CS208 Quiz I (Spring 2014)
Time: 1 hour
Date: Feb 12, 2014

- Be brief, complete, and stick to what has been asked.
- You may cite results/proofs covered in the class without reproducing them.
- Do not copy solutions form others.
- Penalty for copying: FR grade.

1. [20 marks] Give DFAs accepting the following languages over the alphabet $\Sigma=\{0,1\}$:
(a) The set of all strings that, when interpreted as binary integers, are even and multiple of 3 .
(b) The set of all strings that, when interpreted as binary integers, are multiple of 6 .
(c) The set of all strings that, when interpreted as binary integers, are even or multiple of 3 .
(d) The set of all strings that, when interpreted as binary integers, are even and not a multiple of 3 .
2. $[5+5+5$ marks $]$ Let $\Sigma=\{0,1\}$.
(a) Give an NFA accepting the set of strings $w \in \Sigma^{*}$ that can be written as concatenation $u . v$ of two strings $u, v \in \Sigma^{*}$, where u when interpreted as binary is even, while v when interpreted as binary is a multiple of 3 .
(b) Give a regular expression corresponding to the NFA constructed in 2.(a).
(c) Using the subset-construction give at least 10 states of the DFA corresponding to the NFA in the 2.(a).
3. $\left[5+5+5\right.$ marks] Let $\Sigma=\{0,1\}$. For a fixed number $k \in \mathbb{N}$, let \mathcal{L}_{k} be the set of all languages of strings of length at most k, let \mathcal{L}_{*} be the union of all such languages, and let \mathcal{L} be the set of all languages over Σ. Formally,

$$
\begin{aligned}
\mathcal{L}_{k} & =\left\{L \subseteq \Sigma^{*}:|w| \leq k \text { for all } w \in L\right\}, \\
\mathcal{L}_{*} & =\bigcup_{k \geq 0} \mathcal{L}_{k}, \text { and } \\
\mathcal{L} & =\left\{L \subseteq \Sigma^{*}\right\} .
\end{aligned}
$$

Decide which of the following conjectures are true and which are false. Justify your answer.

- For a fixed $k \in \mathbb{N}$ every language in the set \mathcal{L}_{k} is regular.
- Every language in the set \mathcal{L}_{*} is regular.
- Every language in the set \mathcal{L} is regular.

