals to

think in terms of computer science—because the

problems are unsolvable without it. Those who

understand the technology can make the new

movies and invent the new techniques, and they

are the professionals who will go beyond simply

using what others have invented.

Studying computer science will prepare a student

to become a professional software developer or to

pursue a career in one of many related fields.

Despite the depressing reports in the media, the

reality is that professionals with computer science

training have never been more in demand in the

U.S. than they are today. Network managers need

computer science expertise to install new kinds of

routers. So do database designers who help peo-

ple represent their data in a form that the comput-

er can manipulate. Professional computer scien-

tists rarely spend their days writing program

code. More often they are working with experts in

many fields, designing and building computer

systems for every aspect of our society.

Computer Science Teaches Problem
Solving

Artists, philosophers, designers, and scientists in

all disciplines are united in the intensely creative

activity of problem solving. Every painting by

Picasso is an attempt to solve the problem of cap-

turing an active, three-dimensional world on a flat

canvas. Every TV commercial during the Super

Bowl is an attempt to solve the problem of how to

entice people to want, and then purchase, a prod-

uct. And every well-designed scientific experiment

provides data to support or refute a theory.

Computer science teaches students to think about

the problem-solving process itself. In computer

science, the first step in solving a problem is

always to state it clearly and unambiguously.

Often a computer scientist works closely with

business people, scientists, and other experts to

understand the issues, and to define the problem

so explicitly that it can be represented in a com-

puter. This co-operative process requires people

with different expertise and perspectives to work

together to clarify the problems while considering

III

each other’s priorities and constraints. A comput-

er expert helping to design a new computer sys-

tem for a medical office, for example, has to take

into account the current workflow, patient privacy

concerns, training needs for new staff, current and

upcoming technology, and of course, the budget

Once the problem is well defined, a solution must

be created. Computer hardware and peripheral

devices must be selected or built. Computer pro-

grams must be designed, written, and tested.

Existing software systems and packages may be

modified and integrated into the final system. In

all phases, the computer scientist thinks about

resources of computer time and space. Building a

system is a creative process that makes our lives

better! The process also requires scientific think-

ing. With each fix of a bug or addition of a new

feature, there’s a hypothesis that the problem has

been solved. Data is collected, results are ana-

lyzed, and if the hypothesis is untrue (alas, often!),

the cycle repeats.

A computer scientist is concerned with the robust-

ness, the user-friendliness, the maintainability,

and above all the correctness of computer solu-

tions to business, scientific, and engineering prob-

lems. These issues often require intense analysis

and creativity. How will the system respond if the

power goes out, or two nurses try to access the

same patient record simultaneously, or the insur-

ance company’s system is changed, or someone

enters unexpected data into the system?

Cooperation is again the key. The users and clients

have to think about how the system will be used

in day-to-day life and anticipate use in the future.

Computer specialists draw on their training and

experience to avoid problems and to create the

best possible solutions.

Computer Science Supports and Links
to Other Sciences

Progress in science has always been linked with

progress in technology and vice versa. For exam-

ple, bacteria were first discovered not by a biolo-

gist but rather by a Dutch merchant who refined

the art of making microscope lenses (and enjoyed

peering at plaque he scraped off his unbrushed

teeth). Nowadays, it’s typical for computer scien-

tists to work in other scientific disciplines. To

solve the big scientific problems of the 21st centu-

ry, such as grappling with new diseases and cli-

mate change, we will need people with diverse

skills, abilities, and perspectives. And although it

may seem surprising, computer science can also

help us learn what it really means to be human.

The sequencing of the human genome in 2001 was

a landmark achievement of molecular biology,

which would not have been possible without com-

puter scientists. After short DNA fragments of the

genome were sequenced in biology labs, comput-

ers were used to figure out how to piece the frag-

ments together. This knowledge is paving the way

for better computational methods of detecting and

curing diseases, such as cancer, because we under-

stand the genetic mutations involved.

It doesn’t take a neuroscientist to appreciate the

fact that the human brain is amazing. We know,

for example, that an infant can effortlessly recog-

nize a familiar face from many different view-

points, and yet, we have a very poor understand-

ing of the computational mechanisms that the

brain uses to solve such tasks. Inferring meaning

from images is a computational task, and comput-

er scientists and neuroscientists are working

together to figure out how to build computers that

IV

can process images and, ultimately, how we can bet-

ter understand intelligence itself.

The use of modeling and simulation, visualization,

and management of massive data sets has created a

new field—computational science. This field inte-

grates many aspects of computer science such as the

design of algorithms and graphics.

In science classes, students use sophisticated simula-

tion software to make molecules and geological

processes come to life. Writing computer programs

that model behavior allows scientists to generate

results and test theories that are impossible in the

physical world. Advances in weather prediction, for

example, are largely due to better computer modeling

and simulation. Computational methods have also

transformed fields such as statistics and mathematics.

Scientists who can understand and contribute to

technological innovation have a huge advantage.

Good training for future scientists must therefore

include a solid basis in computer science.

Computer Science Can Engage All Students

Computer science applies to virtually every aspect of

life, so computer science can be explicitly tied to the

myriad of student interests. Students may be fasci-

nated with specific technologies such as cell phones

or have an innate passion for visual design, digital

entertainment, or helping society. K-12 computer sci-

ence teaching should nurture students’ interests, pas-

sions, and sense of engagement with the world

around them and offer opportunities for them to find

purpose and meaning in their lives.

Pedagogically, computer programming has the same

relation to studying computer science as playing an

instrument does to studying music or painting does

to studying art. In each case, even a small amount of

hands-on experience adds immensely to life-long

appreciation and understanding, even if the student

does not continue programming, playing, or painting

as an adult. Although becoming an expert program-

mer, a violinist, or an oil painter demands much time

and talent, we still want to expose every student to

the joys of being creative. The goal for teaching com-

puter science should be to get as many students as

possible enthusiastically engaged with every assign-

ment. Instead of writing the same old mortgage cal-

culation program, have students design and write

programs that control their cell phones or robots, cre-

ate physics and biology simulations, or compose

music. Students will want to learn to use condition-

als, loops, and parameters and other fundamental

concepts just to make these exciting things happen.

In a fast-paced field such as computer science, we are

all challenged to keep up with our peers and our stu-

dents. Technology changes rapidly, and students are

more likely than teachers to be familiar with the lat-

est incarnations. No teacher should ever be ashamed

of learning from her or his students. Real learning

involves everyone in the room living with a sense of

wonder and anticipation.

We know that teaching computer science involves some

unique challenges and that none of us has all of the

answers. Here are just a few suggestions that we have

found helpful in our attempts to better interest, engage,

and motivate our university students. Not all of them

will be completely applicable to the high school class-

room, but we believe that they contain useful and var-

ied suggestions that may inspire both students and

teachers. (Please see the CSTA web repository at

http://csta.acm.org/Resources/sub/WebRepository.html

for a comprehensive collection of resources for teach-

V

ing and learning computer science that correspond

directly to the recommendations of the ACM

Model Curriculum for K-12 Computer Science.)

Computer Science and Digital Media
Mark Guzdial, Georgia Institute of
Technology
Manipulating and creating digital media is a con-

text that engages students and easily integrates

with computer science learning goals. Instead of

iterating over an array to compute an average, stu-

dents might write a program to iterate over an

array of pixels to compute a negative image or a

grayscale image. Students can learn that combin-

ing two arrays is the technique used to splice and

mix digital sounds. Linked lists are much more

exciting when the nodes contain music or pic-

tures, so that traversing the list plays a song or

generates a frame of an animation. Several schools

are now using this technique and are reporting

increased engagement and less attrition of stu-

dents in computer science classes. The key strate-

gy used here is finding a context that meshes with

students’ interests and motivations where even

simple programs result in tangible and fun results.

Similar contexts are robotics and story-telling with

digital media.

Pair Programming
Laurie Williams, North Carolina State
University
Pair programming refers to the practice whereby

two programmers work together at one computer,

collaborating on the same design, algorithm, code,

or test. The pair is made up of a driver, who

actively types at the computer or records a design;

and a navigator, who watches the work of the

driver and attentively identifies problems, asks

clarifying questions, and makes suggestions. Both

are also continuous brainstorming partners.

Throughout the world, many universities are

using pair programming in their computer science

classes—and a number of high schools have

begun using the practice as well. Generally, stu-

dents much prefer to collaborate than to work

alone. Between the two students, they can gener-

ally figure out most problems and can avoid

pesky syntax and semantic errors that can cost

many hours to debug. Perhaps during those

multi-hour debugging sessions (that are greatly

reduced with pair programming) some students

vow to never take another computer science

course! Educators who have used pair program-

ming report higher retention and student success

in the courses, higher enrollment in future com-

puter science courses, happier and less frustrated

students, and equal or higher grades on exams

and projects.

Computational Thinking
Klaus Sutner, Carnegie Mellon University
How does one prevent a computer from creating

many thousands of e-mail accounts that can be

used to send spam to millions of people? How can

one design an electronic auction system that fairly

represents the interests of all parties involved?

How can one accurately simulate a system con-

sisting of millions of objects evolving over billions

of steps? To deal with these problems, and many

more similar ones, requires a type of thinking

characteristic of computer science: computational

thinking. Computational thinking involves a clear

focus on tangible problems; a large collection of

proven techniques such as abstraction, decompo-

sition, iteration, and recursion; an understanding

of the capabilities of humans and machines alike;

and a keen awareness of the cost of it all.

Emphasis on computational thinking rather than

VI

just programming has greatly improved introduc-

tory courses and is starting to become a motivat-

ing principle in other parts of our curriculum.

Carnegie Mellon University offers a few newly

designed courses as part of its undergraduate cur-

riculum. The first, Principles of Computation, is

targeted at students with no prior background

who are interested in key principles rather than

programming. The second, Computational

Discrete Mathematics, presents topics in discrete

mathematics in an experimental and experiential

way by strongly emphasizing the computational

aspects of the material.

Computers and the Visual Arts:
Anne Condon, University of British
Columbia
In our Computers and Visual Arts module, we

describe how computer technology and graphic

arts have developed in parallel. We use standard

computer paint programs to illustrate how images

can be represented digitally. We describe the prin-

ciples underlying different file types (such as jpg

files). Using a standard programming language,

we then introduce algorithmic ways of represent-

ing geometric images, and introduce loops (as

well as if statements) as a way to create geometric

patterns. Finally, we introduce, using purely visu-

al methods, generative systems, which can be

used to represent complex images, such as plants,

and convey the concept of recursion to students.

Computers and Biology:
Anne Condon, University of British
Columbia
In our Computers and Biology module, we focus

on molecular biology, and the sequencing of the

human genome. Through a short introduction to

DNA, we explain how our genetic heritage is rep-

resented digitally in our genome. Then we intro-

duce the fragment assembly problem, which was

a central computational task in sequencing the

human genome. This problem is a nice vehicle for

introducing the fact that some computational

problems seem to have no efficient solution—a

deep insight of computer science. One current dis-

advantage of this approach is the lack of good

resource materials, but this is changing rapidly.

Lecture slides and lecture notes are available by

request from Anne Condon (condon@cs.ubc.ca).

VII

c o n t e n t s

Foreword ... I–VII

Executive Summary ... X–XI

1. Introduction ... 1

2. Background ... 2

2.1 Computer Science, Information Technology, and Fluency .. 2

2.2 Computer Science at the College/University Level .. 4

2.3 The Current Status of K–12 Computer Science .. 5

3. A Comprehensive Model Curriculum .. 6

3.1 Level I—Foundations of Computer Science ... 8

3.1.a Topics and Goals ... 8

3.1.b Grade-Level Breakdowns ... 9

3.2 Level II—Computer Science in the Modern World ... 11

3.2.a Topics and Goals ... 11

3.2.b Laboratory work: Algorithms, Programming, and Web Page Design 12

3.2.c Context and Constraints ... 13

3.3 Level III—Computer Science as Analysis and Design .. 13

3.3.a Topics and Goals ... 13

3.3.b Laboratory Work: Programming, Design, and Other Activities ... 14

3.3.c Context and Constraints ... 14

3.4 Level IV—Topics in Computer Science .. 14

3.4.a AP Computer Science .. 15

3.4.b Project-Based Courses .. 15

3.4.c Courses Leading to Industry Certification ... 17

4. Implementation Challenges .. 18

4.1 Teacher Preparation .. 18

4.2 State-Level Content Standards .. 21

4.3 Curriculum Development .. 21

4.4 Implementation and Sustainability ... 21

5. Conclusions ... 22

References .. 23

Appendices ... 24

A.1 Sample Activities for Level I: Foundations of Computer Science .. 24

A.2 Sample Activities for Level II: Computer Science in the Modern World ... 28

A.3 Sample Activities for Level III: Computer Science as Analysis and Design 33

A.4 Sample Activities for Level IV: Topics in Computer Science .. 36

A.5 Additional Resources for Level IV: Topics in Computer Science ... 37

A Model Curriculum for K–12
Computer Science

Final Report of the
ACM K–12 Task Force Curriculum Committee

October 2003

Allen Tucker (editor)—Bowdoin College

Fadi Deek—New Jersey Institute of Technology

Jill Jones—Carl Hayden High School

Dennis McCowan—Weston Public Schools

Chris Stephenson—Computer Science Teacher’s Association

Anita Verno—Bergen Community College

Executive Summary

This report proposes a model curriculum that can be used to integrate computer

science fluency and competency throughout primary and secondary schools,

both in the United States and throughout the world. It is written in response to

the pressing need to provide academic coherence to the rapid growth of

computing and technology in the modern world, alongside the need for an

educated public that can utilize that technology most effectively to the benefit

of humankind.

Computer science is an established discipline at the collegiate and post-graduate

levels. Oddly, the integration of computer science concepts into the K–12

curriculum has not kept pace in the United States. As a result, the general public

is not as well educated about computer science as it should be, and a serious

shortage of information technologists at all levels exists and may continue into

the foreseeable future. This curriculum model aims to help address these

problems. It provides a framework within which state departments of education

and school districts can revise their curricula to better address the need to

educate young people in this important subject area, and thus better prepare

them for effective citizenship in the 21st century.

X

XI

This curriculum model provides a four-level framework for computer science,

and contains roughly the equivalent of four half-year courses (many of these can

be taught as modules, integrated among existing science and mathematics

curriculum units). The first two levels suggest subject matter that ought to be

mastered by all students, while the second two suggest topics that can be elected

by students with special interest in computer science, whether they are college-

bound or not. The Appendix to this report provides “proof of concept” by

outlining existing courses and modules that are now being taught in different

school districts at each of the four levels.

These recommendations are not made in a vacuum. We understand the serious

constraints under which school districts are operating and the up-hill battle that

computer science faces in the light of other priorities, as well as time and budget

constraints. Thus, we conclude this report with a series of recommendations that

are intended to provide support for a long-term evolution of computer science

in K–12 schools. Many follow-up efforts will be needed to sustain the

momentum we hope this report will generate. Teacher training, curriculum

innovation, in-class testing, textbook and Web site development, and

dissemination are but a few of the challenges.

We hope this report will serve as a catalyst for widespread discussions and the

initiation of many pilot projects that can take the evolution of K–12 computer

science to the next level. We invite you to read the entire report, and then to take

part in this discussion in a way that mutually benefits both you and the K–12

education community. More information about ongoing activities that are

related to this effort can be found at: http://csta.acm.org/.

1. Introduction

The purpose of this report is to define a model

curriculum for K–12 computer science and to suggest

steps that will be needed to enable its wide

implementation. The goal of such a curriculum is to

introduce the principles and methodologies of

computer science to all students, whether they are

college bound or workplace bound.

Much evidence (National Research Council, 1999)

confirms an urgent need to improve the level of public

understanding of computer science as an academic and

professional field, including its distinctions from

management information systems (MIS), information

technology (IT), mathematics, and the other sciences.

Elementary and secondary schools have a unique

opportunity and responsibility to address this need.

That is, to function in society, the average citizen in the

21st century must understand at least the principles of

computer science. A broad commitment to K–12

computer science education not only will create such

broad public understanding but also will help to

address the worldwide shortage of computer specialists.

The creation of a viable model for a computer science

curriculum and its implementation at the K–12 level is a

necessary first step toward reaching these goals.

This report addresses the entire K–12 range. Its

recommendations are therefore not limited to grades

9–12. Moreover, it complements existing K–12

computer science and IT curricula where they are

already established, especially the advanced

placement (AP) computer science curriculum (AP,

2002) and the National Educational Technology

Standards (NETS) curriculum (ISTE, 2002).

At this time, the development of state-level curriculum

standards for computer science in the United States is

nearly nonexistent. Some state standards now identify

“information technology” as a subject area—either

stand-alone (e.g., Arizona’s use of the NETS standards)

or as a collection of topics integrated with other science

curricula (e.g., Maine’s “Learning Results” (State of

Maine, 1997). An important goal of this report will be

to provide all states with a comprehensive framework

that can be used for incorporating computer science

into their existing curriculum standards.

All drafts of this report have been informed by

feedback from many sources; we hope that this final

draft will receive widespread dissemination and

continued scrutiny from everyone who has interests or

experience in K–12 computer science education. To

that end, this report is published on the Computer

Science Teachers Association (CSTA) Web site

(http://csta.acm.org/Curriculum/sub/ACMK12CSModel.

html) as well as in hardcopy. Feedback has been actively

sought from the following professional organizations:

• Academy of Information Technology/National

Academy Foundation (AOIT/NAT)

• Association for Computing Machinery (ACM)

Special Interest Group for Computer Science

Education (SIGCSE)

• ACM Education Board

• Association for Supervision and Curriculum

Development (ASCD) Curriculum Directors in

school districts

• Institute of Electrical and Electronics Engineers

(IEEE) Computer Society Educational

Activities Board

• International Society for Technology in

Education (ISTE) Special Interest Group for

Computer Science (SIGCS)

• National Association of Secondary School

Principals (NASSP)

• National Education Association (NEA)

• National School Boards Association (NSBA)

In addition, presentations of this report at ISTE’s

National Educational Computing Conference (NECC)

and ACM’s SIGCSE Symposia have provided valuable

opportunities for dissemination and feedback.

1

A Model Curriculum for K–12 Computer Science

We recognize that many of the recommendations in

this report are so ambitious as to be beyond the reach

of most school districts at the present time. However,

rather than do nothing, we offer this work as a

comprehensive and coherent model, one that can be

used as the basis for beginning a dialogue—an ideal

toward which many districts can evolve over time.

This report thus provides a catalyst for a long-term

process—it defines the “what” from which the

“how” can follow during the next several years.

2. Background

As a basis for describing a model curriculum for

K–12 computer science, we use the following

definition of computer science as an academic and

professional field.

Computer science (CS) is the study of computers

and algorithmic processes1, including their

principles, their hardware and software designs,

their applications, and their impact on society.

In our view, this definition requires that K–12

computer science curricula have the following kinds

of elements: programming, hardware design,

networks, graphics, databases and information

retrieval, computer security, software design,

programming languages, logic, programming

paradigms, translation between levels of abstraction,

artificial intelligence, the limits of computation (what

computers can’t do), applications in information

technology and information systems, and social issues

(Internet security, privacy, intellectual property, etc.).

Typically, K–12 science and mathematics curricula do

not cover any significant amount of these topics, nor

do they identify what they do cover as elements of

computer science. However, some of the emerging

K–12 information technology curricula are

addressing some of them, especially the applications

and social impact of computers. However, there is

strong evidence (National Research Council, 1999)

that a basic understanding of all these topics is now

an essential component for preparing high school

graduates for life in the 21st century.

The goals of a K–12 computer science curriculum

are to:

1. introduce the fundamental concepts of

computer science to all students, beginning

at the elementary school level.

2. present computer science at the secondary

school level in a way that would be both

accessible and worthy of a curriculum credit

(e.g., math or science).

3. offer additional secondary-level computer

science courses that will allow interested

students to study it in depth and prepare

them for entry into the work force or college.

4. increase the knowledge of computer science

for all students, especially those who are

members of underrepresented groups.

Before discussing the model curriculum itself, we

first clarify the context in which it is set. Here, we

would especially like to clarify the distinctions

between computer science and information

technology, and to summarize the nature of CS at the

college and university level.

2.1 Computer Science, Information
Technology, and Fluency

Information technology (IT) involves the proper use of

technologies by which people manipulate and share

information in its various forms—text, graphics,

sound, and video. While computer science and IT

have a lot in common, neither one is fully

2

1 An algorithm is a precise, step-by-step description of a solution
to a problem. Programming is used to implement algorithms on
computers. While programming is a central activity in computer
science, it is only a tool that provides a window into a much rich-
er academic and professional field. That is, programming is to the
study of computer science as literacy is to the study of literature.

substitutable for the other. Similarly, software

engineering (SE) is the practice of designing and

implementing large software systems (programs).

While computer science and SE have a lot in

common, neither one of these is fully substitutable

for the other.

A recent National Academy study (National

Research Council, 1999) defines an idea called IT

fluency as something more comprehensive than IT

literacy. Whereas IT literacy is the capability to use

today’s technology in one’s own field, the notion of IT

fluency adds the capability to independently learn

and use new technology as it evolves (National

Research Council, 1999) throughout one’s

professional lifetime. Moreover, IT fluency also

includes the active use of algorithmic thinking

(including programming) to solve problems,

whereas IT literacy is more limited in scope.

Thus, the field of computer science sits in a continuum.

Some of its topics overlap with IT, while some are

completely different and are not relevant to an IT

curriculum. For example, the complexity of algorithms

is a fundamental idea in computer science but would

probably not appear in an IT curriculum. While IT is an

applied field of study, driven by the practical benefits

of its knowledge, computer science has scientific and

mathematical, as well as practical, dimensions. Some

of the practical dimensions of computer science are

shared with IT, such as working with text, graphics,

sound, and video. But while IT concentrates on

learning how to use and apply software as a tool,

computer science is concerned with learning how these

tools are designed. This latter concern exposes

students to the scientific and mathematical theory that

underlies the practice of computing. Therefore, any

comprehensive K-12 computer science curriculum will

necessarily have topics that are distinct from those that

normally appear in an IT curriculum.

The idea of IT fluency (National Research Council,

1999) was proposed as a minimum standard that all

college students should achieve by the time they

graduate. A “fluent” graduate would master IT on

three orthogonal axes—concepts, capabilities, and skills.

Concepts are the 10 basic ideas that underlie modern

computers, networks, and information:

Computer organization, information systems,

networks, digital representation of information,

information organization, modeling and

abstraction, algorithmic thinking and

programming, universality, limitations of

information technology, and societal impact of

information technology.

Capabilities are the 10 fundamental abilities for using

IT to solve a problem:

Engage in sustained reasoning, manage

complexity, test a solution, manage faulty

systems and software, organize and navigate

information structures and evaluate information,

collaborate, communicate to other audiences,

expect the unexpected, anticipate changing

technologies, and think abstractly about IT.

Skills are the 10 abilities to use today’s computer

applications in one’s own work:

Set up a personal computer, use basic operating

system features, use a word processor and

create a document, use a graphics or artwork

package to create illustrations, slides, and

images, connect a computer to a network, use

the Internet to find information and resources,

use a computer to communicate with others,

use a spreadsheet to model simple processes or

financial tables, use a database system to set

up and access information, and use

instructional materials to learn about new

applications or features.

Many colleges and universities (e.g., see National

Research Council, 1999) have implemented these or

similar standards and are expecting their graduates

to achieve them.

3

2.2 Computer Science at the
College/University Level

Computer science is well developed at the college

and university level. In the United States alone,

nearly every undergraduate college offers a major in

computer science, and more than 100 universities

offer PhD programs in computer science. Together,

these programs produce about 45,000 baccalaureate

and 850 PhD degrees each year (Taulbee, 2002).

The current model for college computer science

major programs was published in 2001 (ACM/

IEEE, 2001). This model identifies the following

“core” subjects in 13 distinct areas that all computer

science major programs should cover. Altogether,

this material covers the equivalent of seven (7)

one-semester courses, or 280 lecture hours (total

lecture hours for each subject area are given in

parentheses).

• Algorithms and Complexity (31): analysis of

algorithms, divide-and-conquer strategies,

graph algorithms, distributed algorithms,

computability theory

• Architecture (36): digital logic, digital systems,

data representation, machine language,

memory systems, I/O and communications,

CPU design, networks, distributed computing

• Discrete Structures (43): functions, sets,

relations, logic, proof, counting, graphs and

trees

• Graphics and Visual Computing (3): fundamental

techniques, modeling, rendering, animation,

virtual reality, vision

• Human-Computer Interaction (HCI) (8):

principles of HCI, building a graphical user

interface (GUI), HCI aspects of multimedia,

and collaboration

• Information Management (10): database systems,

data modeling and the relational model, query

languages, data mining, hypertext and

hypermedia, digital libraries

• Intelligent Systems (10): fundamental issues,

search and optimization, knowledge

representation, agents, natural language

processing, machine learning, planning,

robotics

• Net-centric Computing (15): Introduction to Net-

centric computing, the Web as a client-server

example, network security, data compression,

multimedia, mobile computing

• Operating Systems (18): concurrency,

scheduling and dispatch, virtual memory,

device management, security and protection,

file systems, embedded systems, fault

tolerance

• Programming Fundamentals (38): algorithms

and problem-solving, fundamental data

structures, recursion, event-driven

programming

• Programming Languages (21): history and

overview, virtual machines, language

translation, type systems, abstraction, object-

oriented (OO) programming, functional

programming, translation

• Social and Professional Issues (16): ethical

responsibilities, risks and liabilities,

intellectual property, privacy, civil liberties,

crime, economics, impact of the Internet

• Software Engineering (31): metrics,

requirements, specifications, design,

validation, tools, management

Undergraduate computer science programs also

provide students with regular access to well-

equipped computer laboratories and networks, since

laboratory work is an essential component of the

curriculum.

When computer science majors finish college, they

are expected to have a number of capabilities. Some

programs prepare graduates for advanced study,

while others (the majority) prepare them for entry

into the work force. For workforce entry, a graduate

should (ACM/IEEE, 2001):

4

1. Understand the essential facts, concepts,

principles, and theories relating to computer

science and software applications.

2. Use this understanding to design computer-

based systems and make effective tradeoffs

among design choices.

3. Identify and analyze requirements for

computational problems and design effective

specifications.

4. Implement (program) computer-based systems.

5. Test and evaluate the extent to which a

system fulfills its requirements.

6. Use appropriate theory, practice, and tools

for system specification, design,

implementation, and evaluation.

7. Understand the social, professional, and

ethical issues involved in the use of

computer technology.

8. Apply the principles of effective information

management and retrieval to text, image,

sound, and video information.

9. Apply the principles of human-computer

interaction to the design of user interfaces,

Web pages, and multimedia systems.

10. Identify risks or safety aspects that may be

involved in the operation of computing

equipment within a given context.

11. Operate computing equipment and software

systems effectively.

12. Make effective verbal and written

presentations to a range of audiences.

13. Be able to work effectively as a member of a

team.

14. Understand and explain the quantitative

dimensions of a problem.

15. Manage one’s own time and develop

effective organizational skills.

16. Keep abreast of current developments and

continue with long-term professional growth.

The presence of a K–12 computer science program

should allow pre-college students to begin

developing these capabilities and skills.

2.3 The Current Status of K–12
Computer Science

Computer science has never been widely taught at

the K–12 level in the United States. To help address

this problem, the ACM Model High School

Curriculum (ACM, 1993) was developed in 1993.

This is a one-year course that covers core subjects,

applications, and related topics.

The core topic selection in the 1993 model was

motivated by an earlier, and now dated, college

curriculum model. That model included the study of

algorithms, programming languages, operating

systems and user support, computer architecture,

and the social and ethical context of computing. Its

applications included CAD/CAM, speech, music,

art, database, e-mail, multimedia and graphics,

spreadsheets, word processing, and desktop

publishing. Its electives included topics such as AI

(expert systems, games, robotics), computational

science, simulation and virtual reality, and software

engineering.

For a variety of reasons, the ACM model curriculum

was not widely implemented in secondary schools.

One strong reason is that, since 1993, enormous

changes have occurred in computer science itself,

many of which were spurred by the emergence of

the World Wide Web. These changes have worked

to accelerate the datedness of the core topics in the

1993 model.

A more recent curriculum model, developed by a

New Jersey Teachers’ Conference (Deek, 1999), aimed

to provide a state-level standard for computer science

that could be taught in all school districts. The core

topics for that curriculum include algorithms,

programming, applications, information systems,

communications, and technology. This curriculum is

designed for use in grades 9, 10, and 12, in a way that

complements the AP computer science curriculum

(offered in the grade 11). The grade 9 course provides

5

an introduction to programming and problem

solving, the Internet, information, communication,

hardware, social impact and ethics; the grade 10

course emphasizes programming and applications.

At grade 12, a “topics” course provides an

opportunity to offer interesting subjects like robotics,

simulations, and animation.

In spite of these efforts, a survey conducted in 2002

(http://csta.acm.org/Research/sub/CSTAResearch-2.html)

confirms that neither the 1993 ACM model nor any

other model has achieved widespread recognition or

implementation in the United States. Seventy

respondents, representing 27 states and three foreign

countries, provided the following information.

Only 12 out of the 70 respondents replied that they

have a state-mandated computer science curriculum

at the high school level. However, the nature of that

curriculum varied from state to state. The most

extensive one identifies a separate computer science

course at each grade level (9–12), while the most

modest one designated “Introduction to the

Computer” and “Internet Use of the Computer” as

the only two state-mandated courses (at grades 9 and

10). So, even for states that offer any computer science

courses, there is much divergence in the number and

content of these courses. Where they are offered,

computer science courses also seem to be available

only as electives (only one out of the 70 respondents

indicated that computer science was mandatory).

As for teacher preparation and certification, 27 of the

70 respondents replied that their state requires no

computer science certification to teach computer

science courses. A different source notes that

secondary computer science courses are usually

taught by faculty certified to teach mathematics

(Deek, 1999).

The development of K–12 computer science is

making more headway internationally than in the

United States.

In Israel, a secondary school computer science

curriculum (Gal-Ezer & Harel, 1999) was approved by

the Ministry of Higher Education and implemented in

1998. It blends conceptual and applied topics, and is

offered in grades 10, 11, and 12. All students in grade

10 are required to take a half-year course in the

foundations of computer science. This is followed by

11⁄2 or 21⁄2 years of electives taught at grades 11 and 12.

These electives have a particularly heavy emphasis on

the foundations of algorithms.

In Canada, a comprehensive curriculum was recently

implemented for all secondary schools in Ontario

(Stephenson, 2002). It provides two alternative

tracks, one emphasizing computer science and the

other emphasizing computer engineering. All

courses balance foundational knowledge with skills

acquisition, and they prescribe outcomes at each

level. At grade 9, a full-year “integrated

technologies” course is available to all students. This

is followed by three parallel three-year tracks—one

in computer and information science and two in

computer engineering.

In many other parts of the world, including Europe,

Russia, Asia, South Africa, New Zealand, and

Australia, computer science is being established in

the K–12 curriculum. Thus, we feel a certain sense of

urgency about the establishment of computer science

in the United States—this nation’s educated

workforce should remain competitive with that of

other nations in its level of understanding about

computer science in the modern world.

3. A Comprehensive Model
Curriculum

Building on the lessons of the past and the needs of

the present and the future, we propose a four-level

model curriculum for K–12 computer science that

focuses on fundamental concepts and has the

following general goals:

6

K–8 Level I—Foundations of
Computer Science

9 or 10 Level II—Computer Science
In the Modern World

10 or 11 Level III—Computer Science
as Analysis and Design

11 or 12 Level IV—Topics in
Computer Science

1. The curriculum should prepare students to

understand the nature of computer science

and its place in the modern world.

2. Students should understand that computer

science interleaves principles and skills.

3. Students should be able to use computer

science skills (especially algorithmic

thinking) in their problem-solving activities

in other subjects. One simple example is the

use of logic for understanding the semantics

of English in a language arts class. There are

many others.

4. The computer science curriculum should

complement IT and AP computer science

curricula in any schools where they are

currently offered.

If a K–12 computer science curriculum is widely

implemented and these goals are met, high school

graduates will be prepared to be knowledgeable

users and critics of computers, as well as designers

and builders of computing applications that will

affect every aspect of life in the 21st century.

The overall structure of this model is shown in Figure

1. As this figure suggests, our model has four

different levels, whose goals and content are

introduced below.

Level I (recommended for grades K–8) should

provide elementary school students with

foundational concepts in computer science by

integrating basic skills in technology with simple

ideas about algorithmic thinking. This can be best

accomplished by adding short modules to existing

science, mathematics, and social studies units. A

combination of the NETS (ISTE, 2002) standards and

an introduction to algorithmic thinking (as offered,

for instance, by Logo (Papert, 1980) or other hands-

on experiences (Bell, 2002) would ensure that

students meet this goal.

Students at Level II (recommended for grade 9 or 10)

should acquire a coherent and broad understanding

of the principles, methodologies, and applications of

computer science in the modern world. This can best

be offered as a one-year course accessible to all

7

Recommended Grade Level

Figure 1. Structure of a K–12 Computer Science Curriculum

students, whether they are college-bound or

workplace-bound. Since, for most students, this Level

II course will be their last encounter with computer

science, it should be considered essential preparation

for the modern world.

Students who wish to study more computer science

may elect the Level III (recommended for grade 10 or

11) course, a one-year elective that would earn a cur-

riculum credit (e.g. math or science). This course con-

tinues the study begun at Level II, but it places par-

ticular emphasis on the scientific and engineering

aspects of computer science—mathematical princi-

ples, algorithmic problem-solving and program-

ming, software and hardware design, networks, and

social impact. Students will elect this course to

explore their interest and aptitude for computer sci-

ence as a profession.

Finally, the Level IV (recommended for grade 11 or

12) offering is an elective that provides depth of

study in one particular area of computer science. This

may be, for example, an AP computer science (AP,

2002) course, which offers depth of study in

programming and data structures. Alternatively, this

offering may be a projects-based course in

multimedia design or a vendor-supplied course that

leads to professional certification. Any Level IV

course will naturally require the Level II course as a

prerequisite, and some will require the Level III

course as well.

The following subsections provide more detailed

discussions of the topics and courses that can be

offered at each of these four levels.

3.1 Level I—Foundations of Computer
Science

Because the foundations of computer science have a

major information technology component, it is

important here to reaffirm the need for technology

support in the K–12 classroom.2 Successful

integration of technology to support learning goals

depends upon several factors:

• vision and leadership for successful

implementation and long-term success,

• access to physical resources (hardware and

software),

• physical arrangement of those resources in

accessible learning spaces,

• time and incentives to support classroom-

relevant professional development

opportunities for educators,

• time for planning effective integration into

new and existing curricula,

• time for reviewing and evaluating new

technologies and resources, and

• ongoing financial support for a sustained

technology infrastructure.

It also depends upon a clear vision of what

expectations are necessary and appropriate at every

level. In this document we explore a number of

different levels of computer science education

throughout the K–12 years. It is clear to us that

whatever is achieved in high school depends upon

the effectiveness of student access to technology and

achievement of computer-related learning mile-

stones at the elementary level. So if elementary

schools provide students with these first building

blocks of computer fluency, secondary schools will

be able to implement more comprehensive computer

science programs themselves.

3.1.a. Topics and Goals
The National Educational Technology Standards

(NETS) (ISTE, 2002) provide an excellent starting

place for defining requirements for elementary

student preparedness in computer science.3

8

2 Too frequently, new and complex expectations are put on class-
room teachers without a realistic consideration of the resources
available to teachers to achieve these expectations. Often, there is
an assumption that technology itself is the panacea, and so, little
consideration is given to preparing teachers to use the technology
effectively and in support of their own teaching and learning goals.

To live and work successfully in an increasingly

information-rich society, K–8 students must learn to

use computers effectively and incorporate the idea of

algorithmic thinking into their daily problem-solving

vocabulary. To ensure these outcomes, schools must

provide computing tools that enable students to

solve problems and communicate using a variety of

media; to access and exchange information; compile,

organize, analyze, and synthesize information; draw

conclusions and make generalizations from

information gathered; understand what they read

and locate additional information as needed; become

self-directed learners; collaborate and cooperate in

team efforts; analyze a problem and develop an

algorithmic solution; and interact with others using

computers in ethical and appropriate ways.

Except in the context of mathematics education, this

particular topic area is not a conventional part of the

K–8 curriculum. That is, the concept of algorithm is

used only to teach students the steps of arithmetic

(addition, multiplication) and other basic mathe-

matical ideas. However, the notion of algorithm

affects students in a much richer array of problem-

solving situations that they encounter in their lives.

In its simplest form, an algorithm is a method for

solving a problem in a step-by-step manner. So

children learn about algorithmic problem solving

whenever they discover a collection of steps that can

be carried out to accomplish a task. These steps

should accommodate unusual contingencies (using

conditional, or “if” statements) and repetitions

(using loops, or “while” statements). Viewed in this

way, algorithmic thinking is not simply a means to

help children understand mathematical concepts—it

has a much richer range of uses. Here are a few

example problems that illustrate this point and

would be appropriate at the K–8 level.

Give a complete algorithmic definition for:

1. finding your way out of a maze (Turtle

graphics, robotics)

2. a dog retrieving a thrown ball

3. baking cookies

4. going home from school

5. making a sand castle

6. arranging a list of words in alphabetical

order.

Thus, we agree with teachers who believe that

students at this age ought to begin thinking

algorithmically as a general problem-solving

strategy. What children do, not what they see, may

have the greatest impact on learning at the K–8 level.

Thus, it makes sense to develop more teaching

strategies that encourage students to engage in the

process of visualizing an algorithm. Seymour

Papert’s pioneering experiments in the 1980s

corroborate this belief, and his seminal work

Mindstorms and related curricula (Papert, 1980)

provide many more examples of how K–8 students

can be engaged in algorithmic thinking. Additional

examples of computer science topics appropriate for

the K–8 level are included in the next section.

3.1.b. Grade-Level Breakdowns
To ensure that students achieve these goals, we

paraphrase here the NETS model (ISTE, 2002), which

identifies different sets of outcomes for three

different groups of students: grades K–2, grades 3–5,

and grades 6–8. We have augmented that model by

adding outcomes that engage students with

algorithmic thinking and other foundational

elements of computer science.

Grades K–2: Upon completion of grade 2, students will:

1. Use standard input and output devices to

successfully operate computers and related

technologies.

2. Use a computer for both directed and

independent learning activities.

3. Communicate about technology using

9

3 These standards were originally developed by the International
Society for Technology in Education (ISTE) as part of an ongoing
effort to enable stakeholders in Pre-K–12 education to develop
national standards for educational uses of technology.

developmentally appropriate and accurate

terminology.

4. Use developmentally appropriate

multimedia resources (e.g., interactive books,

educational software, elementary multimedia

encyclopedias) to support learning.

5. Work cooperatively and collaboratively with

peers, teachers, and others when using

technology.

6. Demonstrate positive social and ethical

behaviors when using technology.

7. Practice responsible use of technology

systems and software.

8. Create developmentally appropriate multi-

media products with support from teachers,

family members, or student partners.

9. Use technology resources (e.g., puzzles,

logical thinking programs, writing tools,

digital cameras, drawing tools) for problem

solving, communication, and illustration of

thoughts, ideas, and stories.

10. Gather information and communicate with

others using telecommunications, with

support from teachers, family members, or

student partners.

11. Understand how 0s and 1s can be used to

represent information, such as digital images

and numbers.

12. Understand how to arrange (sort)

information into useful order, such as a

telephone directory, without using a

computer (see Appendix for examples).

Grades 3–5: Upon completion of grade 5, students will:

1. Be comfortable using keyboards and other

input and output devices, and reach an

appropriate level of proficiency using the

keyboard with correct fingering.

2. Discuss common uses of technology in daily

life and the advantages and disadvantages

those uses provide.

3. Discuss basic issues related to responsible

use of technology and information, and

describe personal consequences of

inappropriate use.

4. Use general-purpose productivity tools and

peripherals to support personal productivity,

remediate skill deficits, and facilitate learning

throughout the curriculum.

5. Use technology tools (e.g., multimedia

authoring, presentation, Web tools, digital

cameras, scanners) for individual and

collaborative writing, communication, and

publishing activities to create presentations for

audiences inside and outside the classroom.

6. Use telecommunications efficiently to access

remote information, communicate with

others in support of direct and independent

learning, and pursue personal interests.

7. Use online resources (e.g., e-mail, online

discussions, Web environments) to

participate in collaborative problem-solving

activities for the purpose of developing

solutions or products for audiences inside

and outside the classroom.

8. Use technology resources (e.g., calculators,

data collection probes, videos, educational

software) for problem-solving, self-directed

learning, and extended learning activities.

9. Determine which technology is useful and

select the appropriate tool(s) and technology

resources to address a variety of tasks and

problems.

10. Evaluate the accuracy, relevance, appropri-

ateness, comprehensiveness, and bias that

occur in electronic information sources.

11. Develop a simple understanding of an

algorithm, such as text compression, search,

or network routing, using computer-free

exercises (see Appendix for examples).

Grades 6–8: Upon completion of grade 8, students will:

1. Apply strategies for identifying and solving

routine hardware and software problems that

occur during everyday use.

2. Demonstrate knowledge of current changes

10

in information technologies and the effects

those changes have on the workplace and

society.

3. Exhibit legal and ethical behaviors when

using information and technology and

discuss consequences of misuse.

4. Use content-specific tools, software, and

simulations (e.g., environmental probes,

graphing calculators, exploratory

environments, Web tools) to support learning

and research.

5. Apply productivity/multimedia tools and

peripherals to support personal productivity,

group collaboration, and learning throughout

the curriculum.

6. Design, develop, publish, and present

products (e.g., Web pages, videotapes) using

technology resources that demonstrate and

communicate curriculum concepts to

audiences inside and outside the classroom.

7. Collaborate with peers, experts, and others

using telecommunications tools to

investigate educational problems, issues, and

information, and to develop solutions for

audiences inside and outside the classroom.

8. Select appropriate tools and technology

resources to accomplish a variety of tasks

and solve problems.

9. Demonstrate an understanding of concepts

underlying hardware, software, algorithms,

and their practical applications.

10. Discover and evaluate the accuracy,

relevance, appropriateness,

comprehensiveness, and bias of electronic

information sources concerning real-world

problems.

11. Understand the graph as a tool for

representing problem states and solutions to

complex problems (see Appendix for

examples).

12. Understand the fundamental ideas of logic

and its usefulness for solving real-world

problems (see Appendix for examples).

3.2 Level II—Computer Science in the
Modern World

This is a one-year course (or the equivalent) that

would be accessible to all students, whether they are

college-bound or workplace-bound. The goal of this

course is to provide all students with an introduction

to the principles of computer science and its place in

the modern world. This course should also help

students to use computers effectively in their lives,

thus providing a foundation for successfully

integrating their own interests and careers with the

resources of a technological society.

In this course, high school students can acquire a

fundamental understanding of the operation of

computers and computer networks and create useful

programs implementing simple algorithms. By

developing Web pages that include images, sound,

and text, they can acquire a working understanding of

the Internet, common formats for data transmission,

and some insights into the design of the human-

computer interface. Exposure to career possibilities

and discussion of ethical issues relating to computers

should also be important threads in this course.

Prior to this course, students should have gained

experience using computers, as would normally

occur at Level I. They should have used, modified,

and created files for a variety of purposes, accessed

the Internet and databases for both research and

communication, and used other tools such as

spreadsheets and graphics. Finally, they should have

been introduced to the basic idea of algorithmic

thinking and its uses in their daily lives.

3.2.a. Topics and Goals
A major outcome of this course (or its equivalent) is to

provide students with general knowledge about

computer hardware, software, languages, networks,

and their impact in the modern world.4 That is, since

most students at Level II will eventually encounter

computers and networks as users, the overarching aim

11

here is to prepare students to master computer science

concepts from the user’s point of view rather than from

the designer’s. For instance, the idea that a robot needs

a method of acquiring sensory data from its

environment draws attention to the general notion of

an “input device” beyond the standard keyboard and

mouse. Teaching students about various input devices

currently in use should help demystify the general idea

of input, and prepare students to be comfortable using

devices with which they are not yet familiar.

Students should gain a conceptual understanding of

the following topics in computer science:

1. Principles of computer organization and the

major components (input, output, memory,

storage, processing, software, operating

system, etc.)

2. The basic steps in algorithmic problem-

solving (problem statement and exploration,

examination of sample instances, design,

program coding, testing and verification)

3. The basic components of computer networks

(servers, file protection, routing protocols for

connection/communication, spoolers and

queues, shared resources, and fault-tolerance).

4. Organization of Internet elements, Web page

design (forms, text, graphics, client- and

server-side scripts), and hypermedia (links,

navigation, search engines and strategies,

interpretation, and evaluation).

5. The notion of hierarchy and abstraction in

computing, including high-level languages,

translation (compilers, interpreters, linking),

machine languages, instruction sets, and

logic circuits.

6. The connection between elements of

mathematics and computer science,

including binary numbers, logic, sets, and

functions.

7. The notion of computers as models of

intelligent behavior (as found in robot

motion, speech and language understanding,

and computer vision), and what

distinguishes humans from machines.

8. Examples (like programming a telephone

answering system) that identify the broad

interdisciplinary utility of computers and algo-

rithmic problem solving in the modern world.

9. Ethical issues that relate to computers and

networks (including security, privacy,

intellectual property, the benefits and

drawbacks of public domain software, and

the reliability of information on the Internet),

and the positive and negative impact of

technology on human culture.

10. Identification of different careers in

computing and their connection with the

subjects studied in this course (e.g.,

information technology specialist, Web page

designer, systems analyst, programmer, CIO).

3.2.b. Laboratory Work: Algorithms,
Programming, and Web Page Design

Students in this course should gain experience

designing algorithms and programming solutions to

a variety of computational problems. While the

choice of programming language and environment is

up to the instructor, the algorithmic design and

programming component of the course should

include the following:

• Variables, data types, and the representation of

data in computers

• Managing complexity through top-down and

object-oriented design

• Procedures and parameters

• Sequences, conditionals, and loops (iteration)

• Tools for expressing design (flowcharts,

pseudocode, UML, N-S charts)

The Web page design component of this course

should cover the following ideas:

12

4 Coincidentally, students will acquire proficiency with a current
computer model and programming language, but that is not the
main goal of this course.

• The use of hypertext links to load new pages

or activate processes

• Storing, compressing, encrypting, and

retrieving image, video, and sound data

• User interface design

• Tools for expressing design (storyboard, site

map)

3.2.c. Context and Constraints
Each school system has its own constraints with

regard to student scheduling, availability of

knowledgeable staff, and computer resources. Some

schools may choose to begin by implementing an

elective course that covers only a subset of the above

concepts. We believe that, while such initial steps are

valuable, they must nonetheless be identified as first

steps toward the ultimate goal of a full course

required of all students for graduation.

Finally, it is important to distinguish the goals and

themes of this course from those of information

technology, especially those that comprise the notion of

IT fluency (see section 2.1). This course provides the first

opportunity to view computer science as a coherent

field of study and professional engagement. That is,

while IT fluency focuses on technological skills and their

uses in other academic subjects, this course is a study of

computer science as an academic subject per se.

Several example activities that can be used to teach

this course are shown in the Appendix.

3.3 Level III—Computer Science as
Analysis and Design

This is a one-year course (or the equivalent) that

should earn curriculum credit (e.g., science or math).

The goal of this course is to continue the study of

computer science, placing particular emphasis on its

features as a scientific and engineering discipline.

In this course, high school students can go beyond a

fundamental understanding of the operation of

computers and explore more complex and interesting

topics of computer science. This course also helps

students improve their problem-solving and

programming skills in preparation for the Advanced

Placement A course. As in higher level math and

science curricula, students will be able to see the

connection between the fundamentals they have

learned in Levels I and II to integrate programming

and design with complex “real world” projects.

3.3.a. Topics and Goals
The major goal of this course is for students to

develop the computer science skills of algorithm

development, problem solving, and programming

while using software engineering principles. While

the emphasis of the course will be on programming,

students will also be introduced to other important

topics, such as interface design, the limits of

computers, and societal and ethical issues of

software engineering.

By the end of this course, students should understand

or have a working knowledge of these topics:

1. Fundamental ideas about the process of

program design and problem solving,

including style, abstraction, and initial

discussions of correctness and efficiency as

part of the software design process.

2. Simple data structures and their uses

3. Topics in discrete mathematics: logic, functions,

sets, and their relation to computer science

4. Design for usability: Web page design,

interactive games, documentation

5. Fundamentals of hardware design

6. Levels of language, software, and translation:

characteristics of compilers, operating

systems, and networks

7. The limits of computing: what is a computa-

tionally “hard” problem? (e.g., ocean

modeling, air traffic control, gene mapping)

and what kinds of problems are computa-

tionally unsolvable (e.g., the halting problem)

13

8. Principles of software engineering: software

projects, teams, the software life cycle

9. Social issues: software as intellectual

property, professional practice

10. Careers in computing: computer scientist,

computer engineer, software engineer,

information technologist

3.3.b. Laboratory Work: Programming,
Design, and Other Activities

Students in this course should gain experience

designing algorithms and programming solutions to

a variety of computational problems. While the

choice of programming language and environment is

up to the instructor, the programming component of

the course should include the following:

• Methods (functions) and parameters

• Recursion

• Objects and classes (arrays, vectors, stacks,

queues, and their uses in problem-solving)

• Graphics programming

• Event-driven and interactive programming

Hardware and software engineering has several

topics that can be introduced during this course and

included among its programming projects:

• Hardware and systems: logic, gates and

circuits, binary arithmetic, machine and

assembly language, operating systems, user

interfaces, compilers

• Software engineering: requirements, design,

teams, testing and maintenance,

documentation, software design tools

• Societal issues in software engineering, limits

of computing, levels of languages, computing

careers

3.3.c. Context and Constraints
Since this is a laboratory-intensive course, students

will need regular access to appropriate computing

facilities and software. A number of viable

programming language alternatives exist, and so we

recommend no particular programming language to

support this course. Surely, the choice of language

depends on local conditions, such as teacher

expertise, laboratory hardware configuration, and

availability and cost of software support.

Moreover, this course is intended to be much broader

in scope than the AP curriculum, and thus should

complement it in a way that is accessible to all

students—not just those preparing for college.

However, for students who are thinking about taking

an AP computer science course at Level IV (see

section 3.4), this course can serve as a precursor.

This course is also intended to cover the

fundamentals of computer science more broadly

than a typical information technology course. While

it has elements of IT, this course also introduces

students to concepts that are not typically covered in

an IT curriculum, such as the limits of computing

and data structures.

Example activities that have been used in this kind of

course are shown in Appendix A.3.

3.4 Level IV—Topics in Computer
Science

At this level, interested and qualified students

should be able to select one from among several

electives to gain depth of understanding or special

skills in particular areas of computer science. All of

these electives will require the Level II course as a

prerequisite, while some may require the Level III

course as well. Most important, these courses

provide students with an opportunity to explore

topics of personal interest in greater depth, and thus

prepare for the workplace or for further study at the

post-secondary level.

These electives include, but are not necessarily

limited to:

14

• Advanced Placement (AP) Computer Science

• A projects-based course in which students

cover a topic in depth.

• A vendor-supplied course, which may be

related to professional certification.

These are discussed in more detail below.

3.4.a. AP Computer Science
The AP Computer Science curriculum is well

established (AP, 2002), and is offered at many

secondary schools for students planning to continue

their education in a two- or four-year college or

university, possibly in computer science, business, or

a related field.

Students taking an AP course should have completed

Levels I and II. Students entering an AP Computer

Science course need to be familiar with the basic

algorithmic concepts introduced at those levels. The

programming concepts covered in Level III overlap

somewhat with the AP course, so some of the AP

course can serve as a review if students have had the

Level III course.

The curriculum that prepares students for the AP

computer science exams provides an excellent

foundation for future study. This curriculum has two

courses:

• The A course emphasizes problem solving and

algorithm development, and introduces

elementary data structures. Students who

complete the A course and score well on the

exam may qualify for one-semester of college

credit.

• The AB course extends the foundation of the A

course by including more substantial work

with data structures and recursive algorithms.

The College Board suggests that the choice between

A and AB be left to the school and students. A school

might wish to initially offer the A course as it is less

comprehensive, and then move toward the AB

course as instructor knowledge and entering student

levels increase.

In schools that implement this curriculum recommen-

dation, students will arrive at Level IV with a stan-

dard background that enables them to be successful

in the AB course. Also, high schools need to consider

the significant staffing issues implied by this curricu-

lum recommendation, along with the staffing trade-

offs that result from offering 0, 1, or 2 AP courses in a

setting that also offers the Level II and III courses

described above.5 For example, a school that is neither

large nor resource-rich may prefer to offer the Level

III course alone, and then supplement that course

with additional material that will support a smaller

group of students preparing for the AP A exam.

Example modules that can be used to teach this

course are shown in the Appendix A.4.

3.4.b. Project-Based Courses
This kind of course would be available to all students

who have completed the Levels I and II curricula.

Some variants of this course would also require

completion of Level III (see below). This could be

either a half-year or a full-year course.

The projects in this kind of course will naturally

address diverse student interests and specific faculty

expertise. The specific projects that are chosen from

year to year will be fluid and will adjust as needed to

meet the ever-changing characteristics of computer

science and information technology. Ideally, each

project should build upon basic computer science

concepts and help students develop professional

skills in the application of technology.

15

5 Achieving a high score on the AP A Exam is typically considered
to be equivalent to completing a one-semester college course in
computer science. Programming language differences between
the AP exam and the one taught at a particular college (e.g., C++
vs. Java) may present an issue in granting AP credit for students
with high scores. That is, some colleges may require students to
repeat the introductory semester(s) so they can continue effective-
ly in the undergraduate computer science major program.

While some of the project curriculum may be more

skills-based, the skills need to be tied to the “behind-

the-scenes” activities of the software—particularly

how each task is implemented in the software (e.g.,

what is happening when you click “bold”?).

Answering such questions enables students to

problem-solve when software does not perform as

anticipated. Additional computer science topics are

visited throughout these projects.

Here are some projects that could populate such a

course. See the Appendix for more details.

EXAMPLE: Desktop Publishing. This course introduces

planning, page layout, and the use of templates to

create flyers, documents, brochures, and newsletters.

Word processing and graphical editing fluency (Level

I) will help ensure student success. Methods of

distribution of these documents in both written and

electronic formats should be included. This will

necessitate understanding of Internet concepts and

network connectivity (Level II).

EXAMPLE: Presentation. Design The ability to

communicate and share ideas should be a core

requirement for all high school graduates.

Communication can be written and/or oral. This

type of project focuses on planning a presentation—

including outlining, converting the outline into a

document, and generating the presentation.

Concepts covered include appropriate use of text,

colors, graphics, sound, and animations on slides as

well as linking within and outside the presentation.

Ultimately, students will present to an audience.

Fluency with word processing software (Level I) and

multimedia concepts (Level II) is required.

EXAMPLE: Multimedia. The use of multimedia is

increasing steadily at the user level, fueled by more

efficient hardware and the availability of digital

cameras and digital audio equipment. However,

multimedia is often abused when incorporated into

programs, Web pages, and presentations. This project

will provide instruction in the use of digital audio

and video equipment and related editing software. A

major focus will be deploying multimedia in a

responsible fashion. Basic software skills (Level I)

and an understanding of multimedia concepts (Level

II) are required.

EXAMPLE: Graphics. This class explores bitmap and

vector-based graphics. The discussion includes

benefits and limitations of each type of software and

hands-on experience with both. CAD, CAM, and 3-D

design software should be explored as well as bitmap

software for creating and editing of graphics.

Availability of a digital camera and scanner is

required. Responsible deployment of graphics

including style and legal issues needs to be

investigated. The discussion of vector-based graphics

will be facilitated by completion of Level III—limits

of computers and design for usability.

EXAMPLE: Design and Development of Web Pages. At

Level II, students are exposed to Internet concepts

and HTML. This course presents a more in-depth

view of the design and development issues that need

to be considered for a multi-platform international

implementation. A focus issue is the standardization

of Web page development using the

recommendations of the WWW Consortium. Web

page development is presented and evaluated using

text editors, HTML editors, converters, and Web

authoring programs.

EXAMPLE: Web Programming. Students who have

successfully completed Level III but do not wish to

take an AP course might nevertheless enjoy applying

their programming skills to the WWW. To be

successful, a solid understanding of Internet

concepts, Web page design and development issues,

and basic programming concepts will be required.

Topics in this course can include client-side and

server-side scripting languages. Students will need

to write scripts and deploy them within Web pages

or on the Web server.

16

EXAMPLE: Emerging Technologies. This project can

include several distinct topics, and its content is

expected to change on a regular basis. An example

topic for upcoming years might be XML/XSL and

wireless connectivity. These areas can be tied

together with a discussion of requirements for the

same data to be represented on a PC, personal digital

assistant (PDA), and cell phone. Curriculum and

materials for this topic would need to be developed

from current resources on the Web, perhaps in

conjunction with local colleges and universities, and

with input from the professional sector of the

Business Community.

A sample of some other topics (along with their

prerequisites) includes:

• The computer and animation (Level II)

• Networking technologies (Level III)

• Programming simulations (e.g., a computer-

controlled chemistry experiment) (Level III)

• Object-oriented design and coding (Level IV—

AP computer science)

• Effective use of computer applications (Level II)

3.4.c. Courses Leading to Industry
Certification

Such a course is primarily geared toward students

planning on entering the workforce, continuing their

education in a post-secondary technical school, or

entering a two-year college AAS program. Students

taking this course should have completed the Level I

and Level II courses.

Industry certification provides a standard that is

useful to potential employers in evaluating a

candidate who has no prior work experience.

Industry certifications are either vendor-neutral or

vendor-sponsored. Vendor-sponsored curricula need

to be evaluated carefully. While rich in content, some

of these courses are structured to emphasize

proprietary products rather than general concepts.

Students who complete certification courses should

be encouraged to take the corresponding exam as

proof of acquired knowledge. Here are some

examples of vendor-neutral certification programs.

EXAMPLE: A+ Certified Technician. “A+ certification

signifies that the certified individual possesses the

knowledge and skills essential for a successful entry-

level (6 months’ experience) computer service

technician, as defined by experts from companies

across the industry” (http://www.comptia.org/

certification/a/default.asp). Two different exams are

available—software and hardware. Both of these

assume that students have gained an understanding

of the way a computer works, including hands-on

experience. The hardware section includes

installation of new equipment and troubleshooting.

The software section encompasses various operating

systems. The use of critical thinking skills to

problem-solve is necessary for hardware and

software support. These skills reinforce and extend

the concepts presented in Levels I and II.

EXAMPLE: Certified Internet Webmaster (CIW). “CIW

certification validates competency in IT industry

standards, concepts and best practices; and familiarity

with leading hardware and software technology”

(http://www.ciwcertified.com/program/about.asp?comm=

home&llm=1). The Foundations level exam requires

competency in Internet, Web page authoring, and

networking fundamentals. These concepts are

introduced in Levels I and II. While the scope of the

exam is beyond the reach of high school students, its

objectives can serve to extend the foundation of the

previously discussed related issues.

EXAMPLE: i-Net+. This certification is designed for

“individuals interested in demonstrating the baseline

of technical knowledge that would allow them to

pursue a variety of Internet-related careers. The

i-Net+ exam was specifically designed to certify

entry-level Internet and e-commerce technical pro-

fessionals responsible for participating in the mainte-

nance of Internet, Intranet, and Extranet infrastruc-

17

ture and services as well as the development of Web-

related applications” (http://www.computer-certification-

training.com/CompTIA/inet/i-net.html).

More detailed information about these and other

certification programs, both vendor-specific and

vendor-neutral, can be found at http://www.computer-

certification-training.com/index.html.

Further discussion and examples of these kinds of

courses are provided in the Appendix.

4. Implementation Challenges

Teaching any subject effectively depends on the

existence of a sound curricular model, explicit teacher

certification standards, appropriate teacher training

programs, and effective curricular materials. K–12

computer science education faces unique challenges

along these lines because the subject is young.

For schools to widely implement this model, work is

needed in three important areas: teacher preparation,

state-level content standards, and curriculum materials

development. In addition, persons in leadership

positions must acknowledge the importance of

computer science education for the future of our

society. States and accrediting organizations should

make this a factor in overall school accreditation. As

indicated earlier, some states have begun to establish

content standards, define models for teacher

certification, provide in-service training in computer

science, and experiment with developing new

curricular materials. However, a much wider effort

and commitment are now required.

Wide adoption of K–12 computer science will be a

difficult task. Professional organizations in computer

science can facilitate this task. Organizations that can

participate in this effort include the ACM, the IEEE

Computer Society, ISTE, institutions of higher

education, and national and local teacher

organizations. Below is a discussion of the main

challenges as we see them.

4.1 Teacher Preparation

For students to master this new subject, teachers

must acquire both a mastery of the subject matter

and the pedagogical skills that will allow them to

present the material to students at appropriate levels.

It is understood that there must be a match between

the computer science skills and knowledge defined

for the students and the acquired skills and

knowledge of the teachers. At the same time,

teachers must have a greater depth of knowledge

than that embodied in the topics they are teaching.

State departments of education and other

appropriate agencies must recognize the discipline of

computer science, so that appropriate standards for

teacher certification are established. This should be

followed by the establishment of teacher preparation

programs with a prescribed course of study in

computer science and education, so that prospective

teachers will gain the skills and knowledge necessary

to meet the certification standards required.

Due to an absence of standards, teachers graduating

from colleges of education have not typically been

well prepared to teach computer science. This issue

has recently been addressed by the National Council

for Accreditation of Teacher Education (NCATE), a

coalition of 33 specialty professional associations of

teachers, teacher educators, content specialists, and

local and state policy makers. NCATE oversees the

professional accreditation of schools, colleges, and

departments of education. The NCATE policy boards

develop NCATE standards, policies, and procedures.

Currently, 525 institutions are accredited and another

100 are candidates and pre-candidates for

accreditation. The number of candidates for

accreditation has almost tripled in the past five years,

due to the growing demand for accountability from

states and the public.

18

The NCATE accreditation system is a voluntary peer

review process that involves a comprehensive

evaluation of the institution that prepares teachers

and other professional school personnel. The review

itself is based on the NCATE Unit Standards, which

are developed by all sectors of the teaching

profession. Accreditation requires an on-site review

of the unit and a review of the individual programs

within the unit.

NCATE has recently defined accreditation standards

for secondary computer science education programs.

It is anticipated that these standards can be imple-

mented through a teacher preparation endorsement

program, roughly equivalent to providing prospec-

tive teachers with a minor in computer science

(including at least 18 semester hours of college-level

computer science). The prerequisite for this program

is a foundation in educational technology.

The NCATE accreditation standards for secondary

computer science education programs use a defini-

tion of computer science that reflects the core require-

ments for college computer science majors

(ACM/IEEE, 2001). These standards include pro-

gramming and algorithm design, computer system

organization and operation, data representation and

information organization, and social aspects of com-

puting. Secondary school teachers certified by the

NCATE standards must demonstrate the following

specific computer science knowledge:

1. knowledge and skill regarding the syntax

and semantics of a high-level programming

language, its control structures, and its basic

data representations

2. knowledge and skill regarding common data

abstraction mechanisms (e.g., data types or

classes such as stacks, trees, etc.)

3. knowledge and skill regarding program

correctness issues and practices (e.g., testing

program results, test data design, loop

invariants)

4. design and implementation of programs of

sufficient complexity to demonstrate

knowledge and skills

5. design, implement, and test programs in

languages from two different programming

paradigms in a manner appropriate to each

paradigm

6. effective use of a variety of computing

environments (e.g., single- and multi-user

systems and various operating systems)

7. operation of a computer system (CPU and

instruction cycle, peripherals, operating

system, network components, and

applications) indicating their purposes and

interactions among them

8. machine level data representation (e.g.,

character, Boolean, integer, floating point)

9. applications of the various data and file

structures provided by a programming lan-

guage (e.g., objects, various collections, files)

10. elements (people, hardware, software, etc.) in

information systems (database systems, the

Web, etc.) and their interactions

11. social issues related to the use of computers

in society and principles for making

informed decisions regarding them (e.g.,

security, privacy, intellectual property, limits

of computing, rapid change)

12. significant historical events relative to

computing

13. independent learning on other topics in

computer science, including written and oral

reports

14. participation in team software development

projects that apply sound software

engineering principles

According to the NCATE standards, computer science

teachers must also possess the following capabilities.

1. Identify resources, strategies, activities, and

manipulatives appropriate to teaching

secondary computer science

19

2. Plan lessons/modules/courses related to

each of: programming process and

knowledge/concepts, and issue examination

3. Develop assessment strategies appropriate to

lesson goals and the need to provide student

feedback

4. Perform course and lesson planning that

addresses student population characteristics

(e.g., academic ability, cultural experience)

5. Observe and discuss the teaching of

secondary computer science

6. Participate in the teaching of secondary

computer science (lab assistant, tutoring,

mini-teaching, etc.)

7. Plan and deliver a unit of instruction

8. Plan direct instruction involving simultane-

ous use of computing facilities by students

(e.g., holding class in the lab, closed labs)

9. Plan instruction involving students

independently using computing facilities

10. Develop a personal plan for evaluating their

own practice of teaching

11. Make use of their plan for self-evaluation in

the instructional delivery activities

12. Discuss guidance roles and possible

enrichment activities for secondary computer

science students (e.g., computing career

guidance, preparation for college, and

extracurricular activities such as computer

clubs and organized competitions)

13. Plan for professional growth after

identifying professional computer science

and computer science education societies,

organizations, groups, etc. that provide

professional growth opportunities and

resources

The development of teaching certification require-

ments and content standards for K–12 computer sci-

ence education by the various states will in turn

prompt the schools to implement relevant computer

science programs. But most importantly, this step

will also motivate schools of education to introduce

pre-service programs in computer science education.

With computer science becoming a recognized aca-

demic discipline in the schools, schools of education

will become more motivated to set up such pre-serv-

ice programs.

Some states already offer certification or an endorse-

ment for teaching computer science. But the majority

of states do not require any computer science creden-

tials for teaching this subject. For those states that

offer teachers an endorsement in computer science,

their requirements vary widely; some require teach-

ers to have a background in data processing while

others require them to have a business background.

Another concern is that some states’ endorsements

cover a very narrow aspect of computer science

while others combine the subject with technology

education for the purpose of certification.

The states’ departments of education should review

their licensing standards for professional educators

so that they recognize and support computer science

as a distinct discipline. The meaning of the term

“teacher of computer science” requires clear

definition. As the requirements for certification and

pre-service programs are developed, they must

maintain the view that the field of computer science

is evolving rapidly.

As with other subjects, in-service education is

important to help current teachers adopt and

integrate new computer science curriculum

elements. In-service programs must deliver the

needed professional development for the educators

who will teach these courses. Provisions must be

made to retrain teachers already in the school

systems, so that they may also develop the skills and

knowledge necessary to obtain new certifications as

needed.

In-service education at the early stages of this

curriculum implementation can take many forms. In

addition to school- and district-wide workshops,

20

state and regional events can be organized to bring

teachers together as a community to learn and

exchange ideas. These events can be used to

disseminate to the teachers and school

administrators new curricular recommendations and

guidelines as they evolve. Another important goal of

such events would be to provide short workshops

regarding timely issues in computing for the

preparation of the new curriculum implementation.

Professional recognition is important for the current

cohort of teachers of computer science, regardless of

the nature of their original teaching certification.

Almost all of these teachers have original credentials

in mathematics, science, business, or English, but

they have since self-educated to teach many different

types of computing courses, including AP computer

science. One way to provide such recognition is for

states to develop standard core competencies for

computer science teachers and endorse those

teachers with these competencies, thus recognizing

teachers who have the requisite skills and knowledge

in computer science. This can be accomplished

through new in-service training initiatives.

4.2 State-Level Content Standards

Recently, efforts have increased to develop national

and state content standards for computer science.

Curriculum standards serve to define the skills and

knowledge of the discipline to be acquired by every

student. For this to happen, school curricula must be

aligned with these standards. Content standards for

computer science education need to be developed

and adopted in a way that parallels what has

occurred in disciplines such as science, mathematics,

and language arts. Curriculum frameworks aligned

with these content standards can then be developed

for the classroom.

In the design of state standards, it is important to

ensure distinction between the teaching of IT skills

(especially in service to the sciences and

mathematics) and the teaching of computer science

itself. That is, computer science must be considered

as subject matter and technology should be viewed

as a tool that cuts across all subjects. Existing

technology standards, where present, should not be

substituted for computer science standards.

4.3 Curriculum Development

This report presents a model for computer science

education, but not a complete “deliverable” curricu-

lum. Additional steps need to be taken to formulate

content standards, define professional development

needs, develop curriculum (textbooks and laboratory

materials), and disseminate information to students

in the classroom. For all this to happen, teachers

must play a substantial and leading role in the for-

mulation of curriculum components. This will also

require the participation of university faculty and

professional organizations (ACM and ISTE) to serve

as facilitators and guide a process that will yield a

deliverable and effective curriculum.

One possible vehicle for mobilizing these efforts

would be to seek grant support from federal agencies

(e.g., NSF) and private foundations. Ideally, a

summer institute in K–12 computer science

education could be established and teachers would

be chosen to participate in the development of

curriculum content and teaching modules. The

institute could be made up of working groups and

held at multiple locations throughout the country for

two to three weeks each summer. Participants would

come together the following summer to discuss

results and plan follow-up activities.

4.4 Implementation and Sustainability

This report proposes a model, but not a “deliverable”

curriculum in the form of teaching materials, lesson

plans, a trained teaching cohort, or an operational

budget to deliver K–12 computer science in the way

suggested above. Additional steps are needed to

21

begin this process of implementation in K–12

schools. The following are essential.

Buy-in—these recommendations should be endorsed

widely by organizations that have a stake in their

implementation: ACM SIGCSE, ISTE SIGCS, ASCD

curriculum directors in school districts, state boards

of education, NEA, NASSP, and NSBA.

Curriculum and course development—Funding

sources like NSF should be approached to assist

teams of K–12 teachers and other computer science

educators to develop pilot courses along the lines

suggested in this report. Concurrently, textbook and

Web-based publishers should be encouraged to

invest in these experimental courses, so that the

resulting teaching materials can be widely

disseminated and used elsewhere.

Professional societies—Support the establishment of a

“National Computer Science Teachers Association,” a

new professional society for K–12 computer science

teachers, which has recently been proposed by ACM

(ACM, 2003). Similarly, ACM SIGCSE and ISTE’s

NECC should continue to broaden their missions and

conferences to better accommodate K–12 computer

science teachers. State and regional organizations

should provide ongoing support and collaboration

for K–12 computer science teachers at the local level.

Culture—Most teachers who now offer computer

science in K–12 schools are experiencing a strong

sense of isolation and vulnerability. This frustration

has many roots, including the glacially slow pace of

attitudinal and programmatic change, the battle to

obtain adequate computing resources, the lack of

acceptance of computer science among math and

science colleagues, the absence of state curricular

standards, the shortage of opportunities for in-

service and pre-service training in computer science,

and the unusual vulnerability of computer science

faculty and courses to budget cuts during times of

fiscal restraint. All of these combine to create an

atmosphere in which a culture of computer science

among K–12 teachers is almost impossible to create

or sustain at a significant level. If computer science is

to become a meaningful and effective academic

culture within the mainstream of K–12 education, a

significant change in all of these inhibiting factors

must take place. Until then, teachers will continue to

struggle to keep any sort of computer science

presence in their school’s curriculum, and schools

that do not now offer computer science will probably

never consider making such a change.

Dissemination is a critical first step to implementa-

tion. Follow-up through local and regional organiza-

tions and national forums will further the

implementation of these recommendations. Such

events will provide opportunities for sharing and

discussion of successful implementations, as well as

for the discussion of problems encountered. In addi-

tion, these events will help further the recognition of

computer science as an appropriate and necessary

discipline for a comprehensive K–12 curriculum.

Additional steps will still be needed to sustain this

work beyond curriculum development and dissemina-

tion. For example, new certification standards and pro-

grams usually must pass through a complex and some-

times bureaucratic administrative process before adop-

tion. But collaboration among professional organiza-

tions in education and computing, colleges and univer-

sities, state education departments, and teachers can

help facilitate progress. Consequently, a coordinating

entity that supports and sustains the long-term inter-

ests of K–12 computer science education must emerge.

5. Conclusions

Computer science is a mainstream discipline that

can no longer be ignored by public schools in the

21st century. This model curriculum provides a basis

by which states, schools of education, and

individual school districts can begin to implement a

22

coherent computer science curriculum that is

available to all students.

Much work needs to be done to translate this model

into teaching and laboratory materials that are

pedagogically viable and widely accessible. We hope

corporations, foundations, and other external

sources will support this work by providing

appropriate incentives that will enable such a

curriculum development effort to succeed.

References

Proposal to form the National Computer Science

Teachers Association (NCSTA), Association for

Computing Machinery, 2003 (unpublished).

ACM/IEEE-CS Joint Curriculum Task Force.

Computing Curricula 2001: Computer Science

Volume. December 2001. http://www.acm.org/

sigcse/cc2001/

Task Force of the Pre College Committee of the

Education Board of the ACM. ACM model high

school computer science curriculum.

Communications of the ACM, May 1993.

AP Course Description: Computer Science. May 2002.

http://www.collegeboard.com/ap/students/compsci/

index.html

Bell, T., I. Witten, and M. Fellows, Computer Science

Unplugged, June 2002. http://ww.unplugged.

canterbury.ac.nz

Deek, F. and H. Kimmel. Status of computer science

education in secondary schools. Computer Science

Education 9,2, August 1999.

Friedman, T.L. The World Is Flat: A Brief History of

the Twenty-first Century. Farrar, Straus and

Giroux, 2006.

Gal-Ezer, J. and D. Harel. Curriculum for a high

school computer science curriculum. Computer

Science Education 9(2), August 1999.

International Society for Technology in Education

(ISTE), National Educational Technology Standards

for Teachers, June 2002. http://www.iste.org/

standards/

State of Maine Learning Results, http://www.state.me.

us/education/lres/lres.htm

National Research Council Committee on

Information Technology Literacy, Being Fluent

with Information Technology, National Academy

Press, Washington, DC, May 1999.

http://www.nap.edu/catalog/6482.html

National Council for Accreditation of Teacher

Education. Program for Initial Preparation of

Teachers of: Educational Computing and

Technological Literacy, and Secondary Computer

Science Education. http://www.ncate.org/standard/

programstds.htm

Papert, Seymour. Mindstorms: Children, Computers,

and Powerful Ideas (1980), and much other

information, can be found at http://el.media.

mit.edu/logo-foundation/products/books.html#learn

Stephenson, C. E-mail correspondence with a

summary of the Ontario Curriculum. February

15, 2002.

2000–01 Taulbee Survey, Computing Research News

(March 2002) 4–11. http://www.cra.org/CRN/

articles/march02/bryant.vardi.html

23

Appendices

In these appendices, we illustrate the viability of this curriculum model by providing example activities for

courses and modules that are now being taught in various schools throughout the world. Many of these are

directly adapted from the Ontario Computer Science Curriculum discussed in this report. The layout of these

activities (also adapted from the Ontario curriculum) is explained below:

Activity: . Name of the activity

Time: . Number of in-class hours to complete the activity

Description:. Brief description of the subject and goals of the activity.

Level: . I, II, III, or IV, as defined in this report (Section 3)

Topics: . The topics at this level that are covered by this activity

(see the topic lists in Sections 3.1, 3.2, 3.3, and 3.4 of this report)

Prior Knowledge: What students should know before beginning this activity

Planning Notes: Suggestions to teachers for preparing this activity

Teaching/Learning Strategies: Organization of the in-class presentation and the particular student tasks

Assessment and Evaluation: Formative and summative assessments of in-class and laboratory work

Accommodations: Additional supporting materials (e.g., scaffolding labs, example programs,

challenging problems)

Resources:. Links to the source of this activity, as well as other related activities

A.1 Sample Activities for Level I: Foundations of Computer Science

Activity: . Color by Numbers

Time: . 3 hours

Description:. The computer stores drawings, photographs, text, and other pictures using

only numbers. This activity demonstrates how that is done.

Level: . I (K–2)

Topics: . 11—using 0s and 1s to represent information

Prior Knowledge: Grade 2 geometry (exploring shapes), counting, graphing

Planning Notes:

• Motivational discussion questions include, “What does a fax machine do?”

• “In what situations would a computer want to store pictures?”

• “How do computers store pictures when they can only use numbers?”

Teaching/Learning Strategies:

• A 5x6 rectangular grid is used as a basis for representing different images (such as letters) by coloring in

some of the squares (pixels).

• Coding of the image is done by scanning the sequences of 1s (shaded squares) and 0s in each row of the

grid and recording the length of each sequence.

Assessment and Evaluation: Worksheet activities.

Accommodations: No computers are required; students use two worksheet activities, called

“Kid fax” and “Make your own picture”

Resources: . See www.unplugged.canterbury.ac.nz to learn more about this activity.

24

Activity: . Beat the Clock

Time: . 4 hours

Description:. There is a limit to how fast computers can solve problems. One way to

speed them up is to use several computers to solve different parts of a

problem. This activity uses sorting networks to do several comparisons

at the same time.

Level: . I (Grades K–2)

Topics: . 12—understanding how to arrange (sort) information into useful order

Prior Knowledge: Grade 2 mathematics; greater than, less than

Planning Notes: Some tasks can be done faster using fewer steps, while others can be

done faster using parallel computation. Sorting networks is a good

example of the latter.

Teaching/Learning Strategies:

• Six students hold one number each and arrange themselves on the left-hand side of the court. They

move forward to the next circle in the network and wait for someone else to arrive.

• The circle is a decision point from which the student with the smaller number goes left and the larger

number goes right.

• At the end, the numbers are sorted.

Assessment and Evaluation:

• Students successfully sort the numbers using the given network.

• They also discuss the use of other networks for sorting.

Accommodations: This is an outdoor group activity. Chalk, two sets of six cards with numbers

on them, and a stop watch are needed. A master is used to draw a sorting

network on the sidewalk.

Resources:. See www.unplugged.canterbury.ac.nz to learn more about this activity.

Activity: . You Can Say that Again

Time: . 4 hours

Description:. Text can be compressed by taking advantage of patterns in words and

linking repeating patterns to each other without rewriting them. For

instance, “pitter patter” can be encoded by replacing the last instance of

“tter” by a link to the first instance.

Level: . I (Grades 3–5)

Topics: . 11—develop a simple understanding of an algorithm

Prior Knowledge: English, recognizing patterns in words, copying written text; basic

familiarity with computers

Planning Notes: Images and text containing millions of pieces of information are transmitted

on the Internet every day. To save time and space, they are compressed into

ZIP or GIF format before they are transmitted.

Teaching/Learning Strategies:

• Students successfully encode and decode text, using worksheets.

• They also discuss the kinds of texts and images that compress best/worst using this algorithm.

25

Assessment and Evaluation:

• Students’ completed worksheets are evaluated as ordinary math assignments.

Accommodations: Four different worksheets are used to facilitate this activity; a transparency

is used to present the compression algorithm.

Resources:. See www.unplugged.canterbury.ac.nz to learn more about this activity.

Activity: . Battleships

Time: . 4 hours

Description:. Computers are often required to find information in large collections of

data. They need to develop quick and efficient ways of doing this. This

activity demonstrates three different search methods—linear search, binary

search, and hashing—using numbered cards and the game of battleships as

vehicles.

Level: . I (Grades 3–5)

Topics: . 11—basic understanding of a search algorithm

Prior Knowledge: Mathematics; greater, less, and equal relationships, geometry (coordinates)

Planning Notes: Finding information efficiently—linear search, binary search, hashing

Teaching/Learning Strategies:

• 15 children have cards with different numbers on them, arranged randomly and hidden from one of the

children who tries to guess who holds a mystery number. The game is repeated after the 15 numbers are

rearranged in order.

• Children are grouped in pairs, and each pair is given two battleship game cards. The game is played

using a simple hashing technique to locate the column of a ship on the card.

Assessment and Evaluation:

• Discussions should explore the scores children achieved in each game.

• Discussions should also explore the advantages and disadvantages of each search strategy.

Accommodations: Each child will need a game card (copied from masters).

Resources:. See www.unplugged.canterbury.ac.nz to learn more about this activity.

Activity: . The Orange Game

Time: . 4 hours

Description:. This activity uses a simple game with oranges to illustrate Internet traffic

management (routing) and deadlocks.

Level: . I (Grades 3–5)

Topics: . 11—simple algorithms for network routing

Prior Knowledge: Math; logic and reasoning

Planning Notes: This is a group activity, requiring five or more children sitting in a circle and

having different letters on their shirts. There are two oranges for each child’s

letter except one, for which there is only one orange.

Teaching/Learning Strategies:

• Every child is given an orange in each hand (except that one child has one orange) randomly.

26

• Oranges are passed between children until everyone has two oranges with his/her own letter.

• Only an empty hand can receive an orange, and only from an adjacent hand.

Assessment and Evaluation:

• Children should learn that holding onto one’s own orange as soon as it is received may prevent the

whole group from achieving its goal.

Accommodations: A bag of oranges

Resources:. See www.unplugged.canterbury.ac.nz to learn more about this activity.

Activity: . Ice Cream Stand Problem

Time: . 4 hours

Description:. A graph is used to represent the map of a city. An ice cream company

wants to build ice cream stands at different intersections, so that it is easy

for people to get to them but not too many stands have to be built.

Level: . I (Grades 6–8)

Topics: . 11—understand the graph as a tool for representing problem states and

solutions

Prior Knowledge: Elementary map reading

Planning Notes:

• Pass out copies of a map of a town, where lines represent streets and circles represent intersections.

Teaching/Learning Strategies:

• Children must determine the smallest number of stands to build so that no person has to walk to more

than one intersection to buy ice cream.

Assessment and Evaluation:

• Children discuss different strategies for placing the stands, and they evaluate each other’s solutions.

Accommodations: Copies of different city maps need to be handed out.

Resources:. See http://www.c3.lanl.gov/mega-math/menu.html to learn more about this

activity.

Activity: . A Mystery Play

Time: . 8 hours

Description:. Students learn and act out a short mystery play. Other students use logic

to solve the mystery.

Level: . I (Grades 6–8)

Topics: . 12—understand the fundamental ideas of logic and its use for solving

real-world problems

Prior Knowledge: Elements of logic (statements, truth and falsity), reading and speaking skills.

Planning Notes:

• Students will need time to learn their parts and rehearse the play in advance.

Teaching/Learning Strategies:

• The play is about 20 minutes long.

• The setting is a classroom, so no special props or scenery are needed.

27

Assessment and Evaluation:

• Students discuss the mystery and the reasoning they used to solve the mystery.

Accommodations: Students receive copies of the play, which is 3 scenes and 4 pages long.

Resources:. See http://www.c3.lanl.gov/mega-math/menu.html to learn more about this

activity.

A.2 Sample Activities for Level II: Computer Science in the Modern World

Activity: . Number Systems

Time: . 4 hours

Description:. Students develop an understanding of the relationship between the binary

number system and computer logic. Also, students learn how to convert

Base 10 numbers into binary and vice versa. Character representation of

binary codes is explored. Students have the opportunity to experiment in

writing their own message and decoding.

Level: . II (Grades 9-10)

Topics: . 6—the connection between elements of mathematics and computer science,

including binary numbers, logic, sets and functions.

Prior Knowledge: Understanding of the decimal number system and place value

Planning Notes:

• Review how programming software handles character representations.

• Have eight pennies for each pair of students and either a handout and/or overhead of bit information

• Review binary and base 10 conversions.

• Prepare coded messages for the students to decipher.

• Have copies of ASCII code available (both standard and extended).

Teaching/Learning Strategies:

• Show segment 3 of The Journey Inside video (8 min 25 sec—Intel Corporation. The Journey Inside. Part

of The Journey Inside Education kit), or any other video that shows how computers turn pictures and

colors into codes. Students gain an understanding of how information is communicated through the use

of codes.

• Hand each pair of students eight pennies and work through the questions on bit information. Ask

students what pattern they can see forming in the right column (numbers double).

• Students are challenged to count as high as they can on one hand and told the answer is greater than 10.

While students ponder the challenge, teachers demonstrate, with the aid of a simple series circuit, the

binary logic states of ONE and ZERO (TRUE and FALSE, HIGH and LOW) by equating them to series

circuit lamp ON and OFF condition.

• Binary numbers are introduced by initiating finger counting on one hand—no fingers up is zero, thumb

up is a one, index finger up is two, middle finger up is a four, ring finger is eight, and pinkie finger

represents sixteen. Students demonstrate counting to 31 on one hand.

• This sets the stage for demonstrating how to convert numbers from Base 10 to Base 2 (binary). Work

through several examples with students.

• Give students a quiz on binary conversion to assess their grasp of the concept.

• Handout the ASCII conversion information. Since computers cannot think like we do, they need a code

28

to translate our language into data that they can process and then convert that data back into

recognizable language.

• Students complete conversion exercises.

Assessment/Evaluation Techniques:

• Formative assessment of quiz at the end of the binary conversion exercise to prompt students on

progress and show changes required for success of conversion application.

• Summative assessment of conversion exercises.

Accommodations:

• Use extensive visual aids and demonstrations to assist students as needed.

• Provide an enlarged copy of conversion methodology in classroom as well as ASCII character chart.

• Use a variety of teaching styles to accommodate learning styles.

• Provide appropriate adaptive devices or implementation accommodations for identified students.

Resources:. Adapted from the course profile for Computer Engineering Technology,

Grade 10, Unit 2: Integrated Circuits (page 53) Ontario Ministry of

Education (www.acse.net/resources.htm)

Activity: . Setting up a Computer

Time: . 21⁄2 hours

Description:. Students set up a computer including installing available software and an

operating system. Students connect, configure, and test all peripherals.

Finally, students troubleshoot any problems that arise. All students set up a

PC.

Level: . II (Grades 9-10)

Topics: . 1—Students will gain a conceptual understanding of the principles of

computer organization and the major components (input, output, memory,

storage, processing, software, operating systems, etc.).

Prior Knowledge: Components of a computer system, correct terminology

Planning Notes:

• Prepare available samples of micro-controllers and PCs of various types.

• Determine the most effective use of existing hardware within the recommended time allotment (e.g., two

to three students per computer).

• Open an older discarded hard drive for demonstration purposes.

• If resources are limited, a single system may be set up several times to accommodate all students.

• This activity is done with stand-alone machines to not interrupt a networked environment.

• The teacher should review the procedures in the attached appendices. This activity assumes that the

computer system hard drive has been configured prior to the installation of the operating system.

• The actual system installation can be performed as a class “walk through.” The teacher can modify the

process to have the individual groups perform the set-up task.

• The teacher should review the disk partitioning, formatting, scandisk operations, and information

available in the Help files of the operating system (see Resources).

• Inventory the operating system CD-ROM and software key.

• Ensure all software is available for the full installation including operating systems, device drivers, and

application software.

29

Teaching/Learning Strategies:

• Teachers and students review safety with static electricity and the importance of keeping contacts clean

as they apply to components. Review the safety considerations when setting up a desktop computer

(grounded plugs, using power bars, dangling cords, eliminating the danger of static electricity, and

unplugging power supply before opening a PC, etc.).

• The teacher explains how hard drives work so that students can understand the utility functions they are

required to complete by the end of the activity.

• Students use the equipment they require to complete the task, including the monitor, CPU, keyboard,

mouse, and a printer, if available. The teacher explains any special considerations they need to know

(e.g., positioning of computers for plugs in the room). Students use this information to create a checklist

for the activity.

• Depending on the resources available, divide students into the appropriate number of groups. Students

connect all the parts of their computer system. Circulate to help with troubleshooting and use

questioning techniques to assist with problem solving.

• Once all components are connected, students load the operating system software. Students complete

their personal checklist to keep in their portfolios.

• All groups must then test their software to ensure their system is working and that all peripherals

connected are functioning properly.

Assessment/Evaluation Techniques:

• A formative assessment through student discussion and observation, encouraging students to assess

their thinking for successful completion of task.

• Assess student-created checklists. Provide students with written/oral feedback, to assist their success in

upcoming related activities.

Accommodations:

• Provide step-by-step instructions.

• Provide a glossary of terms.

• Provide visuals of different computer types.

Resources:. Course Profile: Computer Engineering Technology, Grade 10, Unit 3:

Networking (page 72) Ontario Ministry of Education

(www.acse.net/resources.htm)

Activity: . Careers in Computer Engineering

Time: . 33⁄4 hours

Description:. A guest speaker is invited to share information about his/her job/career

with the students. Students expand on their computer industry knowledge.

Students look at degrees and certifications available and opportunities they

have at the high school level and beyond to move them toward careers in

the computer industry.

Level: . II (Grades 9-10)

Topic: . 10—students will gain a conceptual understanding of the identification of

different careers in computing and their connection with the subjects

studied in this course (e.g. information technology specialist, Web page

designer, systems analyst, programmer, CIO).

30

Prior Knowledge: Word-processing skills

Planning Notes:

• Guest speakers may include the school sysop, board technician, or someone from the local community.

• Collect information from a local university or community college, including school course calendars and

college/university catalogues.

• Gather copies of recent computer trade magazines.

• Arrange ahead of time for a student to introduce guest speakers and another student to thank them.

• Collect newspaper advertisements for jobs in the computer industry.

• Distribute a sample certification worksheet

Teaching/Learning Strategies:

• Teachers introduce the expectations of the activity.

• Teachers review with students (ahead of time) questioning techniques for the guest speaker.

• One student may introduce the guest speaker. Students take brief notes in order to ask relevant and

interesting questions. One student may thank the guest speaker.

• Discuss the speaker information with the students, after which they write their personal views on the

information.

• Students look through trade magazines to see advances in the computer industry. Each student picks one

article from a magazine to summarize or review using a word processor.

• Finally, students look at opportunities for different computer designations ranging from MCSE

(Microsoft Certified Engineer) to computer engineering at the university level. Students use newspaper

advertisements to explore what skills and designations are requested by potential employers.

• Students retrieve the certification chart file (either electronically or via handout) and, using designations

discovered in the advertisement exercise above, they complete the chart and add it to their portfolio.

• Students create a plan on how to pursue a computer career, beginning with the completion of this

course, and save the information in their portfolio (long-term goal).

Assessment and Evaluation:

• Review of student portfolio to provide written/oral feedback on completion and comprehension

of tasks given.

• Evaluate the article review using the rubric provided.

Accommodations:

• Allow flexible timelines for due date of report.

• Use career center videos if available.

• Invite the Student Services resource personnel into the classroom.

• Videotape the guest speaker(s) presentation to allow students an opportunity to watch it again.

Resources:. Course Profile: Computer Engineering Technology, Grade 10, Unit 3:

Networking (page 93), Ontario Ministry of Education

(www.acse.net/resources.htm)

Activity: . Connections Inside and Out

Time: . 32⁄3 hours

Description:. Students view the video The Journey Inside The Computer (from Intel

Corporation (http://secure.wesweb.com/intel/form.htm) and examine the

31

individual internal components of the computer. Using resources available

to them, students discover the importance of each component and its impact

on the computer’s operations. The activity culminates with a series of

problems that students must solve using the new knowledge. Finally,

students use this information to suggest an alternative placement of

computers within the school environment that makes a positive impact on

the school community and demonstrates wise use of resources.

Level: . II (Grades 9-10)

Topics: . 1—students will gain a conceptual understanding of the principles of

computer organization and the major components (input, output, memory,

storage, processing, software, operating systems, etc.).

3—students will gain a conceptual understanding of the basic components

of computer networks (servers, file protection, queues, routing protocols for

connection, communication, spoolers and queues, shared resources, and

fault-tolerance).

Prior Knowledge:

• the differences between hardware and software;

• ability to record findings from observation;

• familiarity with the operating system they are using and the term network;

• familiarity with internal components and their uses.

Planning Notes:

• Request permission for students to visit certain areas of the school during class time—plan this as an in-

school field trip.

• Think of visiting a music midi lab, communication lab, front office, and any specialized resources specific

to your local environment.

• Check with the site administrator if you are not sure of network type(s) available in the school.

• Prepare checklist of terms for student use during video.

• Arrange to have a computer site administrator from the school or board office or a computer technician

speak to the class about networks and operating systems

• Have a school map available for students to take on tour and an overhead of the map for review.

• Check for materials from The Journey Inside The Computer kit available from Intel (Intel Corporation.

The Journey Inside. Part of The Journey Inside Education kit.)

Teaching/Learning Strategies:

• show The Journey Inside The Computer video, Unit 4 on Microprocessors, then Unit 6 on Networking,

with the purpose of reviewing computer components and extending student knowledge of networks and

operating systems;

• take up terms sheet and have students complete definitions for words they are unfamiliar with (teachers

may introduce students to the online dictionary at www.dictionary.com);

• share information on networks with students;

• indicate type(s) of networks currently used in the school environment;

• share information on operating systems with students;

• deliver short test on networks and operating systems;

• provide each student with a map of the school and explain tour route and any special routines required

for secure areas;

32

• give students a simple key for marking on map (e.g., C = stand alone computer, L = lab, SL = specialized

lab, S = server room, P = printer resource);

• return to the classroom and review the map on an overhead with input from students;

• encourage a discussion of how improvements that have been made in network and operating systems

make a difference in a computer community such as a school;

• ask them to reflect on why they think the computer resources have been placed in the school the way

they are;

• ask students to prepare a written brief of changes they would like to see in the school computer

environment;

• direct students to include positive impact(s) their suggestions have on the school environment and

incorporate their knowledge of networks;

• facilitate student pair/square and share of suggestions.

Assessment/Evaluation Techniques:

• a formative assessment in use of the review terms sheet, and

• an evaluation of test on networks and operating systems.

Accommodations:

• Give an oral test if appropriate;

• provide students with physical disabilities assistance if required;

• assist students with special needs with terms sheet.

Resources:. Course Profile: Computer and Information Science, Grade 10 Unit 4: The

Computer and Society (page 116), Ontario Ministry of Education

(www.acse.net/resources.htm)

A.3 Sample Activities for Level III: Computer Science as Analysis and Design

Activity: . New Solutions for Old Problems

Time: . 5 hours

Description:. Students examine problems that can be solved using more than one

algorithm (e.g., determining the factorial value of a number). Using

brainstorming or other group problem-solving techniques, students develop

alternative algorithms using recursive and non-recursive techniques.

Students identify the components of a recursive algorithm and develop

criteria for recognizing when a recursive algorithm may be applied.

Level: . III (Grades 10-11)

Topics: . 1—fundamental ideas about the process of program design, and problem

solving, including style, abstraction, and initial discussions of correctness

and efficiency as part of the software design process.

2—simple data structures and their uses.

Prior Knowledge and Skills: use of problem-solving models, the ability to develop appropriate

algorithms to solve problems, and the ability to write pseudocode.

Planning Notes:

• Review the nature of recursion.

• Gather examples of problems that can be solved using more than one method, including recursion, and

determine which problems may be solved using a recursive algorithm.

33

Teaching/Learning Strategies:

• divide the class into groups of two or three students.

• review the brainstorming problem-solving technique.

• present a problem that can be solved using a familiar but complex algorithm and may also be solved

using a less familiar but simpler algorithm (e.g., determining the quotient and remainder of the division

of two integers).

• Students, in their groups, develop more than one algorithm for the solution.

• The teacher facilitates a class discussion to develop criteria for the evaluation of algorithms, including

the efficiency of the solution and the complexity of the required coding. Both processing and user

interface efficiencies are considered.

• Groups evaluate the algorithms using the developed criteria and share their algorithms and evaluations

with the class.

• The teacher introduces the recursive method of problem solving and illustrates a recursive algorithm for

the solution to a different problem (e.g., calculating the factorial value of a number).

• Groups develop a recursive algorithm to the initial problem and evaluate its efficiency.

• The teacher facilitates a class discussion to establish criteria for determining if a recursive algorithm is an

appropriate solution and identifies additional problems that may be solved using recursion.

• Working in groups, students develop recursive and non-recursive algorithms for additional, assigned

problems.

Assessment and Evaluation:

• A formative assessment of the assigned in-class work in the form of roving conferences, and

• a summative assessment in which students complete an assignment requiring the development of both a

recursive and a non-recursive algorithm.

Accommodations: Provide print copies of examples of algorithms using recursive and non-

recursive methods, including graphic illustrations, and use models to

illustrate the algorithms.

Activity: . Planning a Solution

Time: . 6 hours

Description:. Students work in groups to analyze complex problems (e.g., Towers of

Hanoi) and to develop appropriate algorithms using recursive and non-

recursive techniques. Students create pseudocode and design charts to assist

them in planning a solution and assess these representations of code as

problem-solving tools.

Level: . III (Grades 10-11)

Topics: . 1—fundamental ideas about the process of program design, and problem

solving, including style, abstraction, and initial discussions of correctness

and efficiency as part of the software design process and

7—principles of software engineering: software projects, teams, the software

life cycle.

Prior Knowledge and Skills: students can apply the steps in the software design life cycle; use

pseudocode, diagrams, and charts to summarize program design; and

develop appropriate algorithms to solve problems.

34

Planning Notes:

• Review top-down problem solving.

• Select a problem to use in developing a model solution and prepare the appropriate models.

Teaching and Learning Strategies:

• The class is divided into groups of two or three students and each group is assigned a problem.

• Groups investigate the problem, using a variety of problem-solving techniques to analyze it.

• Each group uses brainstorming or other group problem-solving techniques to develop an algorithm for

the solution to the problem. In a class discussion, groups present and share their algorithms.

• Students compare the effectiveness and efficiency of the algorithms presented and then the groups refine

their algorithms.

• Each group develops a flow chart, structure chart, and/or pseudocode to represent the application of the

algorithm. The teacher conferences with each group to discuss and assess the solution design.

Assessment and Evaluation:

• a formative peer assessment of the presented algorithms;

• a formative assessment of the design for the solution to the problem.

Accommodations:

• Provide print sample algorithms similar to the one studied.

• Use graphical models to illustrate the problem.

• Selectively pair/group students to assist problem solving.

• Provide problems of varying complexity to provide an appropriate challenge.

Activity: . Role Playing Helper Functions/Recursion

Time: . 1 hour

Description:. Students role play various objects of simple programs to understand

parameter passing and recursive calls

Level: . III, IV (Grades 10-12)

Topics: . 1—methods (functions) and parameters, recursion

Prior Knowledge and Skills: compile and run simple programs; write code using parameters.

Planning Notes:

• Prepare or obtain from resources scripts for role playing objects in a small program with several nested

(and usually also recursive) calls.

• Gather colored markers and poster board as needed.

Teaching/Learning Strategies:

• Review the concepts of constructors, parameters, and calling helper methods.

• Students read code for the program to be used for the role play.

• Select a student to role play the main function. If desired, give student a large name tag to wear. Select

another student to be the code monitor whose job is to keep a record of the current line of code being

executed.

• Assist class as they act out the script, each time an object is constructed the student calling the constructor

function picks a classmate to play the role of the object; if using name tags, be sure to give each object-

player a name tag. Using different sized, shaped, or colored tags for different classes is helpful.

• Frequently pause the play and ask audience members to identify who the next actor will be.

35

Assessment and Evaluation:

• a formative assessment of the role play in the form of roving interviews;

• a summative assessment can be administered asking students to indicate the number of objects in

existence as the play progressed and similar questions.

Accommodations:

• Let pairs of students play a role.

• Assign roles yourself giving simpler roles to students who are struggling.

Resources:. Several role playing exercises are available at:

http://cs.colgate.edu/APCS/Java/RolePlays/JavaRolePlays.htm

A.4 Sample Activities for Level IV: Topics in Computer Science

Activity: . Introduction to Object Oriented Design

Time: . 3 hours

Description:. Students are introduced to the initial steps of applying Object Oriented

Design to a programming problem and practice applying those steps to a

problem that may later be used as a significant programming project

Level: . III, IV (Grades 10-12)

Topics: . 1—fundamental ideas about the process of object oriented program design

Prior Knowledge and Skills: none

Planning Notes:

• Prepare blank diagrams for use as CRC cards and/or object diagrams

• Select examples of problems that can be solved by using object oriented techniques.

Teaching/Learning Strategies:

• Explain the differences between an object oriented and a functional approach to the design

of a computer program.

• Have a student explain how a card game (like blackjack) is played.

• Working with the class, identify potential objects involved in the game.

• Working with the class, identify possible operations that might be done by or to a card or one possible

object. Students in small groups brainstorm operations for other objects identified as part of the problem.

• Illustrate how the two notations can be used to summarize the analysis so far.

• Discuss possible relationships between objects.

• Show notations for relationships.

• Describe a possible scenario in the game and use developed notations to represent that scenario.

• Have students in pairs describe a second scenario and represent it.

• Share class scenarios and consider whether they collectively represent the range of possibilities especially

extreme scenarios.

• Students read the possible problems and select one on which to do an OOD. Students work individually

on the first two phases (identify objects and operations).

• Students working on the same problem share results and agree on a “best” set of objects and operations.

• Students individually complete the last two steps.

Assessment and Evaluation:

• a formative assessment of the assigned in-class work in the form of roving conferences;

• a summative assessment applying OOD to a new problem

36

Accommodations: Provide copies of problem descriptions, with important nouns and verbs

indicated using a different font or type size. Provide written scenarios for

each problem.

Resources:

• Wirfs-Brock, Wilkerson, and Wiener, Designing Object-Oriented Software, Prentice Hall, 1990

• Fowler, UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley, 1997.

• Overview of lesson and sample exercises are available at:

• http://max.cs.kzoo.edu/AP/OOD/OODPresentation/

• http://max.cs.kzoo.edu/AP/OOD/OODSpecifications/

A.5 Additional Resources for Level IV:
Topics in Computer Science

A wide range of resources is available for supporting

a Level IV computer science curriculum.

AP Computer Science course
The curriculum for this course is governed by the

topic outline available from The College Board at

http://www.apcentral.collegeboard.com/. Two example

activities to enhance learning for the AP curriculum

are shown earlier in this Appendix.

Courses Leading to Industry Certification
Many of the certification courses provide a prepared

curriculum that details the content and order of top-

ics. While implementation of this type of course may

be simplified by the information provided, careful

evaluation is needed with regard to proprietary con-

tent versus general concepts. Information about the

content of some certification courses is available at

http://www.computer-certification-training.com.

Project-Based Courses
Project-Based courses can provide targeted

education geared toward specific student interests

in Computer Science. While these courses can be

offered by the local school district, enrolling

students in a college-based course should be

considered. Computer project-based courses are

often offered in a college or university department

of computer science, information technology, or

information systems. Computer-based programs of

study at the college level are typically well

established and provide a variety of current topics.

Additionally, a student participating in a college

computer course may be eligible for college credit.

The secondary school will need to investigate the

content of each course to determine if it is

appropriate for Level IV study.

Courses for college credit can be offered on the col-

lege campus, at the high school, or via distance edu-

cation. A course offered on the college campus will

place less burden on the high school for supporting

special hardware, software, and faculty resources.

Online courses can be taken off-hours or during

school time. A student who chooses to take an online

course outside of school hours will need access to

specified hardware, software, and the Internet.

When a college-delivered online course is offered

during the school day, it may be possible to schedule

several online courses during the same class session,

allowing better utilization of faculty time. To support

this, the school must also provide access to the

required hardware, software, and the Internet.

A course for college credit offered at the secondary

school permits the student and high school faculty

member to interact in a traditional manner. The

secondary school will need to ensure that the

curriculum is sanctioned by the college and students

are officially enrolled in the college. The college may

wish to participate in the selection of the faculty

member delivering the course.

37

Some typical methods by which high school stu-

dents can achieve college credit are described below.

Tech Prep and Articulation Credit—The student takes

a course at the high school and receives high school

credit. The course is also pre-approved for college

credit at a particular college, and is typically taught

by a high school faculty member. Credit is awarded

for the course upon matriculation at that college. The

college may require that the student pass a

competency exam before applying the credit to the

student’s transcript.

Dual Credit / Concurrent Enrollment—The student is

enrolled in a course for which s/he simultaneously

receives high school and college credit. The student

must meet all college requirements for entrance into

the course.

Challenge Exams—The student may be able to prove

proficiency and receive credit by exam. This method

is useful for a student who completes a high school

course that is not articulated, or who believes s/he

has independently gained knowledge of all topics

covered by a specific course. The student may be

charged a fee to sit for the exam.

Advanced Placement / CLEP Test—A student

planning college study toward a career in Computer

Science, Information Technology, or Engineering

may wish to take the AP Exam in Computer Science.

A student planning college study toward a career in

Business may wish to take the CLEP Exam in

Information Systems and Computer Applications. It

is recommended that the student determine how

credit will be granted for success on the exam from

his/her targeted institution.

Programs That Provide College Credit to High
School Students:
A number of programs provide college credit to high

school students. Here are three examples:

The University of Pittsburgh’s College in High School

is one example of high schools interacting with a

college. The “College in High School (CHS)

program has offered qualified high school students

the opportunity to earn University of Pittsburgh

college credits during their regular school day.”

Students are required to pay a reduced tuition to

participate in the program. Financial Aid may be

available. The program offers “12 courses to over

2,600 students in 100 high schools with 224 faculty”

(Pittsburgh). There is an extensive list of colleges

that will accept CHS credits for transfer at

http://www.pitt.edu/~chsp/transfer.htm.

The University of Cincinnati also offers high school

students the opportunity to earn college credit by

providing a Post-Secondary Enrollment Options

Program (PSEOP). Currently there are “39 high

school students enrolled in the program, including

one freshman, three sophomores, 13 juniors and 22

seniors”. This program permits the student to enroll

in the college for college credit only, or to enroll for

both high school and college credit.

The University of Northern Colorado provides “High

School Concurrent Credit, a program for Colorado

Residents enabling high school Juniors and Seniors

to earn college credit while in high school”. Three

options are provided under the program:

“Option I—Fast Track Program: For the student

who is a high school senior and has met high

school graduation requirements.

Option II—Post-Secondary Enrollment Options

Program: For the student who is a high school

junior or senior and has not met high school

requirements.

Option III—College Acceleration Program: For

the student who is a high school junior or senior

and wants to accelerate his or her college

program whether or not the graduation

requirements have been met.”

38

Resources:

Seven Ways to Earn College Credit in High School,

http://www.careersprep.com/html/sevenwys.html

Arthur R. Greenberg, ERIC Clearinghouse on Higher

Education Washington DC, BBB27915, George

Washington Univ. Washington DC. School of

Education and Human Development., ERIC

Identifier: ED347956, Publication Date: 1992-03-00,

http://www.ericfacility.net/ericdigests/ed347956.html

Comparison of Methods to Receive College Credit

for Courses Taken in High School, http://www.tea.

state.tx.us/Cate/teched/collegecreditinhs.pdf

Dawn Fuller, University of Cincinnati, High School

Students: Do You Qualify for UC College

Credit?, March 7, 2003,

http://www.uc.edu/news/NR.asp?id=300

The College Board, AP Central,

http://apcentral.collegeboard.com/

University of Cincinnati, Post Secondary Enrollment

Option Program, http://www.esit.uc.edu/pseop/

psoDefault.aspx

University of Northern Colorado, High School

Concurrent Credit, Last Update: August 5, 2003,

http://www.unco.edu/admissions/collegecredit.html

University of Pittsburgh, College in High School,

Last Update: June 25, 2003,

http://www.pitt.edu/~chsp/index.htm

U.S. Department of Education, Dual Enrollment,

Last Update: January 27, 2003, http://www.ed.gov/

offices/OVAE/CCLO/dualenroll.html

U.S. Department of Education, Program Title: Tech-

Prep Demonstration Program, CFDA # 84.353,

http://web99.ed.gov/GTEP/Program2.nsf/02cbabc638

062ed2852563b6006ffeae/0c81ea75d203e37d85256a01

006527b1?OpenDocument

U.S. Department of Education, Tech Prep Education,

Last Update: January 28, 2002, http://www.ed.

gov/offices/OVAE/CTE/techprep.html

39

The first year of your CSTA membership is FREE!

JOIN US VIA…
web: http://csta.acm.org/
phone: 1.800.342.6626

e-mail: cstahelp@acm.org

The first year of your CSTA membership is FREE!
WHAT IS THE COMPUTER SCIENCE TEACHERS ASSOCIATION (CSTA)?

The Computer Science Teachers Association, a limited
liability company under the auspices of ACM, has
been organized to serve as a focal point for
addressing several serious (crisis level) issues in K-12
computer science education, including:

• Lack of administrative, curricular, funding,
professional development and leadership
support for teachers

• Lack of standardized curriculum
• Lack of understanding of the discipline and its

place in the curriculum
• Lack of opportunities for teachers to develop

their skills and interests

The above issues result in:
• A profound sense of isolation, and
• Dropping enrollment in college level computer

science programs

There are other organizations that address use of
technology across the curriculum, but only CSTA
speaks directly and passionately for high school
computer science.

OUR MISSION
CSTA is a membership organization that supports and
promotes the teaching of computer science and other
computing disciplines at the K-12 level by providing
opportunities for teachers and students to better
understand the computing disciplines and to more
successfully prepare themselves to teach and to learn.

OUR GOALS
CSTA's organizational and educational goals include:

• Helping to build a strong community of CS
educators who share their knowledge

• Providing teachers with opportunities for high
quality professional development

• Advocating at all levels for a comprehensive
computer science curricula

• Supporting projects that communicate the
excitement of CS to students and improve
their understanding of the opportunities it
provides

• Collecting and disseminating research about
computer science education

• Providing policy recommendations to support
CS in the high school curriculum, and

• Raising awareness that computer science
educators are highly qualified professionals
with skills that enrich the educational
experience of their students

OUR SCOPE
The scope of the organization includes:

• High school (all aspects of computer science
education)

• Elementary and middle school (introducing
problem solving and algorithmic thinking)

• College/university (to establish better
transition for high school programs and
provide a greater level of support to high
school teachers)

• Business and industry (supporting computer
science education and teachers)

WHO SHOULD JOIN?
• All High School & Middle School Computer

Science Teachers
• All K-12 Computer Applications Teachers
• All individuals interested (and passionate)

about K-12 CS Education

